RACINES DE PLUS GRAND MODULE D'UN POLYNÔME

Jean Lefort et Frédéric Doué

'L'Ouvert' se veut toujours un moyen d'échange entre collègues. C'est pourquoi nous sommes heureux qu'une discussion entre J. LEFORT et F. DOUÉ à propos de l'article du premier sur la résolution des équations polynomiales, aboutisse aujourd'hui à une publication commune qui répond en partie à la question que se posait J. LEFORT sur la recherche des arguments des racines de plus grand module.

1. Pour trouver les racines il faut de la suite dans les idées.

On sait que si on veut chercher l'ensemble E des suites satisfaisant à :

$$u_{n+p} = \alpha_1.u_{n+p} + \dots + \alpha_p.u_n$$

on est amené à chercher les suites géométriques qui en sont solutions, c'est-à-dire à résoudre l'équation :

$$x^p = \alpha_1.x^{p-1} + \dots + \alpha_p.$$

Si ce polynôme a p racines distinctes $|r_1| > |r_2| \ge \cdots \ge |r_p|$, alors toute suite de E s'écrit comme combinaison linéaire des suites (r_i^n) . Plus exactement les (r_i^n) forment une base de l'espace vectoriel (E, +, .) et les coordonnées d'une suite particulière sont parfaitement définies par la donnée des p premières valeurs de la suite.

Par exemple, la suite s de E définie par :

$$s_0 = s_1 = s_2 = \ldots = s_{p-2} = 0$$
 et $s_{p-1} = 1$

s'écrit:

$$s_n = \sum_{i=1}^n x_i \cdot (r_i^n)$$
 avec $x_i = \frac{1}{\prod_{j \neq i} (r_i - r_j)}$.

Il est clair que, puisque r_1 est la racine de plus grand module, pour n grand, s_n est équivalent à :

$$\frac{r_1^n}{\prod_{j\neq 1}(r_1-r_j)}$$

et par conséquent s_{n+1}/s_n converge vers r_1 . On démontre même que la convergence est géométrique en ce sens que $s_{n+1}/s_n - r_1 \sim A.k^n$ où $|k| = |r_2|/|r_1|$ donc les calculs sont d'autant plus rapides que |k| est plus petit, c'est-à-dire qu'il y a un grand écart entre $|r_1|$ et $|r_2|$.

[©] L'OUVERT 48 (1987)

2. Un exemple pour mieux comprendre.

Considérons le polynôme $P(x) = x^4 - 3x^3 - 6x^2 + 8x - 3$. En dérivant deux fois et en remontant on voit que P(x) admet deux racines réelles r_1 et r_2 avec $4 < r_1 < 5$ et $-3 < r_2 < -2$ et deux racines complexes conjuguées dont le module ρ est tel que $r_1.r_2.\rho^2 = -3$ donc $\sqrt{5}/5 < \rho < \sqrt{6}/4$. La racine de plus grand module est bien r_1 .

L'étude de la suite s définie par :

$$s_{n+4} = 3.s_{n+3} + 6.s_{n+2} - 8.s_{n+1} + 3.s_n$$

avec

$$s_0 = s_1 = s_2 = 0$$
 et $s_3 = 1$

conduit au tableau suivant:

n	S_n	S_n/S_{n-1}
0	0	
1	0	
2	0	
3	1	
4	3	3
5	15	5
6	55	3,666666667
7	234	4,254545455
8	921	3,935897436
9	3772	4,095548317
10	15135	4,012460233
11	61371	4,054905847
12	247510	4,033012335
13	1000992	4,044248717
14	4042473	4,038466841
15	16337404	4,041438001
16	66001644	4,039910135
17	266692548	4,040695532
18	1077515695	4,040291726
19	4353701433	4,040499320
20	$1,75906610^{10}$	4,040392593
21	$7,10741510^{10}$	4,040447461
22	$2,87169410^{11}$	4,040419259
23	$1,16028910^{12}$	4,040433754
24	$4,68806110^{12}$	4,040426299
25	$1,89417810^{13}$	4,040430133
26	$7,65329210^{13}$	4,040428161
27	$3,09225810^{14}$	4,040429176
28	$1,24940510^{15}$	4,040428653
29	$5,04813110^{15}$	4,040428922
30	$2,03966110^{16}$	4,040428783

On en déduit que $r_1 \simeq 4,040$ 428 8. Pour cette valeur P est voisin de $-2,3.10^{-6}$.

3. Suivons une nouvelle suite.

Imaginons que l'on ait $|r_1| = |r_2| > |r_3| \ge \cdots$ et $r_1 \ne r_2$; c'est le cas générique quand on a un polynôme à coefficients réels admettant deux racines conjuguées comme racines de plus grand module.

L'étude précédente peut encore être utilisée, mais cette fois si s_n est équivalent à s'_n définie par :

$$s'_{n} = \frac{(r_{1})^{n}}{\prod_{j \neq 1} (r_{1} - r_{j})} + \frac{(r_{2})^{n}}{\prod_{j \neq 2} (r_{2} - r_{j})}$$

Mais s' s'exprime comme une suite récurrente à deux termes puisqu'elle dépend de deux suites géométriques; on peut donc écrire :

$$s'_{n+1} = (r_1 + r_2)s'_n - r_1r_2s'_{n-1}$$
 ou encore $s'_n = (r_1 + r_2)s'_{n-1} - r_1r_2s'_{n-2}$.

Et en considérant $(r_1 + r_2)$ et (r_1r_2) comme des inconnues, on voit que :

$$r_1 + r_2 = \frac{s'_{n+1} \cdot s'_{n-2} - s'_{n} \cdot s'_{n-1}}{s'_{n} \cdot s'_{n-2} - (s'_{n-1})^2}$$
$$r_1 \cdot r_2 = \frac{s'_{n+1} \cdot s'_{n-1} - (s'_{n})^2}{s'_{n} \cdot s'_{n-2} - (s'_{n-1})^2}.$$

On peut donc espérer qu'asympotiquement on retrouve $(r_1 + r_2)$ et (r_1r_2) en remplaçant s' par s. Dans la pratique, on pose :

$$y_n = s_n \cdot s_{n-2} - (s_{n-1})^2$$

$$z_n = s_{n+1} \cdot s_{n-2} - s_n \cdot s_{n-1}$$

et en étudiant des équivalents géométriques simples de y_n et z_n on démontre que $(y_{n+1})/y_n$ converge vers r_1r_2 et z_n/y_n converge vers r_1+r_2 .

4. Un exemple guère nouveau.

Considérons le polynôme $Q(x) = -3x^4 + 8x^3 - 6x^2 - 3x + 1$ qui n'est autre que le polynôme aux inverses de P. D'après l'étude déjà faite, les racines de plus grand module de Q sont donc complexes et conjuguées. Posons $r_1 = \rho \exp(i\theta)$ et $r_2 = \rho \exp(-i\theta)$. Alors $r_1 r_2 = \rho^2$ et $r_1 + r_2 = 2.\rho$. $\cos(\theta)$.

L'étude de la suite s définie par :

$$s_{n+4} = 8/3s_{n+3} - 2.s_{n+2} - s_{n+1} + 1/3s_n$$

avec $s_0 = s_1 = s_2 = 0$ et $s_3 = 1$ conduit au tableau de la page suivante :

J. LEFORT et F. DOUÉ

n	S_n	$y_n = S_n S_{n-2} - S_{n-1}^2$	y_n/y_{n-1}	$z_n = S_{n+1}S_{n-2} - S_nS_{u-1}$	Z_n/y_n
0	0				***************************************
<u> </u>	0				
2	0	0		0	
ಬ	نـــ	0		0	
4	2,666667			-2,666667	2,666666667
ۍ.	5,111111	-2	2	-6,333333	3,16666666
6	7,296296	-6,6667	3,333333333	-18,888889	2,833333333
7	6,901235	-17,9630	2,694444444	-52,490756	2,922222222
00	-0,411523	-50,6296	2,818556697	-146,679013	2,897099977
9	-20,492456	-141,5926	2,796634968	-410,724280	2,900746790
10	-58,292638	-395,9520	2,796417397	-1148,571561	2,900784845
1	-111,750191	-1107,9959	2,798309675	-3213,699593	2,900461629
12	-161,059950	-3099,4957	2,797389136	-8990,460445	2,900620:
13	-154,530999	-8671,4389	2,797693516	-25152,09956	2,900568158
14	2,356548	-24259,3750	2,797618166	-70366,28544	2,900581
15	439,156011	-67868,7703	2,797630616	-196858,7292	2,900578990
16	1267,213949	-189871,7518	2,797630648	-550738,0133	2,900578986
17	2447,058295	-531190,834	2,797629605	-1540761,064	2,900579162
18	3552,690394	-1486075,475	2,797630117	-4310479,431	2,900579078
19	3458,895848	-4157489,264	2,797629955	-12059126,48	2,900579103
20	93,687827	-11631116,65	2,797629990	-33736973,84	2,900579098
21	-9404,961792	-32539560,70	2,797629985	-94383569,68	2,900579100
22	-27541,93948	-91033650,76	2,797629986		

RACINES DE PLUS GRAND MODULE D'UN POLYNÔME

On en déduit que $\rho^2\simeq 2,797$ 629 986 et $2.\rho.\cos(\theta)\simeq 2,900$ 579 100. D'où ρ et $\theta,$ avec par exemple :

$$r_1 = 1,450\ 289\ 550 + 0,833\ 240\ 802i$$
 et $r_2 = 1,450\ 289\ 550 - 0,833\ 240\ 802i$.

5. Conclusion.

Cette méthode nous a permis d'obtenir toutes les solutions de l'équation :

$$x^4 - 3x^3 - 6x^2 + 8x - 3 = 0$$

puisqu'on peut facilement obtenir la dernière en utilisant, entre autre le produit des racines. On trouve :

4,040 428 8;
$$-2,077$$
 227 5; 0,518 399 331 $\pm i0,297$ 838 101

ce qui donne la factorisation réelle :

$$(x-4,040\ 428\ 8)(x+2,007\ 227\ 5)(x^2-1,036\ 798\ 7x+0,357\ 445\ 4).$$

Mais elle a nécessité une étude préalable sérieuse et soigneuse de ce polynôme. L'application de la même technique à un polynôme de degré élevé se révèle laborieuse, mais on sait qu'aucune méthode n'est simple quand le degré est élevé.

Il resterait à étudier le cas d'une racine multiple de plus grand module. On sait qu'alors la suite associée au polynôme n'est plus combinaison linéaire de suites géométriques mais qu'il y intervient un terme en n. Des méthodes analogues permettent d'aboutir.