MINIMALISATION D'AIRES DE POLYGONES

Daniel Reisz

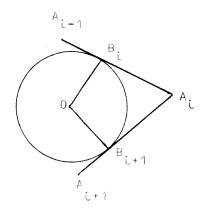
L'intéressant article d'Albert Lentz ('L'Ouvert' n° 63) m'a amené à regarder quelques aspects du problème "oppose": minimiser l'aire d'un polygone et plus particulièrement l'aire d'un polygone de n côtés circonscrit à un cercle de rayon 1. Intuitivement l'aire d'un tel polygone peut varier de l'infini à un minimum probablement atteint pour le polygone régulier. L'étude précise de ce problème est tout à fait accessible à un élève de lycée et la méthode utilisée ici propose une jolie application de la convexité d'une fonction.

Dans cette perspective, à partir de la convexité d'une fonction f sur un intervalle I, définie par exemple par

$$\forall x,y \in I \quad \frac{f(x) + f(y)}{2} \ge f(\frac{x+y}{2})$$

on fera établir l'inégalité de Jensen : si f est convexe sur I et si x_1, x_2, \ldots, x_n sont des éléments de I alors

$$\frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n} \ge f(\frac{x_1 + x_2 + \dots + x_n}{n}).$$



Soit (Γ) le cercle de centre O et de rayon 1, $A_1, A_2, \ldots A_n$ un polygone circonscrit à (Γ) et qui touche (Γ) en B_1, B_2, \ldots, B_n .

Si on pose

$$\widehat{B_iOB_{i+1}} = 2x_i$$

alors l'aire du quadrilatère $OB_iA_iB_{i+1}$ est donnée par

$$A_1 = tqx_i$$

avec $\sum x_i = \pi$ et $O < x_i < \frac{\pi}{2}$.

L'aire totale

$$\mathcal{A} = \Sigma \mathcal{A}_i = tg \ x_1 + tg \ x_2 + \dots + tg \ x_n$$

vérifie l'inégalité de Jensen (la fonction t
g est convexe sur $[0,\frac{\pi}{2}[)$

$$A \ge n \ tg \ (\frac{x_1 + x_2 + \dots + x_n}{n}) = n \ tg \ \frac{\pi}{n}$$

[©] L'OUVERT 65 (1991)

MINIMALISATION D'AIRES DE POLYGONES

l'égalité étant atteinte dans le cas d'un polygone régulier.

On pourra faire remarquer, à propos des polygones réguliers, que l'intuition géométrique permet de conclure

$$\lim_{n \to +\infty} ntg \ \frac{\pi}{n} = \pi \ (\text{aire du cercle inscrit})$$

résultat qu'on peut retrouver plus "sérieusement" à partir de

$$\lim_{n \to +\infty} \frac{tg\frac{\pi}{n}}{\frac{\pi}{n}} = 1.$$

Un autre résultat

Si on appelle F_i l'aire du triangle curviligne $B_iA_iB_{i+1}$ limité par les segments $[A_1B_i]$ et $[A_iB_{i+1}]$ et par l'arc de cercle B_iB_{i+1} on a

$$F_i = tg \ x_i - x_i$$
.

La fonction définie sur $[0,\frac{\pi}{2}[$ par $y=\frac{1}{tg}$ étant convexe sur cet intervalle, l'inégalité de Jensen permet d'écrire

$$\frac{1}{F_1} + \frac{1}{F_2} + \dots + \frac{1}{F_n} \ge \frac{n}{tg(\frac{\pi}{n}) - \frac{\pi}{n}} = \frac{n^2}{tg(\frac{\pi}{n}) - \pi}.$$

Là encore l'égalité est atteinte pour les polygones réguliers.