About the notion of natural logic: historical and theoretical remarks

FREGUGLIA Paolo
L’ Aquila University (Italy)
BERNARDI Raffaella
Utrecht University (NL) and Chieti University (Italy)

Abstract

The paper is meant as a historical and theoretical analysis of some notions we claim to
characterize a “natural logic”. As an example we focus our attention on the syllogistic the-
ory. After giving a brief introduction to the classical syllogism, we examine the techniques
of the syllogistic ‘demostratio’ with respect to the analytic and synthetic methods and we
characterize them by means of elimination and introduction rules. In the second part of the
paper we propose a comparison with Gentzen's Natural Deduction.
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1 Introduction : Syllogisms

The syllogistic ‘demostratio’ has been traditionally considered to be the unique logical instru-
ment for formalizing natural reasoning inferences. In the philosophical discussions of the XVI
century a prominent role was played by the analysis of mathematical proofs. In particular the
attention was focused on the quaestio de certitudine mathematicarum (see Piccolomini, Catena,
Clavio [?] and Barozzi [?]) and the methodological symmetry between analysis and synthesis.
The resolutio and the compositio, their synonyms, were described by Dupleix [?], as:

Analytique [. .. ] est un mot Grec dérivé d’Analysis, ¢’est-a-dire Resolurion : qui n’est autre chose
qu’un regrés ou retour d’une chose en ses principes [...] tellement que c’est le contraire de la
composition [...].

The increased interest for the analysis was motivated by two events: the discussions on Euclide,
from the one hand, and on Pappo and Diofanto, from the other. These two fact pushed the math-
ematicians to focus their attention on the method they were using. From this methodological
studies the analysis acquired a new role, and was considered to be as important as the synthesis.

Following this idea, in the paper we define the syllogism in terms of mathematical rules able to
expres both the synthesis and the analysis.

As it is well-known the classical syllogisms are based on four types of categorical propositions:
universally affirmative (A), universally negative (E), particularly affirmative (I), particularly
negative (O). The problem of how to interpret the categorical propositions correctly has been
deeply discussed in Lukasiewicz [?]. We will represent these four propositions as:

Fi(p,q): Every pisq
F3(p,g): Nopisq
F3(p,q): Some p are q

o = m >

Fy(p, q): Some p are not q

Summing up we say that: F;(z,y) stands for a categorical proposition where x and y are the
subject and the predicate, respectively.

A syllogism is an inference schema composed by two premises which share a term, known as
medium term, and which carry the other two terms which will be repeated in the conclusion.
Accordingly to the different positions these three terms occupy in the schema, different figures
are obtained. As an example we discuss the first figure.

Let = be the medium term, = and y the terms in the major and minor premises, respectively,

1° Figure
z X
y z
y X

Different modes are obtained combining the four possible categorical propositions. We sum-
marize them in the table below:
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l mode; mode; mode; mode; modes modeg
figure, ‘ AAFA EAFE AIF1I EIFO AAFI EAFO

where the XY I Z denotes the inference of the conclusion Z from the major and minor premises
X and Y, respectively.

In order to interpret the classical syllogisms as introduction and elimination of the medium
term, we represent the above inferences by means of a more general schema which has been
orginally proposed in Freguglia [?] where an algebra of categories was considered as a model
for the syllogisms.

Definition 1. Let Fi(ut,p), Fj(s, ;1) and F(s,p) be categorical propositions, we define a syl-
logism as the following transformation the validity of which is independent from the semantic
truth value of the categorical propositions it consists of. Let 4,7,k € {1,2,3,4}

Y] E[E(%P), Fj(snu‘)] = Fk(s’p)

We call (1) o-transformation, F;(y, p) and F}(s, 1) the major and minor premises, respectively,
and Fy(s, p) the conclusion. This schema satisfies the modes of the first figure, similar schemata
can be however given for the other figures simply changing the subject/predicate positions. As
an example we give the inference in Darii first in the traditional way, then with the format
proposed in def. 1:

Example 1: DARII

Every roman is stubborn  Some italians are romans
Some italians are stubborn

DARII

2[Every(roman,stubborn), Some(italians,romans)] = Some(italians,stubborn)

2 Syllogisms by means of Introduction and Elimination rules

As the reader might have noticed the schema given in def. 1 simply consists in the elimination
of the medium term. We can replace the above definition with a more elegant and simple one:

Definition 2 Let ¢ and b be the major and minor premises, respectively, ¢ the conclusion and o
the medium term shared by ¢ and b, the syllogism is defined by the following operation:

) Epla,b) = ¢ ‘:11 1

Example 2
a:= Every roman is stubborn,
b:= Some italians are romans,

¢:= Some italians are stubborn,

E‘roman’[a,b] =c¢
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From an epistemological perspective we can look at the elimination rule as the synthetic method
(the demostratio propter quid or deduction), see Szabg[?]. Therefore we can now define the
analysis (i.e. the demostratio quic or logical induction) in terms of transformations. The ana-
Iytic method starts from the results and goes back to the assumptions (see Hitikka-Remes[?]).
Applying this process to the syllogism means to start from the conclusion and reconstruct the
premises it has been derived from. In order to establish all the possible syllogisms with the
given proposition as the conclusion, we need to use two transformations: one which gives the
set of possible major premises and one which gives the set of possible minor premises.

Definition 3 Let A and B be sets of terms, F(p, s) the given categorical proposition, we define
the transformations I'j; and T',,, which return the major and minor premises, respectively. Let
k,i,j€{1,2,3,4}

(3) Tn[Fi(s,p)] = Finlps, p)
) PrlFr(s,p)] = Fils, p)

where n,t indicates the number of € A and of the u € B, respectively. We call (3) and (4)
~-transformations.

Theorem 1 Given the two sets of categorical propositions F,(u,p) and Fj(s, 1) obtained l?y
the transformations (3) and (4), 3 € (A N B) iff a specific transformation of the type given in
(1) is found as well.

From this theorem it follows that in the same way we have formalized the ¥ transformation
by means of the elimination rule, we can now replace the two schemata (3) and (4) with an
operation, namely the inverse of the elimination rule, viz. the introduction one.

Definition 4 Let c be the given conclusion, and a, b any of the possible categorical propositions
which can be the major and minor premises, the analysis is formalized by the introduction
operation:

&) Lu[c] = [a,b]

Example 3

Let A and B be sets of terms, M and m sets of categorical propositions obtained by means of
(3) and (4), respectively, and Fi(s,p) the given conclusion:

A = {girl, roman, cat}
B = {abruzzese, roman, tuscan, girl}
Fi(s,p) = Some(italians, stubborn)

M = { M;: ‘Every roman is stubborn’, M,: ‘Every girl is stubborn’, Mj: ‘Every cat is
stubborn’}

m = { m;: ‘Some italians are roman’, m,: ‘Some italians are girls’, ms: ‘Some italians
are tuscan’, my: ‘Some italians are abruzzesi’}
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applying the theorem | we can give an example of the transformation (1) in the following way:
1. E[Every(roman,stubbom),Some(italians,romans)]= Some(italians,stubborn)

2. Y[Bvery(girl,stubborm),Somefitalians,girls)] = Some(italians,stubborn)

Starting from the conclusion we have reconstructed the reasoning (i.e the inferences) which had
brought to it.

3 Dialectic argumentation

Having both the analysis and the synthesis we can give the rules which formalize the dialection
argumentations as the combinations of “analysis” and “synthesis”. Human beings’ argumenta-
tions are in fact made of these two different moments, one in which we ask how our claim has
been deduced, and one in which we look at the consequences of our argumentation.

In order to formalize this natural way of reasoning, we use the rules below. For both the Intro-
duction and Elimination operator, we give two types of rules to which we refer as proper vs.
conventional. The former are the rules we have obtained from the transformations discussed
above — la, 2a below; whereas the later are new ones which are introduced by convention — 1b,
2b.

Having these second rules we can proceed in our dialectic combination asking the same kind of
question twice — i.e. combining the E (resp. I) operator with itself, As a constrain to correctly
build the dialectic combination we require our “reasoning” to start always from either la or
2a; whereas 1b and 2b can be applied only as a second step. As we will see with an example,
although formally all combinations of the operators E and I are possible we obtain a result only
when we fix the medium term 4, i.e. when the rules combined are operating on the same term.

For reasons which will be clear soon, we include the identity operation Z as well. For this
operator as well we give two schemata considering the 7 as a function which takes one or two
arguments. However in this case the different behavior of the two rules does not hold: our
reasoning can start with both of them, since the two rules are both “natural”.

[la] E[ab]=[c] [Ib] E[c]=Ic]
[2a] Ifc]=[ab] [2b.] I[ab]=[ab]
[3a] Z[c] =[c] [3b.] Z[a)b] =[ab]

Using the above rules we can combine the operations 7, E, 1. 3

Examples 4 of dialectic combination.
) I(ED[a,b] = El[a,b] = I[c] = [a,b]
(ii) (IB)I[a,b] = IE[a,b] = I[c] =[a,b]

where in (i) the rules are applied from the left to the right, i.e. first (3b), then (la) finally
(2a); whereas in (ii) the rules are applied from the right to the left following the same order.
Therefore, the associative law holds:

207




6) IEI[a,b] = [a,b]

which says: “Given two categorical propositions a and b if I ask first which syllogism can haYe
them as conclusions, then which syllogisms they can be the premises of, and finally once again
from which syllogism they can be derived, the same propositions are found, i.e. I obtain the
same categorical propositions I started from”.

As alinguistic example we can consider the categorical propositions given in E)ﬂcafnple 3. I_jet 1
and i, be two different terms in A N B, for example, the terms ‘roman’ and ‘girl ,-respecmfely.
If we combine the operators as in (i) we obtain the conclusion ¢, whereas the combination given
in (ii) is unable to go back to the original premises.

Example 5

(i) EpyIpa[My,my]=1[c] = [My,m]
(ii) EpqIpp[My,my]=1Ic] = Mz, mgo]

4 Algebraic Aspects

The situation described in the previous paragraph can be better expressed int.roducing an expli-
cate operation to compose Z, I and E. Simply applying the rules 1-6 we obtain the table below:

In order to verify that this table correctly synthesize the above rules, we can look at the com-
position E o L. As it results from the example (i) applying first E and then I to (a,b) we have
obtained the same result which is given by the application of Z to the same argument, i.e. Eo I
=7 =10 E. We can therefore conclude that the following theorem holds:

Theorem 2 The combination of the ¢ and ~-transformations, viz. (1) and (3), (4), follows the
structure of a finite commutative and idempotent group.

The commutative property (as well as the associative one) is due to the constrain we h?.ve
required when speaking of the dialectic combination of the operators, viz. our argumentation
can never start applying the “conventional” rules (1b and 2b).

The representation of “cognitive” processes by means of operations, apd even more the int.erpr?-
tation of the possible combinations of these operations via an algebrzuc' stn.lcture recall Piaget’s
theory, see Piaget [?]. Our proposal of considering the dialectic combination as a group based
on Z, I, E is, in fact, similar to the idea of having the group of INRC as the algebraic struc-
ture behind our mental operations. Having found this algebraic structure as a rpodel for the
syllogistic theory is of particular interest because it sheds light on a class of lo.glc.s whlch.we
can define as natural logic, i.e. a logic in which it is possible to introduce and eliminate logical
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elements. Intuitively this definition brings into the mind besides the syllogistic theory also the
natural deduction system proposed by Gentzen [?]. However, despite the similarity between the
meta-operators which characterize the two systems, some important differences occur. We are
going to discuss this point in the next section.

5 Gentzen’s calculus and the syllogistic theory: A possible comparison

As we have mentioned if we look at the syllogisms as applications of introduction and elim-
ination rules, it seems natural to assimilate the obtained formalization to Genzten’s Natural
Deduction. However, the similarity disappear as soon as we consider the composition of the
operators. Before comparing the two systems, we briefly present Gentzen’s calculus.

Natural Deduction is a proof-system introduced by Gentzen in order to reach a calculus closer
to natural reasoning than Hilbert’s assiomatic system. With this intend he has characterized a
logic by means of introduction and elimination rules for each logical connective the language
is built from. Simplifying:

I«[....p.ql=r*s Ex[....p*xgl=r

where * is any connective which is introduced by means of I, and eliminated by means of E.
In the introduction rule the conclusion may contain a subformula which does not occur in the
premises'; in the elimination rule, instead, the conclusion is always a subformula of one of the
premises.

Already at this point we can consider an important difference between our formalization of the
syllogistic theory and this calculus. In the latter the rules eliminate or introduce connectives,
whereas in the former they eliminate or introduce terms. As an example we give the introduction
and elimination rules for the conjunction A and the conditional —. Let ai,as € P —where Pis
a set of propositions —, and ¢ € {1, 2}, the logical rules for A and — are:

ay  ap ai N ag
— A

ay N\ a AN a; E
ay
0:2 ay — y I
Gioa — 1 - — —F

To be noticed is the particular behavior of the introduction rule of the —. The two arguments
ay ap are linked to each other: the latter is a consequence of the former through a derivation.

If we compare these inferences with the rules (2) and (5) we easily see the similarity and the
differences between the two systems. In particular, we notice that in both the two systems
the ‘synthesis’ is formalized in a similar way by means of the elimination rules: whereas in
the natural deduction one the ‘analysis’ is missing. This difference can be better understood
looking at the introduction rules which are ‘deductive’ as well as the elimination one: from a
set of premises they give back a conclusion. To facilitate the comparison we give the above
rules in the format used in the previous section.

INfap, a0l =a1Nay  EAagAag] = a;

I —ar,as] = a1 — ag E—lay— as,a1] =ay

""This is the case of the introduction rule for the — and V
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Due to the differences between the introduction rules in the systems we are considering, the di-
alectic combination differs as well. Therefore, the algebraic structure represented in (7) cannot
be used as a model of Gentzen’s calculus.

Moreover, as we have said before, in the previous section it has been possible to build the finite
commutative and idempotent group thanks to the combination of the standard rules with the
“conventional” one. Therefore, this combination cannot be done in Gentzen system since there
is no way to return the premises and because only the proper rules are given.

We now give some examples to show how the lack of the analysis moment makes the system
unable to formalize natural reasoning at least in the way we have said before.

Examples 6
El[a— b, a] =I[b]=?
Let a:= ‘Tt rains’, b:= ‘I cannot come’, the above schema becomes:
If it rains, then I cannot come It rains .

I cannot come
— 5 I

The question marker means that we are unable to reconstruct the reasoning which had lead to
the conclusion ‘I cannot come’.

6 Conclusions

In the paper we have proposed a formalization of the syllogistic theory which is able to account
for both the dialectic moments: the synthesis and the analysis. The motivation behind this
proposal are of two natures: a historical one which has brought us to consider the resolutio
involved in natural reasoning as important as the compositio; and a physiological one — which
can be traced back to Piaget’s theory — which has made us thinking of the finite group as a basic
and ‘natural’ structure in human beings’ mental processes.
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