A VOS STYLOS

PROBLÈME 7

Énoncé

Soit une fonction de deux variables f(x,y) telle que, pour tout $x, P_x(y) = f(x,y)$ est un polynôme en y et, pour tout $y, Q_y(x) = f(x,y)$ est un polynôme en x. Est-ce que f est un polynôme à deux variables?

Solution

Nous n'avons reçu que tardivement une solution de F. Doué, solution qui est essentiellement la même que celle proposée ci-dessous :

Cas où les variables sont réelles (ou complexes, ou dans tout corps non dénombrable).

Il existe une partie infinie X de \mathbb{R} et un entier $k \in \mathbb{N}$ tels que, pour tout $x \in X$, le degré de P_x est au plus k (en effet, $X_k = \{x \in \mathbb{R} : d^{\circ}P_x \leq k\}$ est une suite croissante, de réunion \mathbb{R} ; si chaque X_k était fini, $\mathbb{R} = \bigcup_k X_k$ serait dénombrable comme union dénombrable d'ensembles finis).

Il existe donc $a_k, a_{k-1}, \ldots, a_0 : X \to \mathbb{R}$ tels que $\forall x \in X, \ \forall y \in \mathbb{R}, \ f(x,y) = a_k(x)y^k + a_{k-1}(x)y^{k-1} + \cdots + a_0(x)$.

Choisissons k+1 valeurs distinctes y_i de y. Puisque la matrice de Vandermonde $Y = (y_i^j)_{0 \le i,j \le k}$ est inversible, et que pour $x \in X$ on a

$$Y\begin{pmatrix} a_0(x) \\ \vdots \\ a_k(x) \end{pmatrix} = \begin{pmatrix} Q_{y_0}(x) \\ \vdots \\ Q_{y_k}(x) \end{pmatrix},$$

on voit en inversant cette formule que chaque a_i est la restriction à X d'un polynôme b_i sur \mathbb{R} . Pour tout y, les polynômes $Q_y(x)$ et $\sum_{i=0}^k y^i b_i(x)$ sont égaux sur l'ensemble infini X, donc partout; et $f(x,y) = \sum_{i=0}^k y^i b_i(x)$ identiquement.

En revanche, dans Q, la fonction

$$f(x,y) = (x - r_1)(y - r_1) + (x - r_1)(y - r_1)(x - r_2)(y - r_2) + (x - r_1)(y - r_1)(x - r_2)(y - r_2)(x - r_3)(y - r_3) + \cdots$$

(où $(r_n)_{n\geq 1}$ est une énumération des rationnels) est séparément un polynôme en chaque variable, sans être un polynôme à deux variables (on ne peut lui assigner de degré).

[©] L'OUVERT **55** (1989)

A VOS STYLOS

PROBLÈME 8

Enoncé

Appelons reQtangle, tout rectangle dont le rapport des côtés est rationnel. Démontrer que tout rectangle pavé par des reQtangles est lui-même un reQtangle.

Indication

Lois des nœuds de Kirchhoff.

PROBLÈME 9

Enoncé

Soit $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ telle que f(0,0) = 0 et que f(x,y) soit le plus petit entier qui ne soit pas de la forme f(x',y) avec x' < x ou f(x,y') avec y' < y. Fournir une méthode de calcul de f aussi simple que possible.