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Abstract

Is it possible for students to self-handedly gain access to early algebra starting from in-
formal strategies embedded in arithmetic? Can apparently fundamental differences between
arithmetical and algebraic conceptions of mathematical problems be (partly) surmounted?
The historical development of algebraic problem solving and algebraic symbolic language
has inspired the author to develop a prototype pre-algebra learning strand on reasoning and
equation solving. This article sketches the project background and gives some examples of

classroom activities.




Introduction

Several algebra research projects of the last decade report on poor student performance when
it comes to solving linear equations (KIERAN 1989, 1992; FILLOY & ROJANO 1989; SFARD
1991, 1996; HERSCOVICS & LINCHEVSKI 1994, 1996; BEDNARZ et al. 1996). Secondary
school students often have trouble learning how to construct equations from arithmetical word
problems, and how to rewrite, simplify and interpret algebraic expressions. It is conjectured
that part of the problem is caused by fundamental differences between arithmetic and algebra
(FILLOY & ROJANO 1989; HERSCOVICS & LINCHEVSKI 1994; BEDNARZ & JANVIER 1996;
MASON 1996). Arithmetical problems, for instance, involve straightforward calculations with
known numbers, whereas algebra requires reasoning about unknown or variable quantities and
recognizing the difference between specific and general situations. In the transition from arith-
metic to algebra there is claimed to be a discrepancy called cognitive gap (HERSCOVICS &
LINCHEVSKI 1994) or didactic cut (FILLOY & ROJANO 1989), hampering manipulations of
algebraic expressions.

A good starting point for an investigation into this matter could be a return to the roots. In
this project we shall try to gain insight into the differences and similarities between arithmetic
and algebra by looking into the historical development of algebra and learning from past experi-
ences. Recent research on the advantages and possibilities of using and implementing history of
mathematics in the classroom has led to a growing interest in the role of history of mathematics
in the learning and teaching of mathematics'. Inspired by the HIMED (History in Mathematics
Education) movement, a developmental research project called ‘Reinvention of Algebra’ was
started at the Freudenthal Institute in 1995 to investigate which didactical means will enable stu-
dents to make a smooth transition from arithmetic to early algebra. Specifically, the ‘invention’
of algebra from a historical perspective will be compared with possibilities of ‘re-invention’ by
the students. This paper first sketches the background of the project (part 1) and then gives a
brief outline of the learning strand and some classroom impressions (part 2).

1 Background of the project
1.1 Research motive

The American Middle School Project (VAN REEUWIIK 1995) and small experiments in The
Netherlands (ABELS 1994, STREEFLAND 1995) revealed a great number of accesses into al-
gebra for relatively young learners. Ten- and eleven-year-olds have shown that they can rea-
son algebraically in problem situations that are familiar and meaningful to them. The level of
knowledge, skills and abilities of the children, and in some cases the mathematics itself, are the
driving forces of the teaching-learning process. A similar observation can be made for the his-
torical development of algebra, where both practical needs in society and internal motivation led
to further progress. Given the fact that historical developments play an increasingly important
role in the teaching and learning of mathematics, one of the project’s aims is to investigate if
history of mathematics can be a useful didactical tool. The application will be twofold: history
as a guide for the hypothetical learning trajectory, and history as a rich source of mathematical
problems and learning moments. Moreover, the historical development of algebra can shed light

IFor example, work by Fauvel, Van Maanen, Kool, Arcavi, Eagle and many more; special issues For the
Learning of Mathematics 11-2 (1991) and Mathematical Gazerte 76 (1992); discussion document for an ICMI
study by Fauvel and Van Maanen, Educational Studies in Mathematics 34-3, 255-259.
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on the ruptures between arithmetical and algebraic modes of thinking.

A decade ago, the algebra working group of the W12-16 project designed a new approach
of algebra for the first three years in Dutch secondary schools (Algebragroep W12-16, 1990,
1991; W12 -16 COW, 1992). In this new algebra, algebraic relations play a very important role.
Students develop algebraic conceptions and skills very gradually from concrete situations by
switching between different forms of representation: descriptions of situations, tables, graphs
and formulas. However, since the implementation of the new program it has become increa-
singly clear that the learning of algebraic skills like manipulation of formulas and equations stitl
needs to be improved. Consequently, we have decided to attempt another approach. Inspired by
the historical development of algebra, we will investigate accesses to algebra within the context
of story problems and solving equations. Developmental research will be carried out on the
teaching-learning process of the teachers as well as the groups of students involved, to determine
whether the discrepancy between arithmetic and algebra can be minimized. But before going
into more detail, a brief description is called for of two standpoints -on mathematics education
and educational research- which are at the heart of this project.

1.2 Developmental research and Realistic Mathematics Education

Developmental research is a type of educational research whereby design of instructional ma-
terial is an integrated part of the research method. In a cyclic process of anticipating and tes-
ting, new ideas on teaching and learning mathematics are developed and tried out in classroom
experiments. In order to construct a hypothetical learning trajectory, educational designers
can make use of heuristics such as the reinvention principle and didactical phenomenology
(FREUDENTHAL 1983, 1991). Analysis of the classroom results leads to the formation of the-
ory, which in turn is used to improve the instructional design. The completion of various cycles
-in this project there have been three- will result in a product which is theoretically and empi-
rically founded. So developmental research yields not only a new learning strand on a certain
topic, but also a theory on the preferred way in which the topic should be taught and learnt. ‘The
preferred way’ in our opinion is one according to the didactical vision of Realistic Mathema-
tics Education (RME), which propagates the teaching and learning of mathematics as a human
activity.

In agreement with the tradition of RME, the founding principles of the early algebra learning
strand are:

e to create rich problem situations that are meaningful to students, either in the real world
or in their mathematical experience

to construct activities that offer opportunities for mathematizing, modeling and schema-
tizing, not only as problem solving tools but also as a means to formalize mathematical
thinking

e to choose contexts that students are familiar with to serve as frameworks of reference

e to enable students to construct their own mathematics, starting from informal knowledge
and strategies and progressively building up a more formal mathematical understanding

e to instigate interactive reflection (student-student and student-teacher) and student partici-
pation in establishing algebraic conventions.
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(For more information on developmental research and the RME tradition, see FREUDENTHAL
1983, 1991; TREFFERS 1978; GRAVEMEUJER 1994; VAN DEN HEUVEL-PANHUIZEN 1996).

1.3 Subject matter: algebra and arithmetic

Algebra has many faces and is therefore difficult to define. But for the sake of practicality, it
is useful to distinguish four basic perspectives of school algebra: algebra as generalized arith-
metic, algebra as a problem-solving tool, algebra as the study of relationships, and algebra as
the study of structures. Each of these operates in a different medium, where for example letters
have a specific meaning and role (USISKIN 1988). In this research project we have decided to
restrict ourselves to linear relationships, formulas and equation solving. The proposed learning
activities belong to the first three perspectives of school algebra as mentioned, and assume a
dialectic relationship between algebra and arithmetic.

A closer look at the similarities and differences between algebra and arithmetic can help us
understand some of the problems that students have with learning algebra. In bold terms, arith-
metic deals with numbers and algebra with letters - letters that can stand for numbers. But the
essential difference lies deeper. Several researchers (Booth 1988; KIERAN 1989, 1992; SFARD
1991, 1996) have studied problems related to the recognition of mathematical structures in alge-
braic expressions. Kieran speaks of two conceptions of mathematical expressions: procedural
(concerned with operations on numbers, working towards an outcome) and strucrural (con-
cerned with operations on mathematical objects) (or operational and structural respectively,
SFARD 1996). The contrasting natures of algebra and arithmetic in this respect will be dis-
cussed in connection with the theoretical conjectures later in this paper.

And yet there is a definite interdependency: algebra relies heavily on arithmetic operations and
arithmetic expressions are sometimes treated algebraically. And word problems have always
been and still are a part of mathematics that algebra and arithmetic have in common. A summary
of the historical development of algebra® can shed more light on how algebra has its roots in
arithmetic.

1.4 Historical development of algebra

It is generally accepted to distinguish three periods in the development of algebra (oversimpli-
fying, of course, the complex history in doing so!), according to the different forms of notation:
rhetorical, syncopated and symbolic (see also table 1)*>. From ancient times until about 500
years ago, with the exception of Diophantus and a number of other mathematicians who used
abbreviations and symbols, both the problem itself and the solution process were mostly writ-
ten in only words (rhetorical notation). Early algebra was a more or less sophisticated way of
solving word problems. A typical rule used by the Egyptians and Babylonians for solving prob-
lems on proportions is the Rule of Three: given three numbers, find the fourth. Such problems
are commonly classified as arithmetic, but in situations where numbers do not represent spe-
cific concrete objects and where operations are required on unknown quantities, we can speak
of algebraic problems. Another commonly used method for solving word problems is called the
Rule of False Position, first used systematically by Diophantus (TROPFKE 1980). According to

2The historical overview is confined to the research topic and therefore “algebra” will be limited here to early
algebra, in particular the field of algebraic notation, word problems and linear equations.

3The classification of algebra into rhetorical, syncopated and symbolic algebra first appeared in G.H.F. Nessel-
mann, Die Algebra der Griechen, Berlijn 1842 (STRUIK 1990, p. 78).
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this rule one is to assume a certain value for the solution, perform the operations stated in the
problem, and depending on the error in the answer, adjust the initial value using proportions.
Although the Rule of False Position is generally not said to be an algebraic algorithm, its wide
acceptance and perseverance even after the invention of symbolic algebra indicate it was and
can still be a very effective problem solving tool.

rhetoric syncopated symbolic
written form of only words words and numbers words and numbers
the problem
written form in the only words words and numbers; words and numbers;
solution method abbreviations and abbreviations and
mathematical symbols for | mathematical symbols for
operations and exponents | operations and exponents
representation of the | word symbol or letter letter
unknown
representation of specific numbers | specific numbers letters
given numbers

Table 1: characteristics of the 3 types of algebraic notation

Depending on the number concept of each civilization as well as the mathematical problem, the
unknown could be a quantity or a measure and was denoted by words like “heap” (Egyptian),
“length” or “area” (Babylonian, Greek), “thing” or “root” (Arabic), “cosa”, “res” or “ding(k)”
(Western). The solution was given in terms of instructions and calculations, with no explanation
or mention of rules. The unknowns were treated as if they were known; reasoning about an
undetermined quantity apparently did not form a conceptual barrier. For instance, in the case
of problems that we would nowadays represent by linear equations of type z + ;1;96 = a, the
unknown quantity = was conveniently split up into n equal parts.

Diophantus (ca. 250 AD) invented shortened notations (syncopated algebra) which enabled him
to rewrite a mathematical problem into an ‘equation’ (abbreviated form). He systematically
used abbreviations for powers of numbers and for relations and operations. In his equations
he used the symbol ¢ to denote the unknown and additional unknowns were derived from it.
TROPFKE (1980) explains that this change from representing the unknown by words to sym-
bols really persevered only once the symbols were also used in the calculations. He gives two
arguments to indicate that Diophantus appears to have been the first mathematician to do so.
Firstly, Diophantus performed arithmetic operations on powers of the unknowns, catrying out
additions and subtractions of like terms self-evidently without explicitly stating any rules. And
secondly, he explained the method and purpose of adding and subtracting like terms on both
sides of an equation. (TROPFKE 1980, p. 378).

After Diophantus there were other practitioners of syncopated algebra. In India (7% century
AD) words for the unknown and its powers -which were extended in a systematic way- were
abbreviated to the first or the first two letters of the word. Additional unknowns were named
after different colors. In Arabic algebra (9" century AD) powers of the unknown were also
built up consecutively, using the terms for the second and third power of the unknown as base.
In abbreviated form, the first letter of these words was written above the coefficient. In Wes-
tern Burope (13%" century) there were minor differences in the technical terms between Italy
and Germany, and only in the second half of the 14 century the words “res” and “cosa” were
shortened to r and s respectively. In the middle of the 16th century Stifel introduced conse-
cutive letters for unknowns and stated arithmetical rules using these letters. From there Buteo,
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Bombelli, Stevin, Recorde (see figure 1) and many others developed a system to symbolize
powers of unknowns and formulate equations. (TROPFKE 1980, pp. 377-378). Recorde intro-
duced the equals-sign in print, saying: “And to avoid the tedious repetition of these words: is
equal to: I will set as I do often in work use, a pair of parallels, or Gemowe lines of one length,
thus: =, because no 2 things, can be more equal.” * (EAGLE 1995, p. 82).

i ) anbto
uoide the tedioufe tepetition of thefe wooes: is '::

qualle to: 3 Will fette a8 J Doe oftein in Wwoo:kie bie,a
paire of paralleles, 02 Gemotoe lines of onc lengthe,
thus: sbicaufe noe.2. thpnges,can be meare
equalle. Anbnoko marke thefe nomberg,

Q Betokeneth nomber absolute

I 1450 =t 1§, §e=eu7 1.8,
- 7 b 76 Signifieth the roote of any nomber
2 1o, 18 §==—==1102.9.

? Representeth a square nomber
o 265 1030 ====q. - ) R
65 Toxp 951020 ~—— 2154,

4 1920 —4— 92.§mes 05»——+—1089——19:e
5 18.20 —f—2 4.8 === 83—tz
6 314%

Ge Expresseth a Cubike nomber, etc.

127 —===40% ——480§—g.3.

Figure 1: Algebraic notations in Western Europe
Date: Recorde (1557), The Whetstone of Witte
Source: EAGLE (1995), Exploring Mathematics through History

In the rhetorical and syncopated periods we see a certain degree of standardization. Routine
solving procedures were based on the specific numerical properties of standard problems. Dio-
phantus, Arabic mathematicians and the mathematicians in Western Europe contributed a vari-
ety of general methods of solving indeterminate, quadratic and cubic equations. But with the
lack of a suitable language to represent the given numbers in the problem, it was still a diffi-
cult task to write the procedures down legibly. In a few isolated cases geometrical identities
were expressed algebraically (with variables instead of numbers) but nonetheless written in full
sentences. Syncopated notation did not (yet) enable mathematicians to take algebra to a higher
level: the level of generality. It is important that students experience this limitation themselves
in order to appreciate the value and power of modern mathematical notation.

The development of algebraic notation in the 16" century was a process still instigated by
problem solving (see also RADFORD 1995). In 1591 Vigte introduced a system for denoting
the unknown as well as given numbers by capital letters, resulting in a new number concept:
“algebraic number concept” (HARPER 1987). The signs and symbols became separated from
that what they represent (a context-bound number) and symbolic algebra became a mathema-
tical object in its own right. For a Vietan solution to a typical Diophantine problem, see figure
2 below. A few decades later Descartes proposed the use of small letters as we do nowadays:
letters early in the alphabet for given numbers, and letters at the end of the alphabet for un-
knowns. With the creation of this new language system, earlier notions of the “unknown” had
to be adjusted. The first objective had always been to uncover the value of the unknown, but in
the new symbolic algebra the unknown served a higher purpose, namely to express generality.

“4Gemowe lines mean twin lines, as in Gemini (EAGLE 1995).
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Algebra as generalized arithmetic was a fact, and in its new role algebra detached itself from
arithmetic.

FRANCISCl VIETEZE

ZETETICORVM

LIBER PRIMVS

Zereticvm I

BEERAT Aca differentia duorum laterum , & adgregato corum-
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FIRST BOOK
Zetetic I*

Given the difference between two roots and their sum, (o find
the roots.

Let B be the difference between two roats and let D be theic sum The
raots are to be found.

Let the smaller root be A, The greater will then be 4 + 8. So the sum
of the roots is 24 + B. But this has been given as D. Hence

24+8B-D
and, by transposition,
24-D-8
Having divided through by 2,
A~ hD - VB,

Or let the greater root be £ The smaller will then be £ - B. Therefore
the sum of the roots 15 2E ~ 8. But this has been given as D. Hence

— B Atidem dsua €t D, Quare £ 3— B aquabitus D, & pee sntibetim . E
bt DB ¢ cmnbn o £ semton B T8 by * WE-B-D
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sk B 40. D oo 4 fi jo. £ 70. E-'D <8
5% Gaven, thercfare, the difercnce between two roats and their sum, the

roots can be found, for

Half the sum of the roots mimes half their difference is equal 1o the
smtaller root. and (half the sum of the couss] plus [half their difference 1s
equal] to the greater

1tis this that zetetics makes clear.
Let BbedDand D100 4 is then 30 and £ is 70

Figure 2: Symbolic algebra

Date, left: Vidte (1593), Zeteticorum Liri Quinque; date, right: Witmer (1983)

Source, left: Latin text from F. van Schooten’s edition, p- 42 (Leiden, 1646, reprint in Hofman, 1970); source,
right: English translation in Witmer (1983), p. 83-84.

The historical development of equations in particular shows that, no matter how revolutionary,
symbolic algebra was not a necessity for the existence of equations. That is, if we allow other
forms of notation than the conventional symbolic one. As a matter of fact, linear equations were
very common in Egypt, and the Babylonians already knew how to solve equations of the first,
second and third degree. In order to solve with the method of elimination the following system
of equations (given in modern notation):

41 7
T — =
FCa

z+ y = 10
the first equation was multiplied by 4 and the second equation was then subtracted from the
first, which gave 3z = 18 . Hence z = 6, and from the second equation it followed that y = 4.

In a very different part of the world a systematic treatment of solving equations developed in
ancient China. Just like the ancient civilizations, the Chinese lacked a notational system of
writing problems down in terms of the unknowns, but the computational facilities of the rod
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numeral system enabled them to surpass the rest of the world in equation solving. The Jiu
zhang suanshu or ‘Nine Chapters on the Mathematical Art’ (206 BC to 220 AD) is the oldest
book known until now that contains a method of solving any system of n simultaneous linear
equations with n unknowns, with worked-out examples for n = 2,3,4 and 5. This was done using
the method fang cheng (calculation by tabulation), writing the coefficients down or organizing
them on the counting board in a tabular form and then performing column operations on it
(much like the Gauss elimination method of a matrix). The general application of the fang
cheng method led quite naturally to negative numbers and some rules on how to deal with them,
which is in great contrast with the late acceptance of negative numbers in other parts of the
world.

Diophantus certainly demonstrated a pursuit of generality of method, but his first concern was
to find a (single) solution for each problem. The Arithmetica (ca. 250 AD) is a collection of
about 150 specific numerical problems that exemplify a variety of techniques for problem sol-
ving. Diophantus distinguished different categories and systematically worked through all the
possibilities, reducing each problem to a standard form. Negative solutions were not accepted,
and if there was more than one solution, only the largest was stated. He solved linear equa-
tions in one unknown by expressing the unknown and the given numbers in terms of their sum,
difference and proportion. If a problem contained several unknowns, he expressed all the un-
knowns in terms of only one of them, thereby dealing with successive instead of simultaneous
conditions. Diophantus is also known for his treatment of indeterminate equations: equations
of the second degree and higher with an unlimited amount of rational solutions. Once again the
general method involved reducing the problem to one unknown and finding a single solution.

The Arabs also played an important role in the historical development of equation solving. Al-
though the boundaries of this research project have been set at (systems of) linear equations,
their achievements on quadratic and cubic equations deserve mentioning. An influential book
on Arabic algebra is al-Khwarizmi’s Hisab al-gabr wa-I-mugabala (early 10" century). It con-
tains a clear exposition of the solutions of six standard equations, followed by a collection of
problems to illustrate how all linear and quadratic equations can be reduced to these standard
forms. Al-Khwarizmi also gave geometric proofs and rules for operations on expressions, in-
cluding those for signed numbers, even though negative solutions were not accepted at that
time. But as far as the difficulty of the problems and the notations are concerned, the book
remained behind compared to the work of Diophantus; everything was written in words, even
the numbers. The Arabs did not succeed at solving cubic equations algebraically, but in the 1t
century AD Omar Khayyam presented a well-known yet incomplete treatise on solving cubic
equations with geometric means.

Arabic algebra became known in the Western world in the 12** century, when al-Khwarizmi’s
work was translated by Robert of Chester. Two centuries later, mathematical textbooks on
arithmetic and algebra were very common in certain parts of Europe, and equation solving (even
of the third and fourth degree) had become a regular subject in the Italian abbacus schools. In
1545 Cardano presented the solution of the general cubic equations by means of radicals. After
the invention of symbolic algebra, equation solving developed very rapidly and soon found new
applications in other areas of mathematics.

1.5 History in mathematics education

We would not plead for the use of history of mathematics in mathematics education if we did
not believe that history has something extra to offer. It can benefit students, teachers, curricu-
lum developers and researchers in different ways. Students can see the subject in a new light,
they will have a notion of processes and progress, they will learn about social and cultural in-
fluences, to name just a few advantages (FAUVEL 1991). Teachers may find that information
on the development of a mathematical topic makes it easier to tell, explain or give an example
to students. It also helps to sustain the teacher’s interest in mathematics. And history of mathe-
matics can give the educational developer or researcher more insight into the subject matter and
perhaps even the learning process.

Another argument for using history in education is the so-called Biogenetic Law popular at
the beginning of this century. The Biogenetic Law states that mathematical learning in the
individual (philogenesis) follows the same course as the historical development of mathema-
tics itself (ontogenesis). However, it has become more and more clear since then that such a
strong statement cannot be sustained. A short study of mathematical history is sufficient to
conclude that its development is not as consistent as this law would require. Freudenthal also
warns against unthinkingly accepting the Biogenetic Law in the following passage on ‘guided
reinvention’:

Urging that ideas are taught genetically does not mean that they should be presented in the order in
which they arose, not even with all the deadlocks closed and all the detours cut out. What the blind
invented and discovered, the sighted afterwards can tell how it should have been discovered if there
had been teachers who had known what we know now [...... 11t is not the historical footprints of
the inventor we should follow but an improved and better guided course of history. (FREUDENTHAL
1973, pp. 101, 103).

In other words, we can still find history helpful in designing a hypothetical learning trajectory
and use parts of it as a guideline. HARPER (1987), for example, argues that algebra students
pass through consecutive stages of equation solving, using more sophisticated strategies as they
become older, in a progression similar to the historical evolvement of equation solving. He
pleads for more awareness of these levels of algebraic formalism in algebra teaching.

There are different ways of implementing history in educational design. First of all, history can
be used as a designer guide. Milestones in the development of mathematics are indications of
conceptual obstacles. We can learn from the ways in which these obstacles were conquered,
sometimes by attempting to travel the same course but at other times by deliberately using a
different approach. ‘Reinvention’ does not mean following the path blindly. On the contrary, it
means that developers need to be selective and should attempt to set out a learning trajectory in
which learning obstacles and smooth progress are in balance. History can set an example but
also a non-example. And secondly, we can choose between a direct and an indirect approach,
bringing history into the open or not. Learning material can be greatly enriched by integrating
historical solution methods and pictures and fragments taken from original sources, but in some
situations it may be more appropriate that only the teacher knows the historical background.

Having decided to use history of mathematics as a source of inspiration for both the researcher
and the students, it has become an important issue to find out in this project what the effect is.
We aim to determine:




e how the historical development of algebra compares with the individual learning process
of the student following the proposed learning program;

o whether or not historical problems and texts indeed help students to learn algebraic prob-
lem solving skills.

1.6 ‘Reinvention of algebra’

In order to facilitate the ‘reinvention of algebra’ in the classroom, we need to find out where the
historical development of algebra indicates accesses from arithmetic into algebra. Historically,
word problems form an obvious link between arithmetic and algebra. Although algebra has
made it much simpler to solve word problems in general, it is remarkable how well specific
cases of such mathematical problems were dealt with before the invention of algebra, using
arithmetical procedures. Some types of problems are even more easily solved without algebra!
One important characteristic of algebra, the ability to reason with unknown or variable quanti-
ties, can be trained within an arithmetical context. Another possible access is based on notation
use, for instance by comparing the historical progress in symbolization and schematization with
that of modern students. Thirdly, we could study old textbooks on early algebra in order to learn
more about how algebra was understood and applied just after it became accepted.

Despite the clear bond between algebra and arithmetic shown by the historical development
of algebra, one look at a schoolbook is enough to realize that they still seem to be separate
worlds. Decades ago it was already clear that inconsistencies between arithmetic and algebra
can cause great difficulties in early algebra learning. The difficulty of algebraic language is
often underestimated and certainly not self-explanatory: “Its syntax consists of a large number
of rules based on principles which, partially, contradict those of everyday language and of the
language of arithmetic, and which are even mutually contradictory.” (FREUDENTHAL 1962,
p- 35). He then says:

The most striking divergence of algebra from arithmetic in linguistic habits is a semantical one with
far-reaching syntactic implications. In arithmetic 3 + 4 means a problem. It has to be interpreted
as a command: add 4 to 3. In algebra 3 + 4 means a number, viz. 7. This is a switch which
proves essential as letters occur in the formulae. a + b cannot easily be interpreted as a problem.
(FREUDENTHAL 1962, p. 35)

The two interpretations (arithmetical and algebraic) of the sum 3+4 in the citation above corre-
spond with the terms procedural and structural used by Kieran.

We also need to consider how notation and concept formation are related. SFARD (1991) conjec-
tures that symbolic algebra is equivalent to a structural conception of algebra and consequently
more advanced in terms of concept development than rhetoric algebra, which corresponds with
an operational approach. However, this view is not commonly shared. Radford argues that the
categorization rhetoric —syncopated— symbolic is the result of our modern conception of how
algebra developed, and that it is often mistaken for a gradation of mathematical abstraction
(RADFORD 1997). When the development of algebra is seen from a socio-cultural perspective
instead, syncopated algebra was not an intermediate stage of maturation but it was merely a
technical matter. As Radford explains, the limitations of writing and lack of book printing quite
naturally led to abbreviations and contractions of words. Perhaps modern day students do natu-
rally shorten their notations (from a context-bound to a general mathematical language), but it
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has yet to be decided whether this process implies a better understanding of letter use.
1.7 Cognitive gap

In recent years, much research has been done on difficulties that students have in translating
word problems into algebraic equations, and it has produced an abundance of new conjectures.
In the transition from arithmetic to algebra there is a discrepancy known as the cognitive gap
(HERSCOVICS & LINCHEVSKI 1994) or the didactic cut (FILLOY & ROJANO 1989). There
are differences regarding the interpretation of letters, symbols, expressions and the concept of
equality. For instance, in arithmetic, letters are usually abbreviations or units, whereas algebraic
letters are stand-ins for variable or unknown numbers. FILLOY & ROJANO (1989) as well as
LINCHEVSKI & HERSCOVICS (1996) point out a rupture in the learning process of equation
solving. Operating on an unknown requires another notion of equality. In the transfer from a
word problem (arithmetic) to an equation (algebraic), the meaning of the equal sign changes
from announcing a result to stating equivalence. And when the unknown appears on both sides
of the equality sign instead of one side, the equation can no longer be solved arithmetically
(by inverting the operations one by one). Matz (1979) and Davis (1975), for example, have
done research on students’ interpretation of the expression z + 3. Students see this as a process
(adding 3) rather than a final result that stands by itself. They have called this difficulty the
“process-product dilemma”. SFARD (1996) has compared discontinuities in student conceptions
of algebra with the historical development of algebra. She writes that syncopated algebra is
linked to an operational conception of algebra, whereas symbolic algebra corresponds with a
structural conception of algebra.

DA ROCHA FALCAO (1996) suggests that the disruption between arithmetic and algebra is
contained in the approach to problem-solving. Arithmetical problems can be solved directly,
possibly with intermediate answers if necessary. Algebraic problems, on the other hand, need to
be translated and written in formal representations first, after which they can be solved. MASON
(1996, p. 23) formulates the problem as follows: ‘Arithmetic proceeds directly from the known
to the unknown using known computations; algebra proceeds indirectly from the unknown, via
the known, to equations and inequalities which can then be solved using established techniques’.

Summarizing the theoretical background of the research project described above, we aim to
determine how a bottom-up-approach (starting from informal methods that students already
use) towards algebra can minimize the discrepancy between arithmetic and algebra. We will
investigate which early algebra activities can help students to proceed more naturally from the
arithmetic they are familiar with to new algebraic territories, and how procedural and structural
properties in both algebra and arithmetic can become more connected. In our attempt to inves-
tigate possible accesses from arithmetic into algebra from a historical perspective, we will look
into the past for contexts (topics), types of mathematical problems, mathematical ways of thin-
king, solving procedures, notations, and suitable sources. The historical development of algebra
indicates certain courses of evolution that the individual learner can reinvent. Ideally, the stu-
dent will acquire a new attitude towards problem solving by developing certain (pre-)algebraic
tools: a good understanding of the basic operations and their inverses, an open mind to what
letters and symbols mean in different situations, and the ability to reason about (compare and
relate) (un)known quantities. The study will be based on data collected through lesson obser-
vations, two written assessment tests made by the students at the end of each booklet, student
workbooks and student and teacher questionnaires.




The principal aim of the research project is to find answers to questions like:

e are there moments in the learning process when students overcome a part of the discre-
pancy between arithmetic and algebra, and why?

e what is the effect of integrating the history of algebra in the learning strand the students?

e which type of shortened notations do children use naturally, and how does it compare
with the historical development of algebraic notations?

e is there an acceptable compromise between intuitive, inconsistent symbolizations and
formal algebraic notations?

e how can students actively take part in the process of fine tuning notations and establishing
(pre-) algebraic conventions?

o to what extent and in what way can students become aware of different meanings of letters
and symbols?

The next part of the article gives an outline of the learning strand and reports on a few classroom
results from the most recent try-out.

2 Learning strand and classroom results
2.1 Proposed learning program: an outline

The historical development of algebra has inspired us to base the core learning material on word-
or story-problems. The early rhetorical phase of algebra finds itself in-between arithmetic and
algebra, so to speak: an algebraic way of thinking about unknowns combined with an arith-
metic conception of numbers and operations. Babylonian, Egyptian, Chinese and early Western
algebra was primarily concerned with problem solving situated in every day life, but mathema-
tical riddles and recreational problems were common too. Fair exchange, money, mathematical
riddles and recreational puzzles are rich contexts for developing handy solution methods and
notation systems, and they are also appealing and meaningful for students. The natural prefe-
rence and aptitude for solving word problems arithmetically will form the basis for the first half
of the learning strand, whereby students’ own informal strategies will be adequately fit in. The
barter context in particular appears to be a natural, suitable setting to develop (pre-) algebraic
notations and tools such as a good understanding of the basic operations and their inverses, an
open mind to what letters and symbols mean in different situations, and the ability to reason
about (un)known quantities. The transfer to a more algebraic approach will be instigated by
the guided development of algebraic notation, especially the change from rhetorical to synco-
pated notation, as well as a more algebraic way of thinking. It will be interesting to determine
whether the evolvement of intuitive notations used by the learner show similarities with the his-
torical development of algebraic notation. Several original texts will be integrated to illustrate
the inconvenience of syncopated notations and the value of our modern symbols, and different
historical sources will be used to let students compare ancient solving methods like the Rule of
False Position with modern techniques.

Outline of the mathematical content:

o restriction problems: problems with two variables and one or two conditions
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@ reverse calculations: practicing with inverse operations and arrow diagrams

comparing quantities: reasoning with given barter relations
® progressive formalization of symbol use: discussi i i
! : ssing conflicts of notation -
ging role of symbols (eg. letters, equal sign) " and the chan

® informal algebra: Rule of Three, reasoning about unknowns, Rule of False Position

e linear equations in one unknown and two unknowns,

The learning strand currently consists of two con
(Change and Barter trade, totalin
school level (Fancy Fair and Time
split up into two parts, but ideally it

secutive booklets at primary school level
g 25 lessons), and two consecutive booklets at secondary

t'ravelers, totaling 15 lessons). The learning strand can be
1s treated as one complete lesson series.

2.2 Classroom impressions

I;l the spring of 1999,' tlTe booklets Change and Barter trade were tested in two primary school
classes, grade 6, consisting of 18 and 23 students. The 25 pre-algebra lessons were given by the

reference to the research questions.

The first topic in the primary school i

) part of the program is proble ith restricti
dents are given a list with prices of 20 different ¢ " betomn 3 ot oo
are asked to write down what can be bou
realize that the answer will require a lot

b The stu-

andy .bars (ranging between 5 and 95 cents), and

gfht for precisely 1 guilder (100 cents). Many students

‘ ot paper and decide to use abbreviations. Immedia

: . ' . tel

g;:li Ssartlaci)ll)];;onfumty )to Ir]l}cl about effective mathematical notation (letters, syllables operato)rl

, artorms). In the next question, students are asked to , isay

between two imaginary students: “I fou , ibiliti L it o greoment
: nd all the possibilities for 1 guilder!” i

you can never know that for sure!”, the other sa . is activity font -

! ! : ”, ys. In one of the classes this activity insti
a lively discussion on the total number of possibilities, along these lines: o indtgated

Several students working on their own reckon it is possible to know for sure, but it
. . '
will take a long time,

Observer: ‘How do You know you haven't missed one our?’
A girl replies that in that case You are doing it wrong. Another girl replies that she
would start at the top of the list, take one item and check all the possibilities, and
then take the next item from the top of the list, and so on. ’
Class discussion. The teacher asks for answers; some students give a numerical
answer.




Teacher: ‘How do you know there are so many?’
Student: ‘At some time there will be an end to all the possibilities’.

The class investigates all the possibilities in combination with potato chips; there | Figure 4a shows a spontancous student strategy, where the given number is halved (75 and
are too many to write down. ! 75) and then the given difference is evenly allocated to the two numbers (75 +32.5 and 75 -
32.5). In the other class the number line method as shown in figure 4b was introduced by the
teacher as an alternative - more visual - strategy. Diophantine problems are handled again in the
teacher made a week earlier; that there are as many as 520 possible simple sums ~ §econdary school program, but this time with the intenti(?n to solve‘them using a linear equation
with the first 20 natural numbers! And so, he concludes, there must be at least 400 in one unknown: call the smaller number s, then the bigger one is s + 30, and the sum 2s +

30 = 100. In this way students get a chance to reflect on the effectiveness of an informal and
formal strategy of problem solving,

Teacher: ‘How many possibilities altogether, do you think?’
A boy replies: 400. He then explains: he compared the problem with a comment the

in this case.
Other students then suggest more than 1000 possibilities, but they would like to hear

the exact number from the author of the booklet!

. . . 4 k’ﬂdb,ﬂadje
This example illustrates how an open problem can lead to higher level thinking (reasoning about €
solvability) and can invite students to strike up other mathematical knowledge.

Another typical restriction problem in the first paragraph is situated in a money context. It is
split up into two parts: .
1. how many quarters and dimes do you get for a coin worth 2.5 guilders

| (_g Og 5?2324

S5 - ofo
2. if the total number of coins is 13, how many dimes and how many quarters are there. {*}32 ,{ S} Lo
Figure 3 shows how one student thought up a useful strategy for part 1. In general, students use v S =

a trial-and-error method and do not think of supportive notations like a table to structure their
attempts. It also does not occur to them or disturb them that they might miss out some solutions
this way.

Figure 4a: halving the sum and the difference Figure 4b: mirrored jumps on the number line

Towards the end of the first booklet, there is a paragraph on reversing a string of calculations to
find the initial number. ‘Guess my number’ goes as follows: one student thinks up a number and
tells another student something like “do it times 3, then add 5, subtract 2 and divide by 2, and
you get 4; what was the number?” It is a successful activity: students enjoy it and they can do it
at their own level and pace. Moreover, the teacher can make up many variations to practice even
fractions and percentages in a playful way that takes little time. The last paragraph is a historical

. application of reverse calculations, organized around an original problem by Chistianus van
Varenbraken (1532) (translated and summarized):

A hermit prays to Saint Paul ‘Double the amount of money in my purse and I will give you 6

’L / pennies’, and the saint complies. The hermit does the same when he comes to Saint Peter and Saint

? '-2_ O . Francis. In the end, when his prayers have all been heard, the hermit has no money left. The question
\J ! ‘ is, how much money did the hermit have at the start?’

150

[D b)) ( 16, Mladblaadje

The initial plan was to give students the original text along with some explanatory notes, and
then ask them to solve the problem. This task turned out to be too complex even for a colleague
designer, and irrelevant for the learning process besides. Looking for a way to visualize the
problem and make it dynamic, we found the solution: instead of solving the problem on paper,
the situation should be acted out in a short play. The teacher appoints 4 students to play the
roles of the hermit and the three saints, and the other students in the class have to solve the
problem. The play can be repeated indefinitely with different outcomes, enabling all students to
catch on. The students then see the author’s own solution in the booklet, where he merely gives
the answer and checks that it is correct. Two higher order questions in this paragraph are:

Figure 3: combinations of coins totaling 2.5 guilders

Restriction problems also appear in the third paragraph, for example:

1. riddles on age: Mom is 5 times as old as John; but she is also 28 years older than him.

2. Diophantine problems on sum and difference: split the number 150 up into two numbers
such that the difference between those numbers is 65 (Figure 4).

3Source: KOOL (1988).
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1. suppose you have to solve a similar problem, whereby the hermit has 38 pennies in the
end instead of none; does the author’s solution help you solve it?

2. what is the minimum number of pennies that the hermit needs to have at the start in order
to make a profit?

One clear outcome of the questionnaire is that students really enjoy acting. By literally doing
the problem, it comes alive. Considering the problem’s original purpose, ‘a matter of delight’
as the Van Varenbraken says, this activity is a good example of an appropriate reproduction of
history.

The content of Fancy Fair, the first secondary school booklet, is concerned primarily with
solving systems of two equations in two unknowns. The fancy fair attractions are represented
by iconic markers; some of these have a fixed price and others are not yet priced. In order to
concur with the primary school program, the booklet begins with expressions (equations) for

trading markers fairly and suitable notations to represent these trade expressions. In the third
paragraph students perform reverse calculations to determine the price of the markers. The
program then moves on to pairs of combinations of markers for a given price: an iconic system
of equations (see figure 5a and 5b). The problems can all be solved informally, by comparing the
numbers of markers and reasoning about them. The problem in figure 5a requires determining
the difference between the two combinations of markers and the prices (‘subtracting’), and
comparing again.

6 (ﬂ]]])(]]]]) + = 935
(I[[D = 6,70

b, How much does (HID cost and how much does cost?

Figure 5a: solving an iconic system of equations by determining the difference

The problem in figure 5b is based on interchanging repeatedly one striped marker for a check-
ered one - raising the price by 50 cents in doing so - until only one type of marker remains.

8. 3@ . 2 8. 4,75
2@ + 3@: 5,25

a. Which is more expensive, @ or @ ? Explain why.

b. How much is the difference?

c. How much does @ cost and how much does @ cost?

Figure 5b: solving an iconic system of equations by repeatedly interchanging one marker for another

In the final booklet historical problems are embedded in a story about two 13-year-old children
who visit different countries in different eras and discover mathematics from the past. For

350

example, there is a paragraph on the Rule of Three, another on the iti

the last paragraph deals with Diophantine problems. The Rule of FalsReu[])i)s?tcizzl 1S: iﬁ;ﬁ:tl:(? ban;l
W§ll-k1?own fish problem by Calandri (1491): The head of a fish weighs 1/3 of the whole fish Zis
tail weighs 1/4 and its body weighs 300 grams. How much does the whole fishweigh? Stud,ents
are aske{d to estimate the weight first and then solve it using a rectangular bar (see .Fi 1re 6)
after which they study the solution method of Calandri (see Figure 7). ® .

-
Vo | a8 | s |

Zoek uit hoeveel de vis precies weegt.

kladblaadje d
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Figure 6: a rectangular bar to represent the fish, and the calculation of the weight

Assume the fish weighs 120 grams.
Then the head weighs 40 grams,
the tail weighs 30 grams

and the body 50 grams.

7 How could the rest of the solution go?

Figure 7: part of Calandsi’s solution®

The paragraph also includes some reflective questions:

Problem and pictures originate from OFIR, R. & ARCAVT, A. (1992).
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1. why does Calandri choose 120 to start with?
2. what name would you give to this Rule of False Position?

3. what do you think of this method?

It is really remarkable that not one student remarks that 120 is a ridiculous number to begin
with, considering that the body of the fish already weighs 300 grams! The second .questlon
triggered very little response in the classroom but perhaps the student notebooks will reveal
more.

2.3 Final remarks ]

In the next few months the research data will be searched for unequivocal, concrete indications ‘
that will help to answer the research questions. Nevertheless, at this time W§ would like to put
forward a few conjectures regarding student attitude based on the observation o'f lessons. At
primary school level, students are not trained to make notes or draft work as an aid to problem
solving; they want to and try to solve even complex reasoning problems mente:lly. In secondary
school they learn that they should distill the information, but they oﬁen don t.. Students have
trouble formulating their solution strategy; they are sometimes unwilling to write down an ex-
planation to their answer, believing that the solution itself is more important hon they got it.
Especially at primary school we see a very passive attitude towards problem solving; students
tend to wait for the teacher to give them a clue rather than investigating for themselves. The
activities in the learning program seem to challenge the boys more than the girls. The effect of
historical elements in the classroom at primary school level is disappointing; students are not as
interested in the mathematical heritage as we expected and ancient solution strategies have not
really stimulated students to attain a more critical attitude.

To finish off, here is just a note of precaution to the reader. The classroom results presented in !

this article serve to illustrate the kind of activities the proposed learning program can activ?xte;
they are by no means a representative selection of what the moderate stuﬁient can ac'comp]}sh.
Similarly it must be clearly understood that the conjectures on student attitude are still subject
to change if the final data analysis proves differently.

References

ABELS M. (1994). Kijk en vergelijk (Look and compare). Nieuwe Wiskrant, 13-3, 13-17.

Algebragroep W12-16 (1990). En de variabelen, hoe staat het daarmee? (And how about the
variables?) Nieuwe Wiskrant, 10-1, 12-19. .

Algebragroep W12-16 (1991). Formules maken en gebruiken (Making and using formulas).
Nieuwe Wiskrant, 11-1, 57-63.

BEDNARZ N. & JANVIER B. (1996). Emergence and Development of Algebra as a Problem-
solving Tool: Continuities and Discontinuities with Arithmetic. In N. Bed‘narz et. al. (Eds.),
Approaches to Algebra (pp. 115-136). The Netherlands: Kluwer Academic Publishers.

BEDNARZ N., KIERAN C. & LEE L. (1996) (Eds.). Approaches to Algebra (pp. 39-53).

The Netherlands: Kluwer Academic Publishers. '

BEEMER H. (1997). Onbekenden en Stelsels op de Kermis: een onderzoek naar de ontwikkeling
van een deelleergang voor het oplossen van stelsels van vergelijkingen in de brugklas
havofywo (Unknowns and systems on the fancy fare: research on the development of a

352

learning strand for solving systems of equations in the seventh grade havo/vwo). Univer-
siteit Utrecht.

BOYER C. & MERZBACH U. (1989). A History of Mathematics. Singapore: John Wiley &
Sons, Inc.
EAGLE R. (1995). Exploring Mathematics through History. Cambridge Universtiy Press.
FAUVEL J. (1991). Using History in Mathematics Education. For the Learning of Mathematics,
11-2, 3-6.
FrLLoy E. & RojaNo T. (1989). Solving Equations: the Transition
bra. For the Learning of Mathematics, 9-2, 19-25.
FREUDENTHAL H. (1962). Logical Analysis and Critical Study. In H. Freudenthal (Ed.), Re-
port on the Relations between Arithmetic and Algebra (pp. 20-41).
FREUDENTHAL H. (1983). Didactical Phenomenology of Mathematical Structures. Dordrecht:
D. Reidel Publishing Company.
FREUDENTHAL H. (1991). Revisiting Mathematics Education. Dordrecht: Kluwer Academic
Publishers.
GRATTAN-GUINNESS 1. (Ed.) (1994). Companion Encyclopedia of the History and Philoso-
phy of the Mathematical Sciences. London/New York: Routledge.
GRAVEMEJER K. (1990). Globaal kijken, een kenmerk van algebraische deskundigheid (Loo-
king globally, a feature of algebraic skill). Nieuwe Wiskrant, 10-2, 29-33.
GRAVEMEIJER K. (1994). Developing Realistic Mathematics Education. Utrecht: CD b-press.
HARPER E. (1987). Ghosts of Diophantus. Educational Studies in Mathematics, 18, 75-90.
HERSCOVICS N. & LINCHEVSKI L. (1994), A Cognitive Gap between Arithmetic and Alge-
bra. Educational Studies in Mathematics, 27-1, 59-78.
HEUVEL-PANHUIZEN M. van den (1996). Assessment and Realistic Mathematics Education.
Utrecht: CD b-press.

KIERAN C. (1989). The Early Learning of Algebra: A Structural Perspective. In S. Wagner &
C. Kieran (Eds.), Research Issues in the Learning and Teaching of Algebra (pp. 33-56).
KIERAN C. (1992). The Learning and Teaching of School Algebra. In D. Grouws (Ed.), Hand-
book of research on mathematics teaching and learning (pp. 390-419). New York: MacMil-

lan Publishing Company.

Koot M. (Ed.) (1988). Christianus van Varenbrakens ‘Die edel conste
21, p. 108. Brussel: OMIREL, UFSAL.

LaM LAY-YONG & SHEN KANGSHEN (1989). Methods of Solving Linear Equations in Tra-
ditional China. Historia Mathematica, 16, 107-122.

LINCHEVSKI L. & HERSCOVICS N. (1996). Crossing the Cognitive Gap between Arithmetic
and Algebra: Operating on the unknown in the context of equations. Fducational Studies in
Mathematics, 30, 39-65.

MASON J. (1996). Expressing Generality and Roofs of Algebra. In N. Bednarz et al, (Eds.),
Approaches to Algebra (pp. 65-111). The Netherlands: Kluwer Academic Publishers.

OFIR R. & ARCAVI A. (1992). The Mathematical Gazette, 76-475, 69-84. )

RADFORD L. (1995). Before the Other Unknowns were Invented: Didactic Inquiries on the
Methods and Problems of Mediaeval Italian Algebra. For the Learning of Mathematics,
15-3,28-38.

RADFORD L. (1996). The Roles of Geometry and Arithmetic in the Development of Algebra:
Historical Remarks form a Didactic Perspective. In N. Bednarz et al. (Eds.), Approaches to
Algebra (pp. 39-53). The Netherlands: Kluwer Academic Publishers.

RADFORD L. (1997). On Psychology, Historical Epistomology, and the Teaching of Mathe-
matics: Towards a Socio-Cultural History of Mathematics. For the Learning of Mathema-

from Arithmetic to Alge-

arithmetica’, Scripta

353




tics, 17-1,26-33.

REEUWIIK M. van (1995). Students’ Knowledge of Algebra. In L. Meira & D. Carraher (Eds.),
Proceedings of the 19th International Conference for the Psychology of Mathematics Edu-
cation, Vol. 1 (pp. 135-150). Recife: Universidade Federal de Pernambuco.

ROCHA FALCAO J. da (1995). A Case Study of Algebraic Scaffolding: From Balance Scale to
Algebraic Notation. In L. Meira & D. Carraher (Eds.), Proceedings of the 19th Internatio-
nal Conference for the Psychology of Mathematics Education, Vol. 2 (pp- 66-73).

Recife: Universidade Federal de Pernambuco.

ROJANO T. (1996). The Role of Problems and Problem Solving in the Development of Alge-
bra. In N. Bednarz et al. (Eds.), Approaches to Algebra (pp. 55-62). The Netherlands:
Kluwer Academic Publishers.

ROSNICK P. (1981). Some misconceptions concerning the concept of variable. Mathematics
Teacher, 74 (6), 418-420.

SFARD A. (1991). On the dual nature of mathematical conceptions: reflections on processes
and objects as different sides of the same coin. Educational Studies in Mathematics, 21,
1-36.

SFARD A. (1996). Interpreting Algebraic text. In PME-proceedings 1996, Valencia.

STREEFLAND L. (1995). Zelf algebra maken (Making algebra yourself). Nieuwe Wiskrant,
15-1,33-37.

STREEFLAND L. (1996). Learning from history for teaching in the future. Utrecht: Freudenthal
institute.

STREEFLAND L. & VAN AMEROM B. (1996). Didactical Phenomenology of Equations. In
J. Giménez, R. Campos Lins & B. Gémez (Eds.), Arithmetics and algebra education:
Searching for the future (pp. 120-131). Tarragona: Computer Enginiering Department,
Universitat Rovira i Virgili.

STRUIK D.J. (1990). Geschiedenis van de wiskunde (History of Mathematics). Utrecht: Het
Spectrum.

TREFFERS A. (1978). Three dimensions: A Model of Goal and Theory Description in Mathe-
matics Instruction - The Wiskobas Project. The Netherlands: Kluwer Academic Publishers.

TROPFKE J. (1980). Geschichte der Elementarmathematik (History of elementary mathema-
tics). 4. Auflage (fourth edition). Bd. 1 (Vol. 1). Arithmetik und Algebra (Arithmetic and
algebra). Berlin, New York: de Gruyter.

USISKIN Z. (1988). Conceptions of School Algebra and Uses of Variables. In A. Coxford
(Ed.), The Ideas of Algebra, K-12 (pp. 8-19). Reston, VA: National Council of Teachers of
Mathematics.

W12-16 C.O.W. (1992). Achtergronden van het niewwe leerplan 12-16: band 1 (Backgrounds

of the new 12-16 curriculum: part 1). Utrecht: Freudenthal instituut.

: N
- T

“Si les mathématiques m’étaient contées...”

VICENTINI Caterina
Mathesis Gorizia (Italie)

Abstract

J'aborde ici la question suivante : peut-on rendre les seuils épistémologiques plus ac-
cessibles a la plupart des €léves ? Trés souvent ceux-ci demeurent “pseudostructurels” (au
sens de Sfard), ¢’est-a-dire qu'ils tendent A sous-évaluer les aspects sémantiques pour rester
au niveau syntaxique. Ils percoivent les mathématiques essentiellement comme un ensem-
ble de symboles plus ou moins vides, qu’il faut savoir manier pour réussir a 1'école et dans

la vie. Mon travail, s’agissant d’éléves de 14 4 19 ans, vise 4 montrer qu’il est intéressant
de proposer par moments, pour véhiculer certaines notions mathématiques de base, des ;1
langflges moins structurés et symboliques que ceux utilisés le plus souvent. La proposition

que je fais dans la suite consiste en une approche des ensembles infinis 4 I'aide d’une piece I
de théitre. :




