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Mathematics and the Computer Revolution

M.F. Atiyah

§1. A historical perspective

This Orwellian year of 1984 provides an inviting occasion
for us to look to the past, present and future of mankind and
in particular to consider the constantly changing relations
between Science and Society. While George Orwell pin-pointed
with great dramatic effect many of the political dangers of
"aoubl@~think“, the perversion of truth for political ends, he
underestimated in other ways the enormous changes which Science
had in store for us. The major problem we face today is of
course the existence of atomic weapons and our capacity to
destroy civilizaiton, but even if this problem is solved many
other challenges remain and prominent among these is the
computer revolution.

It is now cammonly acknowledged that we are firmly embarked
on an economic and social revolution which will be comparable
in scope and effect to the industrial revoluticn. There are
here many significant analogies but also*many important
differences, notably in the speed of change. Whereas the
industrial revolution is usually measured in centuries, the
computer revolution is properly measured in decades. Since
the human life-span has not fundamentally altered, the impact
of the computer revolution will be faster and more acute in
sociological terms, and coming to terms with it will be
correspondingly more difficult.

Not being an economist or a sociologist I will leave it

to others to elaborate on the obvious problems and likely

developments in these areas., As a mathematician I am
more concerned with another aspect of the computer revolution
and one in which it differs fundamentally from its predecessor
the industrial revolution. Whereas the eighteenth and
nineteenth centuries witnessed the gradual replacement of
manual labour by machines, the late twentieth-century is
seeing the mechanization of intellectual activities. It

is the brain rather than the hand that is now being made
redundant., This means that the challenge which we face is
of guite a different order and analogies with the past may
therefore be misleading,

The intellectual challenge presented by the computer is,

1 believe, very far~reaching even if at the present time the
problems are only just beginning to emerge. Moreover this
challenge is certainly not restricted to mathematics, but will
eventually penetrate into almost all aspects of human activity.
For example, we are already seeing the introduction of ”lx
"expert systems" into fields such as medicine and law, and

the roles of doctors and judgés as we now understand them are
unlikely tc survive unchanged into the next century. Science
fiction in these directions has difficulty in keeping pace with
fact.

Exciting though it is to speculate on the computerization
of thought and knowledge in such fields T will, for two reasons,
restrict myself to mathematics. The first and most important
is that I am myself a mathematician and that I can speak about
this area at first-hand and with some confidence. The tempta-
tion to pretend to expertise which one does not possess should
be firmly avoided. The second reason for concentrating on

mathematics is that, in the public eye at least, this subject



tends to be naturally, though n@t always correctly,
associated with computers.,

It is of course true that, in its early days, computer
science grew up alongside mathematics and that famous
mathematicians such as Turing and von Neumann were amongst
its pioneers, Moreover, of the traditional basic sciences,
mathematics is still the closest in spirit to computer
science, In fact, it is sometimes asserted, with dry
humour, that computer science is the Cuckoo of the mathematical
nest with all the unpi&asant overtones which that suggests.

In this world of education, mathematics and computer
science still go hand in hand even if the relationship is now
an uneasy one, In universities, Computing and Mathematics
are frequently found together and, at the school level,
computing is almost exclusively in the hands of mathematics
teachers.

For all these reasons it seems to me that mathematicians
have a responsibility to explain, to socliety at large,
intellectual challenges and dangers presented by the computer
revolution, This is what I hope to do today. As I have
already mentioned I shall restrict myself to describing  the
impact of computers on mathematics itself,‘gut at a funda-
mental level I believe that many of the things I shall say will
have some relevance to other fields of intellectual study,
though I will leave it to each of you to decide how far
my remarks pertain to your own descipline or field of interest.

Finally, I should issue a disclaimer. Some of my
mathematical colleagues have much more direct experience of
computing than I have. In fact, at the technical level I am
barely a novice, but I hope that, at a higher level,I am aware of
what is happening and that my perception is not too far off the

vy e L

§2. Mathematics and Theoretical Computer Science

It might be helpful if 1 began by describing the role
which mathematics has played, and continues to play, in the
development of the theoretical aspects of computers., Not
surpringly, those parts of mathematics which have been
relevant in this respect have themselves received an
enormous stimulus in return. On the one hand, this has
been beneficial in many ways by suggesting fruitful lines of
research, but the sheer scale of the computer field brings
dangers in its wake, and I shall return to this later.

Historically it was mathematical logic which provided the
thecretical basis for computers, Here, and throughout my
lecture, I am referring to the 'software!’ side of computers,
concerned with the development and use of suitable languages
rather than the 'hardware’ side which is concerned with their
physical design and construction. Of course, it is the
hardware development - the rise of the minute silicon chip
; which has produced the revolution, but this in its turn only
re-emphasizes the need for greater sophistication in the
language so as to fully exploit the hardware potentialities.

Mathematicians have always been concerned with the
notion of "proof', the rigorous deduction of various conclu=-
sions from given assumptions, and in the first half of the
twentieth-century this notion was subjected to extremely
careful analysis. In particular there emerged the notion of
a “"constructive® proof, where the desired conclusion could be
arrived at after a finite number of definite steps. The
famous "Turing machine™ was a hypothetical ideal machine which
could carry out such constructive proofs, and the early

computers were in essence itg physical realization.



Computers have to he given‘precise commands and mathe-
matical logic provides the theoretical framework in which
ksuch commands can be formulated. Moreover as computers
become more and more powerful, sc the langquages they use
become increasingly sophisticated, and the problems of
possible errors loom much larger. The errors I refer to
are not of course machine errors - 4 machine can do no wrong -
but of human errors in issuing the right commands or in trans-
lating into the computer language. Here again mathematical
ideas of proof becomeximportant ~ how to prove that a given
set of computer instructions are correct.

This very briefly is why mathematical legic is related
to theoretical computer science and why students trained in
this most abstract of mathematical disciplines find a ready
demand for their talents in the computer field.

Closely related to the notion of constructive proof is
that of an "algorithm® which in mathematical parlance is
the term used for a definite procedure for solving a problem.
For example an explicit formula for solving an eguation is an

especially simple algorithm. If a mathematician wants to use

4 computer to solve a problem he needs to give the computer an

algorithm, Now algorithms can be fast or slow, measured in
computer time, and there ig clearly a great advantage in
devising fast algorithms, Thus the development of computers
has stimulated a whole new branch of mathematics, complexity
theory, which is essentially concerned with understanding how
"complex" an algorithm is and which roughly corresponds to how

long a computer will take to give an answer.

Proof theory and complexity are just two examples of
the sort of mathematics which has been stimulated or created
by the needs of the computer. In general the sort of mathe-
matics involved is quite different from that required by the
applications to physical science. Because computers are
based on the on/off switch of electriéal circuits they involve
discrete mathematics exemplified by algebra, whereas, since
Newton's time, physical science has been based largely on the
application of calculus to the study of continuously varying
phenomena. This has led some people to argue that the
traditional aéproach to teaching mathematics, with its heavy
emphasis on calculus .ust, in the age of the computer, be

drastically modified,



§3. Computers as an aid to mathematical research

Having described the way in which mathematics has helped
the development of computer science, let me now consider the
flow in the opposite direction. In what ways has the advent
of computers assisted and altered mathematical research?

The first and most obvious use of computers has been
simply as "number crunchers®. High-speed machines are
excellently adapted to carrying ocut very large numbers of
repetitive calculations, so that explicit numerical answers can
rapidly be provided for problems which would otherwise have
been too complicated tQ handle. This use of computers has
had a dramatic effect on all of applied mathematics and it
has significantly altered our conception of what is a satis-
factory solution of a mathematical problem. In pre-computer
days mathematicians would work hard to cast the solution of
a problem into some elegant algebraic form, involving familiar
objects such as algebraic and triéonometric expressions. Nowa=—
days a problem in applied mathematics is regarded as satisfactor-
ily solved if one can find an algorithm to feed into a
computer which will generate all the numerical values one is
interested in.

Not all of mathematics however is concerned with numbers.
Algebra for instance deals with symbolic expressions which may or
may not stand for unknown numbers. For example, an expression
in mathematical logic does not stand for anything numerical.

The manipulation of complicated symbolic expressions can also
be performed on computers and there are areas of mathematics
where this has already been applied very successfully. For

example, the determination of all finite simple groups, the

building blocks of abstract sym&etries, was greatly assisted
by the use of powerful computers., With the increased
availability of micro-computers and the greater computer
expertise among the younger generation of mathematicians it
seems certain that these symbolic uses of computers will
greatly increase,

In Mathematics, as in the Natural Sciences, there are
several stages involved in a discovery,and formal proof is
only the last, The earliest stage consists in the identifi-
cation of significant‘facts, their arrangement into meaningful
patterns and the plausible extraction of some law or formula.
Next comes the process of testing this proposed formula against
new experimental facts, and only then does one consider the
guestion of proof,

In all the earlier stages computers can play a role,
particularly when large or complex systems are being considered.
For example, in Number Theory interesting guestions may involve
very large prime numbers, and some of the deepest conjectures
being studied at the present time have been based on extensive
computer calculatijions, In the same way problems in differentiz
equations which involve the evolution of some system (e.g. the
flow of a liquid) for a very long time have been enormously
influenced by experimental facts discovered on computers.

One advantage of present day computers which is only just
beginning to be fully appreciated by mathematicians is their
ability to display information graphically (and even in colour).
For many complicated mathematical problems involving
geometrical features, this provides an extremely effective new

tool with which to explore phenomena.



To sum up therefore the computer is proving of great
practical assistance tc mathematicians at all stages of
their work, but perhaps most significantly in the exploratory
Oor experimental stage. Great mathematicians of the past
such as Euler or Gauss carried out large numbers of tediocus
calculations by hand in order to provide themselves with the
raw material from which they could then guess some general
law, or discover some remarkable pattern. As mathematics
delves further and we become more ambitious the raw material
becanes c@rrespondinély much more messy and complicated.

The computer can help us to sift this material and to point

the way to further progress and understanding.

§4. The intellectual dangers

Few scientific advances are unmixed blessings and the
computer is no exception. Having enumerated the many
benefits which mathematicians, amongst others, can derive from
the advent of the camputer I would like now to draw attention
to some possible dangers that lie ahead. Let me begin with
the most central and insidious problem which iz essentially
the challenge the computer presents to the human intellect,
Will mathematics continue as one of the highest forms of
human endeavour or will it gradually be taken over by the
computer? Who will remain in charde of mathematics and
what are its criteria to be?

To illustrate the dangers I have in mind, let us consider
an event that has already taken place, namely the solution by
camputer of a famous outstanding mathematical problem. I
refer to the 4-colour theorem which says roughly that four
celours suffice to colour any concéivable map of the world, ij
therequir@mantbeing that adjacent countries nust be coloured
differently. This problem which dates from the last century
was recently solved by a proof which involved a computer
check of hundreds of different cases., On the one hand, this
was a great triumph, the solution of a hard problem; on the
other hand from an aesthetic point of view, it is extremely
disappeointing, and no new insights are derived from the proof.

Is this to be the way of the future? Will more and more
problems be solved by brute force? If this is indeed what is
in store for us should we be concerned at the decline of human
intellectual activity this represents, or is that simply an
archaic view-point which must give way before the forces of

"progress®?



To answer such philosophical GuUEestions we must be bold
and ask ourselves what is the nature and purpose of mathe-
matical and scientific activity., The usual answer is that
Science is man's attempt to understand, and perhaps eventually
control, the physical world, but this leaves us with the
)difficult notion of "understanding". Can we be said to
"understand” the proof of the 4-colour theorem? I doubt it,

For those who feel that “understanding“ is too subjective
and restrictive a term, the more limited goal of "description®
may be preferred, Certainly I can describe the proof of the
4~colour theorem, though my description entails saying “the
computer checked the following facts”,

Such a "descriptive® atti ude to mathematics could live
happily with a gradual take-over by the computer, but I
believe that this would lead to the atrophy of mathematics
even measured by these modest "descriptive" standards.
Mathematics is really an Art - it is the art of avoiding
brute-force calculation by developing concepts and technigues
which enable one to travel more lightlyv, Give a mathematician
an  infinitely powerful machine for doing calculations and
you deprive him of his inner driving force. It is at least
arguable, though somewhat far-fetched, that if computers had
been available in say the fifteenth century, mathematics now

would be a pale shadow of itself.

§5, Economic dangers

In addition to the subtle and intangible intellectual
threat posed by computers there are much more obvious and
practical dangers due to the tremendous economic importance
of computers to society at large, Inevitably there will
be vast financial pressures which will tend to push mathe-
matics into new directions related to computing. Broadly
speaking, more emphasis will be put on discrete mathematics
as opposed to Calculus, which is concerned with continuous
phenomena, No doubt; some of this pressure will be healthy
and will stimulate ang denerate exciting new branches of
mathematics, but the scale and tempo of the computer revolution
are such that there ig a real danger of the great classical
tradition of mathematics being swanmped .

Superficially, at first sight, discrete mathematics,
which deals only with finite quan§ities and processes is easier
and simpler than Calculus which deals with the infinite in
various forms. However, it is one of the greatest triumphs
of mathematics that infinity has been tamed and put to use, so
that calculus ig a tool of enormous power and elegance which
has no serious rival or counterpart at the purely finite level.
In fact, many important results of a discrete nature are best
proved by the use of Calculus.

Until now the central position of Calculus, the Analysis
of the infinite, has been unassailable not only in Pure
Mathematics, but even more as a foundation for the application
of mathematics to the whole of Science and Engineering,

Courses in Calculus have provided the bed~rock of University
education in the Mathematical Sciences, In recent years
however this position has been called into question and

there is an increasing call to reduce the role of Calculus



in scientific education and repléce it with the kind of
discrete mathematics more relevant to Computer Studies.

To some extent this has already happened and it represents
4 necessary response to changing conditions, but I foresee
pressures for much more radical changes which might be very
damaging but would be difficult to resist.

It is possible that I am being unduly pessimistic on
this score and certainly the dichotomy between discrete and
continuous mathematics is not as sharp as I have inmplied.
Traditionally we think of using finer and finer discrete
quantities to approximate a continuous quantity in the way
a continuous curve can be approximated by a large number of
straight line segnments. However, this procedure can equally
well be reversed and continous quantities can be regarded as
approximations to discrete ones, provided the step size is
sufficiently small. Thus we can use our knowledge (derived
from Calculus) for the length of a circle to get an approxi-
mation for the length of a regular polvgon with a large number
of sides. In this wWay, as computers beccme more and more
powerful and the numbers they deal with become larger and
larger (or the time span for a single cperation becanes

shorter and shorter) so Calculus ray again come into its own.

§6. Educational dangers

As we all know,the present economic scene is of wide-
spread decline of traditional industries and the simultanecus
growth of computer related industries. This is the economic
side of the revolution. Naturally, this means that the
best employment opportunities are linked to computers and this
is altering the attitudes and expectations of all the younger
generation. In schools and universities traditional studies
are having to compete with the excitement and attraction of

the computer, but mathematics, as the closest of the older

discipline, is inevitably in the front line. This is having
an effect at several levels, In the first place the pressure
falls on the mathematics teachers in schools. Increasingly,

they are having to take on computer studies as an additional
responsibility and this means that mathematics teaching as
such is suffering. Qur educational institutions, for -*&
organizational and human feasons, can only change slowly and
the sheer speed of the computer revolution is going to put
them under very severe strain,

As far as students are concerned mathematics is going to
be affected in two different Ways. For the abler student who
might have gone on to creative work in the higher reaches of
mathematics, there is now the attractive alternative of enter-
ing a field which is in an explosive stage of its development
and where the opportunities to make your mark are much greater.
This means that the great creative minds of the past such as
Newton, Gauss or Riemann might in future gravitate towards
computer science rather than mathematics. For a subject so
entirely dependent on brain~power this would be the greatest
disaster of all. One has to hope that mathematics, by its

power and beauty, will still attract intellects of quality



§7. Conclusion

I have tried to draw attention to the challenges and
dangers which the rise of computers presents to mathematics,
I am sorry if the picture I have been depicting appears too
negative. It is easy to see the benefits which mathematics
may derive from its association with computing, and so I have
not thought it worthwhile to emphasize these at length. The
dangers I think are more subtle and not so well recognized so
it seemed appropriate to dwell on them in greater detail.
To recognize possible dangers is to be fore~armed, and one
can hope to prevent the worst from actually happening.
Perhaps I can end on this note by recalling that George Orwell
did not view his book on 1984 as a prediction but as a warning,
deliberately exaggerated for dramatic effect, of what might

happen if we were not careful,

in the future and that not all éf them will be seduced by
the computer.

For students of mathematics at a lower level, there are
other dangers. At their most elementary these are simply
that the wide-spread use of computers, or even sophisticated
calculators, will lead to the view that arithmetic is no
longer a necessary skill to acquire. Why learn your multi-
plication tables when, at the push ©f a button, the answer
will appear on your screen? Such attitudes are already with
us and there is much ;ducational debate on say the advantages
and dangers of having calculators in primary schools. As
computers become ever cheaper and more powerful, they will
flood into our schools and mathematics at all levels will
constantly have to justify itself.

The enlightened response to these philistine attacks on
mathematics is to say that, even when all the work can be
done by pushing a button, you have to teach children which
button to push. t the most basic level they have to know
when to push the addition sign and when to push the multipli=-
caticn sign. This means that there has to be more emphasis
on understanding the processes involved and less on the
performance of routine calculatioas. Properly interpreted
this can be regarded as an educational advantage in which
drudgery is removed and appreciation is enhanced. However,
life is not quite so simple and any over-reliance on machines
can lead to the atrophy of the human faculties involved, much

in the way the motorcar has undermined the capacity of people

to use their legs. Perhaps the sort of reaction which nas nade

jogging so popular in recent years will in due course make

exercise in mental arithmetic a form of mental therapy!
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COMMENT
on the ICMI~Paper

"The Influence of Computers and Informatics
on Mathematics and its Teaching®

Rudolf Straesser, IDM Bielefald

1. Introductory Ramark

In my comments I will concsenbrate on an agpect of the ICMI discussion
decument I know best an I am most interested, I da not aim at a general
gvaluation of the discussion paper which might be done by other per-
sons mkre competent ip the field.

2« Main Idea of the Comment

On the whole I find it valuable that ICMI atarts discussing special
issuss of international concern, Discussing the "influence of COMPUs
ters and informatics on mathematics™ can be & good start of such
necessary activities,

Nevertheless I want to point %0 & restriction in the discussion
paper which can be harmful teo the results obtainable: Especially
questions 2 and 3 are limited"to the curriculum and teaching at
university and pre-university level (from the age of 16 years)",

a8 1s stated on page 5, This limitationm may be helpful at first
glance - but totally leaves out the msjority of the age group
mentioned, namely those 16+=youth hsading for non-academic careers,
People in ftechnicsl and vocational aducation are sven mors directly
confronted with the impact of computers %o their training - and
these effects alsc play on the mathematics they have to learn in
their technical and vocational education/instruction.

I will try to illustrate my point:

4. IlXustration

“hen atudying the'effect of computers on curricula™ it is helpful

to look for "the needs of society and the state of the discipline"”
(c¢f. page 1o of the document), The needs of society cannot be fully
identified when only looking for the needs of other "disciplines -
poysicists, engineers, biologists, economists, ete” (¢f. page 11),
but also by looking for the needs of trades, qualified workers

and professionsls in nom-academic jobs, The GOCKCROFT~report and
its research studies provide a vsluable example of ways looking

in this directions snd they also provide valuable information

on the impact of technological change - e,g, introduction of Compu=-
tars - on mathematics education,

I would like to sdd just one further exsmple from the field %o
discuss bers: Analysing (mathemsticsl) needs coming up with

CAD (gomputer assisted design) it ssems clear that coordinate
geometry (at least in three dimensions) becomes mors important
than geometry in the Euclidean style (study of figures, congruency
etc.) because coordinate geometry underlies CAD=-techniques, The
cage of CNC-machines (computer numerically controlled) seema to
underline the argument I stated,

These changes in the needs can be most easily identified if you
analyse changes in technology and organisation of work., They are
more essily discerned then following the development of certain
disciplines ss studied in the discussion paper,

4, Final Remsrk

Question 3 on page 12 reveals another limitation of the discussien
paper which should not be forgotten: Most of the arguments in the
discussion paper apply for developed, industrialised countries -
but forget the problems of methematics education in rural and deve-
loping countries, Nevertheless the existence of computers and infor
matics in developed countries does affect developing countries,
Have they just to follow the line of development of industrialised
countries or do they need & prepsration to the advent of computers
before they are used in their countries for various purposes 7
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R. KAPADIA

AIMS AND GENERAL PAILOSOPHY OF THE SCHEME

Vocational Aims

The pattern of demand for skilled personnel in the
areas of information technology and management
support services is becoming stahilised now that the
worst of the economic recession appears to be ended.
Although employment prospects in some traditionally
well-established Occupations may never return to
their previous leveals, it seems certain that
opportunites for suitable graduates in the

number., The overall aim of the proposed course
gtructure is, therefore, to 8quip graduates with the
educational background and professional skills thar
will enable them to begin careers in information
systems, management support services, software
production and resource management .,

Although the level of demand for staff in those areas
will certainly increase, specific requirements are
likely to change as technology moves forward and
technigues and practices are improved. The
professional skills that would have served a graduate
well enough in, say, Data Pracessing, no longer
provide an adequate foundation for profeassional
employment in the later 1880y, Therefore, courses
need to reflect the changes that have taken place and
that are likely to take place in the immediate
future,

The authoritative document upon which evaluation of
those changes can be based is the Alvey Report. The
content of new courses in both Mathematical and
Computing Studies acknowledges the recommendations of
the Alvey Committee.

Some aspects of the Alvey programme lie cutside the
sphere of activity of the department and belong more
appropriately to the complementary discipline of
electronic engineering. In those cases - VLSI
providing a good example -~ there has been no attempt
made to force content into the syllabi which does not
naturally belong therein. However, the courses
reflect the need to introduce mathematical rigour to
the teaching of computing subjects, the orientation
¢of applied mathematics to computer based applications
and the importance of software engineering and
knowledge processing to the development of informaton
systems,

Although new directions in information technology are
represented in the courses, there are elements
present that are not so susceptible to changes as the
‘harder’ technical aspects of computer hardware and

R!GOUR‘AND RELEVANCE IN MATHEMATICS

software, These elements include organisational
theory, the role of information and resources
management a8 well as established mathematical gnd
statistical methodologies., Matarial of that‘k;nd
remains central to - the processing of training
graduates for their future roles in commerce and
industry, For example, although the technology fgr
information handling may (and does) advance in
sophistication, it remains true tha§ the syste@s
analyst or management services profgsslanal can only
fully exploit that technology 1if there is a
fundamental appreciaticon of the nature of the
information as an organisational rescurce.

Similarly, a knowledge of communications Fechnalogy
needs to be complemented by an understanding of the
benefits cffered to the organisation that can control
and utilise distributed information resources. There
are numerous parallel examples that could have Dbeen
guoted.

In c¢onclusion, the course scheme aims to prgduce
graduates who are fully aware of the needs of the
modern organisation, are trained in the necesssary
skills to serve these needs and are equipped to take
their places in the Infermation Technology and
Management Support Services teans of those
organisations. :

The overall vocational aim of the new scheme i§ to
strike an appropriate balance between the generalised
knowledge and the specialist knowledge. Stu?&nts are
given a solid background in Management Information
Services which enahblesg them to:=-

(i} Understand the problems of locating and
acquiring appropriate data,

(i1} Formulate the mechanism for prmcessing the data
to provide the information required by an
organisation,

(111} Specialise in a particular area of Managemqnt
Information Services and integrate that specialism
within a multidisciplined team.

(iv) Communicate their knowledge to others.
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Academic Aims and Philosophy

No ons course can hope to encompass all that work
that has been done and is being done in the computing
and mathematical sciences, nor has a standard
undergraduate curriculum yet emerged. Indeed, such
is the rate of progress that a standardisation is not
only not desirable but is also unobtainable.

Each course within the scheme aims to establish a
sound theoretical and practical foundation in the
broad areas of the computing and mathematical
sciences respectively. Many of the staff have
commercial and industrial experience and retain close
contact with outside bodies (See Vol I, Part 2. 1.3):
this background will provide the desirable practical
orientation in their teaching.

The first two vears of each course provide
comprehensive introduction to the areas likely to be
useful in a commercial, governmental or industrial
environment, The student is therefore equipped for
his/her year in vocational training.

Mathematical Studies

In addition to recognising that mathematical and
problem solving techniques are finding wider and
wider applications in commerce, the public services
and  industry the course in mathematical studies
attempts to address the fact that a mathematical
sciences degree is becoming increasingly recognised
as the mark of a rigorous Iintellectual training and
is therefore more acceptable for entry to fields in
which logic, organisation, system and judgement
matter. The course aims to establish an appreciation
of the need for rigour and the appropriateness of
abstraction through the provision of units in Algebra
and Discrete Mathematics. The units have replaced
Mathematical Analysis as the vehicle for these
concepts which we regard still have the hall-mark of
the mathematical scientise,

The final year of the course introduces a degree of
choice which enables the student to pursue his/her
particular intersts to a greater depth and to achiesve
some degree of specialisnm. The course units
currently on offer aim to provide a wide range of
choice that stretches right across the perceived
needs of the management services from a theoretical

understanding of alements of computer sclence to
advanced data analysis, ’

In particular, students on the mathematical studies

‘route willge

(i) Understand the basic theoretical and abstract
aspects of mathematics.

{ii} Have a sound knowledge and command of the basic
gskills in the main subject areas.

({ii} Be able to apply these skills to real
problems.
{iv) Bave an appreciation of the computational

aspects of the main subject areas and have a working
knowledge of at least one high level language.

{v) Understand the interrelation Dbetween the
organisation and the mathematical sciences.

{vi) Have the necessary background of system§tie
problem solving, coupled with theorem proving §k13§s
in order to be able to adapt to future changes in the
field.

Computing Studies

The course in computer studies aims to covert;he
range of knowledge and skills required by‘a cgmpgiégg
specialist within a Management Inﬁormatloz er ft s
group. During the first two years, areas o cgﬁp; ;s
studies are presented as three streams - a ys»§ s
Analysis and Design stream, a Programming stream an
a Hardware/System Software stream.

Throughoﬁt the course the emphasis 1is iz;i’r:n
well=-structured design of both har@ware and s0 &'n*
Modern methodologies of System Design and %rmgrammzag
are presented in adéiton. to techn‘gues (oot
rigourously proving and testing those des;ggs iore
owf which are imtr@duced, as part of the core
mathematics units). The first two years also ac

"a springboard for both the industrial year and the

final yesar of the scheme.a Stugents are Q{f@reing
choice of final vear units in which to spec1a‘i§é e
the range of choice again covers the spei§&uésg
computer studies. As ideas andy?echnolpgy a va%g té
different final vear options wx;% be 1nt§?%Fcea
cater for whichever direction the industry takes.

In particular, students on the computing studies

routs wills=

(i) Have a basic theoretical and practicaé
understanding of computer hardware, and software an
of its applications.

(ii) Understand and apply systems analysis and
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(iv) Understand human and social factors relating to posd T | feg i frL vEs N o=z

an organisation and its enviromment and their role in o= g iEe ¥ I R [ T I o | =

the development of a computerised information system. N S & = T e s ey ! ;
(v} Have the necessary background of syastematic e et T T

problem solving, Goupled with skills of proving their
sclution, in order to be able to adapt to future
changes in the field,
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DNIT TITLE: DISCRETE MATHEMATICS I

]
.

YEAR AND TERM: First Year. Terms 1 and 2. {

AIMS ¢ To introduce many of the essential ideas and
techniques of Discrete Mathematics and provide I
the working vocabulary of basic concepts for
Computer and Information Science.,

-

OUTLINE SYLLABUS: Basic ideas of set thecry.

i
.

i |
o ! |
Functions and relations. [ = } ;
Algorithmns and proof techniques. 5 sl bl
Elementary number theory. &
Introduction to graph theory. ? =
Boolean algebra and propositional calculus, =
-~ e H
TEACHING Lectures (33 hrs), Tutorials (22 hrs). I g = H -
METHOD: o & T EL
- E.2} .2y |
The presentation will be strongly biased f § Sé ERE
towards applications and practical problems. ;
ASSESSMENT: Examination (40). Coursework (10). ™ f :
READING LIST: LIescirz, S., Discrete Mathematics. §' H
E;S L e P Bl i
PRATHER, R. E., Discrete Mathematics for { = | E
Computer Science. = H
Boughton Miffin, 1976. =
H = §
- . = !
FISHER, J. L., Application Oriented | = < . LRI
Algebra. Dun-Donnelly. = i. 58 EEE
L7 | £ |
BIRKHOFF, G., and Applied Modern Algebra. S £ |
BARTEE, T. C., McGraw Hill., 1970, | j
=
i 5
i 3
b=
=]
=
! £
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gNIT TITLE:
YEAR AND TERM:

AIMS ¢

AUTLINE SYLLABUS:

TEACHING
METHOD :

ASSESSMENT :

READING LIST:

Pvhndimeeme St

" polynomials.

ALGEBRA 1

First year., Term 1.

The three Algebra upite are intended to lay a
solid foundation of Modern Algebra in a
rigorous and coherent WwWay. Algebra I is
intended Lo introduce the number systems and
the algebraic structures and to initiate an
appreciation of the axiomatic method. Algebra
1T and 111 study particular important
structures, namely vector spaces and groups

respectively.
systems N, 2. Q. R, C.

introduction
qroups,

survey of number
Discussion of the properties and
te the basic algebraic structures:

rings, integral domains, fields.

niviaion algorithm. Remainder

theorem. sratement of the fundamental theorem

of algebra.
Lecture (33 hrsi, Tutorial (16.3 hrs).

The subject will he taught with many examples
and illustrations to minimise any dgifficulties
in comprehension of the abstract approach. The
abstraction 18 desirable to allow a coherent

and cansecutive development of the supject.
abstraction will gradually rise

The level of

from Algebra I to Algebra III.

Examination (50).

SIRKHOFF, G., and A Survey of Modern

MACLANE, S.. Algebra. 4th Edition.
Macmillan, 1980.

Introduction to the

Theory of Finite Groups.
Oliver and Boyd.
Revised Edition.

LEDERMANN, W..

1981.

2nd Edition.
1981.

Algebra.
pitman.

ARCHBOLD, J. W..

READING

ONIT TI

YEAR AND TERM:

ATIMS ¢

QUTLINE SYLLABUS:

TLE:

-

TEACHING

METHOD:

ASSESSME

NT:

LIST:

DISCRETE MATHEMATICS I1

Year 1, Terms 2 and 3.

Te introduce the basi
in u asic concepts and stru
of Graph Theory, Boolesan Algebra and Legiztures

Graph Theory

1 . - s

wscmorphlsm.  Connectivity; strong, unilateral

aeag connectivity. Planarity. Euler tour :

Miziégmn cycles. v?r&veliing salesman ?roblgim
hings. Matchings and Dbipartite graph .

Applications. Jraens:

Boolean Algebra and Lattices

éiZ%Zi?% and _ posets. Semi-lattices.
meégl ;§ces, Dlzeqt products. Distributive
ar, geometric, Boolean ?att?ca$?

Morphisms and ideals. Finite Boolean Algebras

Logic

énf@{?gl propositional calcoulus. Truth
Ru?cglans qnd truth tables. Normal f@gms
ulegs of inference and procfs. Enﬁmfmai

predicate calculus: predicates and guantifliers

gii?tf o;der languages. Interpretations
isfaction. Truth. Free and Do é
variables, Validity of formulae. ue
Lecture {33 hrs), Tutorial (16.5 hrs).
See Discrete Mathematics I.
Examination (507.
See Discrete Mathematics 1.
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UNIT TITLE:
YEAR AND TERM:
AIMS:

OUTLINE SYLLABUS:

TEACHING
METHOD:

ASSESSMENT :

READING LIST:

16

ALGEBRA IT
Second Year. Term 1.
See Algebra I.

Linear Vector épaces.

Linear quations.

Matrices and matrix algebra. Vectors. Vector
spaces, subspaces, linear dependence. Basis
and dimension. Linear transformations. Rank

and nullity. Matrices and linear operators.
Change of basis. Similarity. Eigenvalues and
eigenvectors., Diagonalisation. Characteristic
and minimum polynomials. Discussion of
quadratic forms and real symmetric matrices.

Lecture (33 hrs), Tutorial (16.5 hrs).

See Algebra I.

Examination (50).

See Algebra I.

Linear Algebra.

2nd Edition.
Addison-~Wesley,

LANG, S.,
1966,

ONIT TITLE:
YEAR AND TERM:
AIMS:

QUTLINE SYLLABUS:

TEACRING
HETHOD:

ASSESSMENT :

READING LIST:

ALGEBRA III

Second Year.

Terms 2 and 3.

See Algebra I.

Isometries. Permutation groups. - Cayley's
Theorem. Cosets, Lagrange's Theorem,
Isomorphism. Homomorphism. Normal subgroups.
Factor subgroups. Isomorphism Theorem.
Automorphisns. Direct products. Survey of
rings and fields. Simple introduction to

universal algebra.

Lecture (33
See Algebra
Examination

See Algebra

hrs), Tutorial (16.5 hrs).
I.
(50).

I.



ONIT TITLE:
YEAR AND TERM:

AIMS:

QUTLINE SYLLABUS:

TEACHING
METHODS @

ASSESSHMENT :

READING LIST:

LOGIC AND COMPUTABILITY

Final Year.

To provide an introductory course to
Mathematical Logic; to show the relevance of
the subject Mathematics and Computer Science;
and to introduce the notion of effective
computability.

Formal statement calculus. The formal system
L. The adequency theorem for L. Formal
predicate calculus. The formal system K.,
Equivalence. Substitution. Prenex form. THe

adequacy theorem. Models. Mathematical
systems; first order systems with equality.
Group theory. First order arithmetic.
Consistency and models. Algorithms and
computability. Turing machines. Recursion.
word-problems and sub=-groups. Church’'s thesis.
The halting problem. Undecidiability.

Lecture (33 hrs), Tutorial (16.5 hrs).

Whenever possible the material will be
presented in an introductory manner and in
areas where algebra and logic impinge on
one another, for example in the consideratiocn
of word problems for algebraic systems such as
semi~groups. Group theory will be used to show
how mathematical systems arise as extensions.

Examination (50).

MENDELSCON, E., Introduction to
Mathematical Logic.
Van Nostrand., 1964,

BOOQLOS, G. S., and Computability and Logic.
JEFFREY, R, C. J.. Cambridge. 1974,

STOLL, R. R., Sets, Logic, and Axiomatic
Theories. Freeman.
1975.

ROGERS, H,., Theory of Recursive
Functiong and Effective
Computability.
McGraw Hill. 1868,

LEMMON, E. J., Beginning Logic.
Nelson., 1965.
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THE INFLUENCE OF COMPUTER AND INFORMATICS ON MATHEMATICS

Masaya Yamaguti

§ 0. I had tried to respond to the question: Did computer change mathe~
matics or not. But at every period of our history, mathematics were alwavys
changing. Then it is hard to point out what part are really changed by
computer and informatics. Of course, several new fields are newly created
because of computers. I feel the influence on mathematics is something
much more than this. The question should be modified as follows: Did com~
puters change the structure of the evolurion of wathematical study., To

this question I can reply '"ves'.

§ 1. How computer changed or are changing the evolution of all concepts
in mathematics ?

That is the content of § 1 of our report "The influence of computers
and informatics on mathematics and its teaching”. But here, I would like
to emphasize "The integrating effect of different fields of mathematics".
Computers and computer experimentation brought to mathematics some inte-
grating effect of different specialities in mathemarics.

From the middle of our century, we experienced some separation be-
tween different specialities In mathematics. It has been continued to

differentiate. But this tendency is now stopping by the Influence of

computers,

i) One of the most famous example is the study of non-linear dispersive
wave propagation, particularly the soliton solution of K~d=V equation had
been found as a result of numerical experimentation done by Kruskal and
Zabusky and Miura. But after this finding, it becomes more and more pure
mathematical object and now, we 80t some very rvrigorous mathematical argu—
ment for the whole structure of exact solutions of this kind of equations
via Kac-Moody algebra.

The origin of this series of researches wasg some visualization per-
formed by some computers,

The merite of this kind of visualization is enermous, because by the
visualization of some possible facts, mathematicians in many different
fields get common object of research, This causes a vecovery of the

unity in mathematics.

11) Let me explain ancother example which comes from my own experiences,
Almost 3 years ago, I observed a graph of the Weierstrass nowhere differ~
entiable continuous function computed by a computer. At that moment, I
engaged in the study of chaotic dynamical system. 1 knew that the gen-

eral solution of the famous discrete dynamical system:

= - )
xn-*l ¢ Xu< L xn
ls written explicitly by the elementary function of n and the initial "‘\Lx
oy
value Xg- I felt that some relation exists between Welerstrass funce
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tion and this chaotic dynamical system. In reality, it was true that
Welerstrass function is a superposition of these general solutions of the
above dynamical system. And then I began a collaborative work with M.
Hata about Takagi function which is also nowhere differentiable continuous
found by T. Takagi just after Welerstrass. This function is more easy to

define and it has clear explanation using the dynamical system:

j X (0 s x € =)
= ‘l}(xn), Y(x) = .

Xn+1 1
121 - x) (E—S X

i
ot
~—

Takagi function T(x) is now defined by the following expansion:

v o1
; n
T = ] =y,
n=1 2
Uy i E i 3 1 functional
where ¢ is n~th iterate of Y. Now we got some genera
equation which has such kind of function as its solution.
Little later, we remarked that these functional equation had been
studied by Julia, de Rham, and Moser without using dynamical svstem.
But we also become aware of the related researches done just early pe-
riod of this century, by Cesdro, Faber, Lebesgue, etc. That was through
several works by de Rham. Finally, we found some finite difference scheme
( multigrid ) which are satisfied by these singular functions { See in.

By this method, we succeeded to get a nice relation between Takagl func-

tion and Lebesgue's singular functions. Next step is the introduction of
the concept "Invariant set of contractions"” which was proposed by R.F,
Williams and refound by Hata. This method to describe a function is very
simple and useful. It contains all works done at the end of last century,
those of Peano, Hilbert, Pélya, Sierpifiski, Osgood, .-+ about singular
curves. And moreover, it contains many new figures which is a kind of
Fractals ( See [2]). Thus we are now feeling an arrival of new analysis
without using differential calculus, All our researches was guided by
computer experiments before our proof on each above step.

Recently, the advances in the research of Cellular Automaton which
achleved by the progress of hardware ( See [3]) is very near to our study.

Yet we do not know exact interrelation between theirs and ours.

§ 2. Discrete Mathematics

At 1860, G. Boole wrote in his text of caleulus of finite differences
{ Treatise on Calculus of Finite Differences ) that differential calculus
and finite difference calculus are two completely different sciences even
if you consider the mesh length tending to zero. And he wrote that this
distinction arises in the study of non-~linear problem. He gave as an
example, the famous Clairaut differential equation, where usual discretiza-
tion of Clairaut differential equation has a family of discretized aolu~
tions which tend to a smooth function different from any solution of orig-
inal equation as their mesh size tend to zero.

Sometimes, it is said that difference equations are obviously tech-



nically and intellectualy much simpler rhan their counterparts and that
therefore, we can replace differential equation by difference equation

and can establish a complete analogy between two things.

I am very much doubtful on these kind of assertions. My opinion is:

The recent progress of computers has revealed that these 288y arguments
are not true, and that what was said by G. Boole is now very important.
Let me explain a little about that. In 1973, Robert May had ob~
served that a very conventienal discretization of the logistic differen~
tial equation has the solution of the initial value problem which is
chaotic and completely different from the exact solution of the dif-
ferential equation [4]. This research gave a start point ro the study
of chaotic discrete dynamical systems. Myself, I had proved with Matano

that for any ordinary differential equatlion of the type

-3%* £(y}

which has at least 2 equilibrium points and one of them asymptotically
stable, the Euler's finite difference scheme of this equation becomes a
chaotic discrete dynamical system in the sense of Li-Yorke for fairly
large mesh size [5]. ILittle later, we observed that centered difference
scheme of the logistic differential equation gilves the same phenomena
for any mesh size. S. Ushikl completely proved this [6].

Thus, we can say in the case of non-linear differential equation,

that the asymptotic behavior of the solution of differential equation

and the solution of the discrerization of it are completely different.
Then one can not replace each other.

Of course, one can construct complete analogue discretization for
the differential equation. But for that, it ig necessary to ger very
sophisticated difference scheme. For example, R. Hirota had a discre-

tization which ig very much similar to the hear equation:

2
3u _ 37w
3 2"
t 3%”
It has the following form:
2 2
Atnx u(x,t) = Ht&x ulx,t)

-+ -
where A 1is the centered difference operator I , 11 is the av-
+ -
. T +7 + -
eraging operator -m7?w~* , and T%’ Tx are one mesh shift operators,

that is,

E . -
TX £(x) = f(x + h), Tx £(x) = f({x -~ h).

This finite difference scheme conserves LI norm of the initial data as
the original equation and Lz norm in x of the solution dissipate as
t increases. And then Hirota developed some calculus of difference

operators which is completelyanalogous to differential calculus using

very sophisticated way the operators A and . For example, he got

L ¢



a formula of chain rules for this finite difference calculus and also

complete analogue of many special functions. This way of construction

of new analysis is seemingly very difficult. I can not recommend to

teach for freshmen,

Now, T can propose one thing for the mathematical Education. My

proposal is not to reduce elementary education of continuous theory,

for example, that of differential equations. I recommend to do some

preliminary numerical experiment with some discrete model before intro-

ducing differential equations. Because the students who learned the

difficulties of a discrete theory can estimate well the easiness of

continuous theory.

27
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On some multigrid finite difference schemes
which describe everywhere non d;fferent;able functions

\iﬁyasaya Yamd%uti, Masayoshi _Hata .

Department of Mathematics, Faculty ef Sclences
Kyoto University .- -
RKyoto 606 R
Japan

We propase a series of mult;q*ld finite difference
schemes which can describe everywhere non differ-
entiable functions like Takagi's function and
Lebesgue’'s singular function. Physical meanings
of these functions are explained. This study is
related to the numerical solutzon of some singular
perturbation problem. N

i. Introduction

Recently we observed that the Welerstrass function which is con-
tinuous but everywhere non differentiable can be obtained as a
solution of very simple functional equation [2]. This functional
equation contains a one-dimensicnal dynamical system and an init tially
given funczion g. And then, by changing these dynamical system and
the function g, we can get many such families of irregular continucus
funct;ons that include the Takagi and Van der Waerden function which
was found by T. Takagi in 1503{1]. On the other hand, we noticed
thdu G. De Rham had found some very simple functional eguation which
is satisfied by Lebesgue's singular function. This functiomal equation
is very much related to our functional equation. We clarified that
these functional equations can be converted to some boundary value
problems for mmltigrid finite difference schemes which are an analog
of singular perturbation. Using these resul;, we succeeded to get
a very simple relation between Takagl's function and Lebesgge‘s
singular function. - And by product, using de Rham's functional
equation, we could compute the Fourier-Stieltjes coefficient of
Lebesgue's singular function and prove that it‘does not satisfy
Riemann—-Lebesgue theoxam.

In the last section, we will show the physlcal meanxngs of these
functions, explained by H. Takayasu who is a physicist in Nagoya.

2. Functional equation which describe everywhere
non differentiable continuous functions

We begln with some trivial remarks. The first example is Weier-

strass's function:
wy
n
W (x) = I a“cos(wb x)
a,b n=(

(0 s x5 1),

a. b real positive, 0 < a < l.

This can be represented, when b = 2

(y -~ W, o(x) = I anccs(n¢n(x))

LT ’ n=0

where 22(%) = 2x (005 x 5 1/2), ¢({x) = 2(l-x) (1/2 s x 5 1)

and ¢*(x) means n-th iterate of ¢{(x). (Specially, 9%(x) = x.)
Next example is Takaq; s function(l]

(2) Tx) = T 3% (x)

n=1 -

L

”“f“\\///“vﬁk\
\
g 1
Figure l. Grapb of Takagi's function.

Remark. The above is not the or c:f.nal fom of Takag ‘s function

but we interprete the original definition using ¢ (x)

Both functions (1) and (2) satisfy the following functional
equaton:

H Flt,x) = £F(t, ¥(x)) + g(x), (0 s &t < 1)
where ¢(x) is a given mapping from [0, 1] to [0, 1], and g{x) is a
given .bounded function.

It is easy to see that Fla, x) =W, (x) for g(x) = coswx and ¥(x)

= ¢ (x) and that F(1/2,x) = T(x) for’g(x) = ¢(x)/2 and {¢(x) = ¢(x}.
One Can put the equation (3) an initial value problem:
aFr 3 B
" eitex) = spleF(e, px)} (0 <t s 1), ;\Q
VF(0,x) = g(x). ' &/J

Then we get the following theorem:



Thecrg@ 1. Suppose that g:{0,1] = R is a bounded functionm;;étékég.w
$:r{0, 1] = [0,1] is a dynamical system. Then Fl{t,x), which satisz<es
(3 §nd is bounded with respect to x for each t, is unicueiv de- o
termined and expressed by the following i :

(s) F(t,x) = I toq™(x)).
) n=0 .
We omit the proof because it is so easy.

. Remark. This theorem is very general. For example, given
functions £{x) and y(x) and a real value £ (0 < s < 1), we can
construct g _(x) _such that the solution F(t,x) of the initial value
problem (4) ith inditial data gs(x) satisfies

(8) Fis,x) = £(x).

Thus, we can obtain an expansion of usual Cantor function:

b 1 n
7 B -
(7) niﬂ 2n+xxfl/3,1}(¢ (%))
T§?§&l]x[l/3‘1](x) is the characteristic function on the interval
£ ¢ »

Now, let us recall de Rham's functional equation. His original
work (4] was more general but we mention here a special case which
relates to our eguation. M(x) is unknown function. His egquation
15 as follows: i i

M(x) = aM(2x) 0 < i
(8) (1 *EY
Mix) = (1 = a)M{2Zx - 1) + a (E'S x 5 1)

where a is a real number such that 0 < g < L.

N For comparison, we examine a spacial case of our egquation for
Takagi's function: )

T(x) = %T{&(x}) & Qéﬁl

which iz rewrited in detail as below,
(9 {T(x} = %T(Zx) + X (0 £ x = %}
)
TGO = FT(2(L - x) +1-x (s xs 1),
then (9) is very similar to (8).
The sclution of (8) is Lebesgue's sinqular function, which is
strictly increasing continuous and has zero-derivatives almost

everywhere for o ¥ 1/2. We denote this function M (x). Later on,
we will see that there is a neat relation between T?x) and Ma(X)“

3. Schauder expansion

As an analogy of Fourier expansion, we have Schauder expansion of
all continuous function on the closed interval [0, 1]. The basis
funceion F " (x) is obtained from the function Fu a(x)

1725, (1e1) /2% ’
which is defined as follows:

P
o~

1

= a{ix - al + jx = 8] - ]2x -« a« - 8]}

1oy F =z

Cur bases are the following sequence of funczions:

F

(11} 1, x, F , F , F ¢ eee s ;e
0,1 0,1/2 1/2,1 i/2k,(i+l)/zn

Theorem 2. Any continuous function £(x) on [0, 1] can be expanded

uniguely as follows:

12y - £(x) = £(0) + [£(1) =~ £(0)]Ix
e gk
+ I z a; {(£)F X n(x)
k=0 =] ‘ i/27, (i+l) /2
where the coefficients a, , are
s p2irly L Lk o ogdtly,
{13) ai'k(f) = £( k+i) fuf( n) + £( T Yi.oo - .
2 2 2
The proof is very elementary.
Now we can observe that
() 65 (x)

. . -y
125, iy 28 Te1s2%, (ae1) 25

We can replace (12) by
(1) £(x) = £(0) + [£(1) = £(O))x + I b (06 ) ~
Zk»l k=0

I Ta, (£yx (x) .
im0 ERTT 2%, (141 /25

where bk(x) =

‘Therefor, we can say that Takagi}s function T{x) has a special
expansion (14) because that £(0) = f£(1) = 0 for T(x), and that

- : 1
(1%) vk, by (x) = EE:T {0 £ x 52 1),

which means that T(xj satiéfies the following boundary value problem

for a multigrid finite @ifference scheme because of (13).
k

2i+1 1 i i+l 1 ; N K
TEETDY e m{T(=) 4 T(=pE) ) ow T {0 s 12 1, k)
{16} { zk*l 2 2k 2k +
LT(0) = T(l) = Q.

Remark. If we replace 1/2k+l at the right hand side in (16) by

(1/ % l)zy then we get usual smooth solution x(l-x) of a Poisson
4
27 )
equation azu/axz w -2 with boundary condition u{e) = u{l) = 0.

The following thecorem suggests that Takagi's function can be gener-
alized to some nice class.



Theorem 3. A func:i;n ka) is céntingcus gn {67 1l and £(0) = f{frk
(=

= 0 1f and only if it has expansion £1%,4 ) whose coefficient o

satisfies nEL R B
-

(173 T e | < 4= .

=} B2
The proof of sufficiency is easy. The necesity is a little hard to
prove. We only peint out that the property of some orbit of the
dynamical svstem x ;= $(x_) which pass near the mid paint 1/2 plays
an important role ""“(see (£]). We think this theorem correspond to
Sidon's theorem for lacunary Fourier series. Of course, the regularity
depends on {c }. IF (2% )} ¢ 1 . then £(x) is bounded variation.
If 2§§§2acn§ ¥ 0, then £(x} has fo derivative everwhere. We call
f{x] the géneralized Takagi function in this last case.

4. Multigrid finite difference schemes

As we have seen from (16) that T(x) satisfies some multigrid finite
scheme, the generalized Takagi function TG(x) satlisifies the following
boundary value problem:

2i+l. 1. i i+l
(1a) {TG<E§:T) ELTG(;E) + TG(;E*), + ey
To(0) =T (1) =0, 0sis2%-1, wk

where (c } « 1,, and gég{zncni > 0.

Now we are going to look for some multigrid boundary value problem

for the funcuion M (x).
We proved that %he following boundary problem is the right one:

2i+1 i A+l
¢ . - )
(ﬂu\mK+L; = (1 G)MQ(ZK! + “MQEZE”)

P

0, M_(1) =1, 0sis2%-1, uk,

(=S
i

the proof is easy using the equation (8). )
This boundary value problem is closely related to some singular

perturbation problem:

d"u du
e e () g small > O
fe dx

(»)
{u(o) =0, u(l) = 1.

because our problem (18) can be rewritten as follows:
. Ma((i+1}/2k} - 2Ma((21+l}/2k+l) + Ma(i/zk)
g%+t (1/,k+1) ¢

My (L) /) = M (3750

(rx) [+ (e =3

N;(i)—‘

e

M (0) =0, M (1) =1, 0 si 2% -1, vk and 0 < a <
o 3 [+ 3

_ That is, (=~} is some kind of discretization of (=) but :hewmeég'
size depends on €. Thus we can regard Ma(x) as a kind of boundary

layer solution.

L L
a = 0.1 g = UiJ
//
_
_,_,f"’") ad
Q 1 Q L

Figure 2. Graphs of Lebesgue's singular function Ma.

5. A relation between T(x) and M (x}

Using (13) and (19), we get the coefficient a; k(Ma} in Schauder
axpansion of M ’
. ) 1 i+l i
= - Jsiliindy SRR £ o .
(20) ai,k(Ma} (a 2‘1 [MQ( 2;{4 Malz‘(}l
relation

With this eguality, we can chtain the

(21) [Bom,x ™ %3, k-1

Theorem 4:

1 foamel,k = B molag -

L. o - g
ai,k(Mc) = (g z)a (1 al

where p + g = k, p is the number cof 0's

i= Z w_ZJ"l
j=1 -
q is the number of l's.

(0 s 1 s Zk -

3 v
p ey

4

N
N

the binary expansion of

) &



Because of this theorem, the series of Schauder ekxpansion for M Tis
holomorphic function of @ in neighbourhood of 1/2. We can differ-
entiate (19) with respect to « in some neighbourhood of 1/2, and if
we put a = 1/2, then we get

M {x)
2T(X) = ——i 1
(1“"*2“
Theoream 5.,
SMa(x)
- aa {aé = 2T(x).
2

6. Phvsical meaning of M (x) and T(x)

+
;'/// 77 /;‘1_....__
N ; 1
. O X
N )
Figure 3.

We are thinking of an electric circuit in which cogstant_vmltaqe v
is applied to a l-dimensional resistance of length unity (Fig. 3).
The Ohm's law is the following.

(22) E{x) = R{x)TI

where I iz the electric current, E(x) and R(x) are the electric field

and the resistivity respectively. i ) )
If we assume that the resistivity is proportional to the density of

impurity p{x), namely
R{x) = xp (x) ¥ @ constant,
then V(x) voltage at point x, becomes

b4 b4
(23) S V(x) = [ E(x')dx' = szop(x')dx'
0

where p 1is normallzed as
1
Jopix"ydx® = 1.
0

Now, we cons;de* the case where p(x) is de Wij's frac=tal [6].

De Wij's fractal pu( x) 1s a self-similar function specifisd by only
one real parameter a (0 5 a 5 1). It is deﬁ;nec by a limit of
cascade of the coarse grained distribution Pq " (x) which are defined
by

(k) 24 , o . k), i )

Pq R 7 e (R
. 2

(k+1) ,24i+1 - k), 1, . k

(24) a (*uwIJ e (] alp, (ZE} (0 1 527 - 1)

0,0 = 1.
Fractal dimension D of Py is known to be
D o= *{alcgza + {1 - a)logzil - a)}t.
Now the voltage V{x) is obtained from (23)
(25) Vix) = vaxp (x')ax' = v M (%) -
where M (x) is Lebescme s singular function appreared in preceding

sectzions.
Next we treat the case where the densgity Py (x) of the impurity
changes with time.
From the conservation of impurity, the flux of the impurity j(t,x)
is determined as

%
Jlex) = =f Tooxt,myaxt.
o]
If we assume that the density is uniferm at t =0, namely p(x,0)
%/z(x = 1, and that it becomes De Wij's fractal after a shors
tim At, namely p(x,4t) = Ql/2+a’At(X)’

thert the flux at ¢ = 0 can be computed as

x p caaix') - 0p (x*")
. - . 1/2+a At L/2 ‘
30 = i [ 5E L
. 3
= —a' M (x)]a _1
2

- -2 T(x) {Theorem 5)

where T(x) is Takagi function.

The above discussion is also valid to other cases, for example,
laminar shear flow p, V and 3j represent density of vorticity,
velocity of the f£luid and flux of vorticity respectivelyt The third
case is just concerning about density of change, electric field and

electric current respectively.



Apvendix. The Fourier Stieltjes coefficient of M (x) can be computad
using (/). Let @

L itx
SI(e) = [ eTTamM (x)
a

be this coefficient, then we get

. it

. e N

I(e) = T {a+ (L~-a)e” }
n=]1

for all integer p z 2,
1(2P7) = (20 - 1)T (7).

If a # 1/2, I(t) never vanish as ¢ tends to 4,
The other expression of I(t) is

-
it t . R
I(t) = e c + (1 - 2a)i sin N
(El n{ OS'—H;-I { ) s m}
e 2 s
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Uber ergodische, nicht-monotone lermende Automaten

C. Kuck, Universitit-GHS Paderborn, Fachbersich 17
(Mathematik-Informatik), Warburger Strage 100, D-4790 Paderborn

Zusamnenfasswfg: Ein zeitabhingige Aussagenlogik ist eine Lie
Algebra,. Kleene's Theorem kann man verallgemeinemn: entscheid-
bar ist 4quivalent zu nicht-monoton und raticnal. Es gibt kinst-
liche Intelligenz. Es gibt nicht-monotcone und ergodische Beweis-
systeme. Es gibt nicht-monotone Kategorien von f -~ Semimoduln.
Gdel's Unvollsténdigkeitssitze gelten nur in rmonotonen Beweis—
systemen. Hilbert's Programm ist vollendet. Widerspruchsbewelse
sind nicht zuldssig. Wir kennen den Zablentyp der Quadratwurzel
aus 2 nicht. Widerspruchsfreiheit ist Hquivalent zur Entscheid-
barkeit, das heift die Pr’ﬁdikatenlo@k ist nicht widerspruchs—
frei.

Summary A time dependent propositional logic is a Lie algebra.
Kleene's Thecrem can be generalized: decidable is equivalent to
non-monotenic and rational. Artificial Intelligence exists. There

are non-monotonic and ergodic proof systems. There are non-monotonic
categories of ;e - semimoduls. G8del's Incampleteness Theorems are
only valid in monotonic proof systems. Hilbert's Program is completed.
Refutation proofs are not permissible. We do not know, what type

of number is the square root of 2. Consistency is equivalent to
decidability, that means predicate caleulus is not consistent.

1, Definition Wir definieren flir die Ersetzung
{las,8,7, (01,81)) - ({32,131\

die Zuordnung Z: {(pla,, t,), p{a,, £.)) ~ smx(1 -~ oia,, ©,), ola,, ¢t

A [ EN
Z geht fUr den Schwellwert S = 1 in die Implikation der Aussagenlogi
iber [1]. Die Hintereinanderaus fihnm ung zweler Ersetzungen ist ein nicht

kommutatives Produkt, das wir mit min bezeichrien. min ist Sransitiv [1

Als zwelte Operation f

ren wir die Auswahl max von Er Ersetzungen
min und max arbeiten auf einer lokal Finiten rationalen Menge I von
Produktionsregeln. Me

iedener .Able.itw1gerx des gleichen 3atzes

mit gleichen Massen bestehen aus dguivalenten
ist eine Kongruenzrelation auf dieser Quotient

neutralen Element O, Nach

spezialisieren wir das kommutative Monoid zu

Ersetzungen sind Punkticnale.

erfiillt die drei Bedingungen {tr die Lie Klammemn [21]. Damit naben

wir aus de

Problen ¢ em 1 * L/K konstrulert., ¥ ist ein Ideal, das von

[“:) :\“J * 6\1’ 1o 05, [e;x n.l o= B:(h 18,
- < R N N kR J RSt
£, nd = 8. h)f, firaile 1,5, %s € 10,11
B ? oY * v
erzeugt wird, q.. h. ist ei tatieon, die daran erinnern soll
= ij N H] 3

dad die abgeleiteten Sdtze ein Mass haben.

N 7

Die zeitabhlngige Lie Multiplikation ist eine nicht-monotone Ver—

allgemeinerung der DImplikation. Wir vewelisen, dass unser Iy

system und unsere nicht-monotonen und rationalen Theorien widerspruchs-

dguivalent cur Entscheid-
barkeit ist. Mathematik ist nicht-monoton. Die Pridik

ilcht widerspruchstrei [1].




Wir zeigen zundchst durch Verallgemeinerung des Kleene'schen Theorems ,

. N -t .y N N
dass es Ubergangsmatrizen E gibt, die zu Cartan Matrizen

dguivalent sind. Rir Cartan Matrizen gllt A,. = 2, 4,. € -2

13 i3 +
il i
Y 1i#j und Aj; = 0= Aji = 0. -2, ist zu Z+ isomorph,
Z, ist zu 2Z, und Q[O,1{ isomorph.

Wir definieren nicht-monotone, raticrale (gzo }‘—Theorien, die die

+ . N
(:*0> ~Operation nicht benutzen [1]

. n
‘" A.) = (L . 4 \': . n
Th (AJ; . fj . {{L} u {ch | (io/ ;- ch.,}

2, Satz Th (A.) ist entscheidbar, werm die S_. = const..
o “d
Beweis: Wir ordnen die Teilmengen L,; der Sprache L mit Hilfe
von Massfunictionen und SchweLlwerten S . €[S ., 11, so an, dass
At e S
zcn < XC,.“‘l < Xc,n~2 C e = Xci =L
c=s3 £ 3 vee 55 £ 1.
cl c2 on

(Die 1 kriegen wir spiter wieder, weil die Stringléngen der Produktions-

regeln endlich sind.)

Die Menge {Xci} ist unter Qo)- abgeschlossen, wenn die Schwell-
werte Sci konstant sind, weil die I, endlien (¢
nicht benutzt) und die Stringlingen 1 der Elemente
beschrénkt sind. (‘lﬂf wihlt aus allen méglichen Penmta‘:ignen die

Inferenzketten aus, deren Ersetzu zen feuern. Also sind auch

e} n
n .=z und U I =L (i=0 steht fir L)
i = o [e % <n 120 ci

abgeschnlossen, denn das Alphabet 7 von L ist endlich und

-y

rd o oergdlich

ci

ist. o
e s e 5 o TR
Wir definieren Th (A.) analog Th (4.).

J b
3. Satz * nx nach n Anwenaur
von o ( Ixpunitt mit der Multi 1. Die Masse
(Gewichte) i 9 . sind minimal.

Beweis:

Wir gehen davon aus, dass jede Problem ung mit einer Ersetzung

(einem Zustandsibergang) endet

1ty N T \,
1) (5, = (2%, )a

i?

und, dass Problemldsungen shuffle-Produkte sein k&men (a € L.

b €7, ., c. Potenzen von a oder 1), die ebenfalls mit Zustandsib

3
N

.
o + . . .. N
géngen erden  ({ )7 ist eine Vereinizung)

IS
. o, N b b . e B
(L ™(zE, e = (avc,*b~ciuvgsbzn e. o, b
Aus den beiden Axiomen folgs flr Xc*f =T .
(e \<n><ﬁ Nt e Y (n ¥~ \aD* = (1 )*(na + a)a =
; : =l { ;)38 = (1) taja =
tEo el 2ol gy =0

.t 3 .
4, Satz Sei E = E +EZ + B e e 28 die Summe der Ubergangs-

er-

matriamltiplikationen mit min und max. Die Elemente der Matrizen sind

raticnale Mengen



= e : : \
Dann konvergiert jedes Element :‘wq gegen einen Fixpunkt.

Sewels: Satz 3.

tz Sel X ein lokal finites Moneold, dann ist die Menge I,

deren Elemente { _’;_O)w't}ntemﬁngen :v“i von X sind, unter den
nicht-monotonen und rationalen Operationen abgeschlossen.

. . . +
3 - g~ - 1o -
Beweis: i: Toir Tog Bogo Ty Poys K Rys K+ X5 liegen in (1)
R PN - s
Q”o" (£.) = Z.; nach Satz 3. o

5. Theorem Sei P eine b Menge abgeschlossener Intervalle [s .
SrpEeren el

k] 1 ] ¥
O =58 . £1 und F ein endliches Alphabet. Darm konvergieren die

2
ER

[

nicht-reien L,)—Teih11erlg@n £ . von X nach Satz U, gegen
Fixpunkte
\+, N
(1))
Diese Fixpunkte sind genau dann entscheidbar, wenn sie nicht-

monoton und ratioral sind.

Bewelis:
i. entscheidbar = nicht-monoton und rational

Die Elemente

.

.3

ven E bilden die Klasse aller L ~Untermengen I von X,

(£.,) 1ist nach Satz 5. abgeschlossen,

.

o el

o N o 5 PR 2 s o~ rv Ty

Cie B SiNG nach Satz J. entscheidbar. Die {1 Y(E ) sind
rg =0 g

nicht-monoton und rational. Satz 4. 3a88C

1

2. nicht-monoton ung rational = entscheidbar

Sel i@ {£_.) ein nla. Seine Zustinde seien 72 = {1,...,n}. Wir
el

betrachten die nach Satz 2. entscheidbaren (_3_.0) ~Untermengen

(%;‘ = {Z, v, g} |, r,qg € 2.
e
E
s vt

so dass filr jede Zerlegung

s o ) i . .
die Ungleichung 1 <k erfiilt ist. Sei 5;3’ die Vereinigung der
I g
Worter {c! in 3;{" Danr haben wir
- N (o) _ (o}
Ul )z ) =8""=g""
L0 cl el Tq
r,q
a e \<n},’y s oopin) Lo (ny
[$19184 (LR Ve o) D = L .
g O ol rq g
g

In den levzten beiden Gleichungen haben wir das k oben weggelassen

und daflir einen Index in die Klammer oben gesetzt, der die wiederto

Anwendurg von (L )7 angzeigt.
L)

- o ; MR
Die wiederholte Anwendung Jdes Inferenzsystems { ergibt

ey

W
-



52

(1 ist nach Satz 3 ein Fixpunkt und os gilt
-
* +
I N Y - 4
(10 taja = (1) (a).

Die letzte Gleichung sagt, dass die rationalen Ausdriicke in
(;LMQ,; (a) mit einer Ersetzung enden. Das bedeutet, dass die wieder-
holte Anwendung des Inferenzsystems (}Q)" (einschliesslich seiner

Negation [1]) eine Paktorisierung des Pfades

impliziert. Diese Zerlepungsmdglichkeit sagt uns, dass die nicht-

s
. . s LA . . . .
monotonen und rationalen Untermengen 5*"@ eindeutig in entscheidbare

- (o) Y N IR
L -Untermengen 8,\%@’ zerlegt werden kOmmen, werm (0 € K € n. a
=0 g

Es gibt ? Korollarien zu diesem Ergebnis.

2. Es gibt Zalhl n, € No} flr die

I oOZSi,

o ist ein Element mit minimalem Mass aus L
o i

- . " . o - *
3. Jede Inferenzkette in (;‘M) und jeder Wurzelstring im Dualraum ()
. e e : .
ist endlich, 4. ‘\‘L_{> (£ .} ist S . - 13sbar.

. N N + o ‘;‘k ‘ + t .
Damit haven wir gezelge, dass es Ubergangsmatrizen E gibt, die zu
+ 2 3 . . - . .
Cartan Matrizen dquivalent sind. E -Matrizen sind symmetrisch, weil die

. . N . N . N L N + . -
Massfunktionen symmetrisch sind. Wir bauen auf E ~Matrizen ein

Kac-Moody Lie Inferenz- und Problemldsesystem auf.

Ein Kac=Moody Lie Inferenz- und

keltssitze nicht gelten. Wir beweiszen

Dazu bilden wir den Mustervektorraum A der Produkbionsreseln mit

a,(

WM
o
o

113
-
£

3w
b L
in (p)* ab. Die Masse w € (n)* sind Entropien der Mustervelktorsn

aus A. Die Ersevzungen nach Def. 1 erzeugen in (

Zahlen aus [0,1]. Wir erweitern n durch abgeleit

54 N . N . 8 . n .
¥ = h™ und konstruleren in (h™}* endliche, ir

aperiodische Markorf-Ketten, d. h. nicht-monotone,

lemende Automaten {

Automat, der gegen el

7. Satz Wir setzen einen endlichen Zustandsraum
Markoff-Kette MC voraus. Durch Nepation [1] der Ersetzung. deren
- £ 3

Mass das Mindmum erzeugt, geht

Beweis: Sei M..: = min p,.(t,) das Mass einer Ableitunzsfolge und
————— £J o

Rl
M, = omax pkl(t:u) das Mass der Ersetzung in der Ableitungsfolge, das

A

durch Negation verbessert wird. Damn gilt

Das Gleichheitszeichen in der zweiten Ungleichung gilt fUr das Mass 1.
Wir beobachten jetzt abwechselnd eine vollstindige Ableitungs- und
die zu ihr gehdrende Lernfolge, und heben den Schwellwert

e (o, %} Jeweils auf das verbesserte Mass der Ableitungsfolge
L

S
[
an. Dann gibt es nach Satz 6. rationale Zahlen M., wund m 50 dass
& 34 1

= M., 1i ) =
lim =My, Hmoomo(n) o=m.

P - oo 1 - oo




.. Dazu betrachten wir

und zeigen, dass

Aus den Gl. (7.1) folgt

0% dynlty) s dp(6), o0y > £,

4
< -

dass heisst {dWm(n)} ist eine monoton nicht wachsende Folge. Um
I

Gl. (7.2) zu beweisen, geniigt es daher zu zelgen, dass
T4 / H ~
Lim (n N) = 0.
W de J J

Da unsere Markoff-Ketten ergodisch sind, gibt es eine Zahl

[47]
B
o7
£
)
=
fol
oy
[

N. 50 &
N, 50 das

&
o}
5
F
®
1

z

piJ(N; > 0,

el
@
o

Wir seweisen, dass flr Jedes n = 1

(7.3) (n+ 1N) g (1 - 2c)dmm(nN),

¢ I ekl A
(7.3) folgt, dass

o fa Sary
< {1 - {
Soid LN,

well min zum Produit und mex zur A
sagt, dass man jede Ableitung in die Hinte‘vinanderﬁusiiﬁxurg Zweler
B e

setzungen faktorisieren karm. Jetze betrachten wir nacheinander

a.) eine Ableitungs- und b.) eine Lermfolge

a.) Apleitungsfolge
Buloge

Da das Minimum mitgenommen wird, gilt fiir den ersten Zustand 1 und

dent letzten Zustand ik einer Ableitungstolge

und fir irgendeinen Zustand g

fary . TN .
P A HP = m o (n N o}
QK

Aus GL. (7.4) rolge, dass

b ]

well M (nN) g pr(n N) ist, s.o. . Weiter folgt (nach
e

il e at o s e
Auswanl der Ersetzungen und Nor

eeignecer

a4

o3




me A el
WO Wi

MC's transitiv

%{Ww

ilt

=] = M =M und m.. Tom., = = m..
a j 9 e e (91N "

Dle grossen M bezelchnen das Mass elner HErsetzungs

4]

gk 107 3 EDN - Maca Smp Dpamtome 336 de
Kleinen m bezelichnen das Mass der Ersetzung, die da

13

Kette erzeugt. Deshalb ergibt sich

qu 1st das Mindmum der Lernfolge. Weiter ist in
G &
mlln + 1N) =M {((n + 14 € N} - M in N}{(1 -~ 2¢)
+ UN) = + M “Lr(\(n 1N u,x{\(f‘. + 1)N £ N) Lo Jul SN 3]

m das verbesserte Mass der fbleitungsfolge, entweder durch Die Ubergangswahrscheinlichkeiten haben
Negation oder durch ein neues Minimum erzeugt wird. Aus A1, Grenzwert 1. Mit anderen Worten unser Kac e
folgt flir das verbesserte Mass . Problemlisesystem ist korrekt und widerspruchsirel.

= Unvollstindigheltssate gilt in unserem ht-monotonen,

.
8

Perenzsystem nicht.

I m e £87Y oy »
O ‘uleg.’\a;p{:x\n Ny + Z p
) . r o g
+, . e
cp. OM. AN +m i ‘ T (A.) - Theorien sind nicht-monot
£ P e b ] mo, i N) p }
Rt L TR ? : Y s : : 5 PRI r "
r % g widerspruchstirel und vellstindig [1]. De

7

stindigkeitssatz  gilt flr unser I

der eventuell mehrere

{ilbert's Programm vollendet.

pqu N} vorausgingen, das
grisser als das neve Minimum m_. . (n N) der Ableity £ H
’ 2 Mo ln N der Ableitungsfolge ist. Da wir die Falschheit nicht derfinieren, sind Widerspruchsbeweise

it ergibt sich (nach geeigneter Auswanl der Ersetzungen und
Normierung), dass

=2
=
o]
fis
5
9]
ot
ot
et
k]
bt
Uy
pt
B
®

nicht zuldssig. Wir fragen daher, von welcl

Quadratwurgel aus 27

S

Pigtiy Hna Widerspruchsfreiheit ist nach unseren Eprgebnissen quis

Lent 2ur

L]

heisst die Pridikatenlogik ist nicht wider-

-m_(n Nyec. Entscheidbarkeit, da

spruchsirei.

¢.) Wir ziehen Gl. (7.%5) von G1. (7.8) ab und erhalten
Literatur
+ 1INJ - M., ((n NY - M in - o) - e ;
1K Tt hd 1. C. Kuck, Non-monotonic learning automita, Verliag Ferdinand

ATY "
! - M
sy B ~

Yy PR . - e - T N N / B
Qi [ Scehdningh, Postfach 2540, D-4790 Paderborn (Fed. Rep. Germany),

934

e



Contribution to the ICHI discussion on "The
influence of computers and informatics on
mathematics and its teaching”.

(Strasbourg,25~30 March,1985)

by M. G. de Bruijn

L. Comments related to part | ("The effect on mathematics™)

1.1+ Automath

Computers influence mathematics in many ways. One of them
lies in the fact that we can learn to explain mathematics to a
computer, and in this process we may learn about how to organize
mathematics and how to teach some of its aspects.

At the Technological University Eindhoven (Eindhoven, the
Netherlands) the project Automath was developed from 1967 onwavrds,
with various kinds of activities ar the interfaces of logic,
mathematics, computer sclence, language and mathematical education.
Right from the start, it was directed towards the presentation of
knowledge by means of symbolic manipulation, with the possibilicy
to leave =ich of the work to a computer, with quite a strong
emphasis on doing things in a humanly way. One might say that it
is a modern version of "Leibniz's dream” of making a language
for all scientific discussion in such a way that all reasoning
can be represeated by a kind of algebraic manipulation.

The basic idea of Automath Is that the human being presents

any kind of discourse, how long it may be, to a machine, and that

the machine convinces itself that everything is sound. All this
is intended to be effectively carried out on a large scale, and

re

not just "in principle”.

This paper does not intend to describe the Automath system
in any detail, but rather to explain a number of goals,
achievements and characteristics that may have a bearing on the
subject of the ICMI discussion. The paper is definitely not trying
to sell Automath as a subject to be taught to all students in
standard mathematics curricula. The claim is more modest: asg
Automath connects so many aspects of logic, mathematics and
informatics, it may be worth while to investigate whether rhe
teaching of mathematics could somehow profit from ideas that
emerged more or less naturally in the Automath enterprise. The
idea of Automath is to "explain things to a machine". Students
are no machines and should be approached in a different way. But
as teachers we should know that if we cannot explain a thing to a
machine then we might have difficulties in explaining it to

students.

L.lel. A basic idea of Automath is to write in the form
of a complete book, line by line. A computer can check it
line by line, and once that has been done, the book can be

considered mathematically correct.

l.1e2. As a starting point we think of a book written entirely
by human beings. Later on we may think of leaving part of the
writing to a machine. That might be simply tedious routine work,

but also possibly the more serious problem solving (i.e., "theorenm

proving”, a branch of artificial intelligence).
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1.1.3. We should make a clear distinction between the Automath
system and Automath books. The system consists, roughly speaking,
of language rules and a computer program that checks whether any
given book is written according to those rules,

The system of Automath is mainly involved with the execution
of substitution, with evaluation of types of expressions, and
comparing such types to one another, [t is very essential that
everything that is said in a bock, 1s said in a particular context:
the context consists of the typed variables that can be handled,
but also of the list of assumptions that can be used. The system
keeps track of those contexts.

The Automath system does not contain any a priori ideas
on what is usually called logic and foundation of mathematics.
Any logical system {e.g., an intuitionistic one) can be
introduced by the user in his own book, and the same thing holds
for the foundation of mathematics. In particular, the user is not

tied to the standard 20~th century set theory (Zermelo~Fraenkel).

And the user can choose whether to admit or not to admit things like

the axiom of choice. From then on, the machine that verifies the
user’s book will be able to do this according to the user’s own

standards.

1.1.4. In an Automath book, logic and mathematics are
treated in exactly the same way. New logical inference

rules can be derived from old ones, just like mathematical
theorems are derived, and the new inference rules can

be applied as logical tools, just like mathematical theorems

are applied.

1.1.5. Writing in Automath can be tedious. All details of

arguments have to be presented most meticuously. At first
sight this might be very irritating. The questions are (1) whose
fault this is, and (11) what can be done about it,

The questions are related. Part of the negative impression
that the length of an Automath book makes, is due to the fact
that no attempt was made to "do something about 1t" at the stage
of the design of the general system. This is based on the
philosophy that generality comes first, and that adaptabilicy
to special sitvations is a second concern,

The reason why Automath books become so long is that we
claim to be able to handle all usual mathematical discourse,
but the mathematician has more in his mind than he explains.
Perhaps we may say that part of mathematical work is done
subconciously. Mathematicians have a vast "experience' in
mathematical situations, and that experience may give a strong
feeling for how all the little gaps can be filled. We do not
know how much of the experience is consulted subconciously "on
the spot". Moreover, mathematical talking and writing are social
activities. In every area, people talk and write in a style they
know they can get away with. Some poor or incomplete forms of
discourse are so wide~spread that it seems s1l1ly to bother about
improving it; certainly it is a thankless rask to try.

The answer to question (11) is that very much can be
done about it indeed. But Jjust like every user can write his
own book under the Automath system, he can implement his own
attachments to the system, Thisg may involve special
abbreviation facilities, but also avtomatized text writing,
producing packages of Automath lines by means of a siagle
command, in cases where there 15 a clear system behind such

a package,



L.1.6. Are computers essential for Automath? Not absolutely.

The computer sets the standard for what the notion

“"formalization" means. If we cannot instruct a computer to

verify mathematical discourse, we have not properly formalized

it vet. In the standard form, the author of an Automath book has

to write all the symbols one by one, and since he knows that what

he writes is correct, he would also be able to check it by hand.
Nevertheless humans make mistakes. Automath books

have been written with well over a million characters, all

typed by hand. It is hard to guarantee correctness of such

a text without the help of a modern computer.,

Lel.7. As the Automath system has no a priori knowledge of
logic and set theory, it can be used to write in a style that
might be more natural than what we see in other formalizations.
There is a wide~spread idea rhat propositional logic comes
down to manipulating formulas in a boolean algebra, a kind of
manipulation that.is either carried out by handling of formulas
with the ald of lists of tautologies (in the same way as one used
to do in trigonometry), or by a machine that checks all
possibilities of zeros and ones as values for the boolean
variables. 4 very much better formalization lies in the system of
"natural deduction. This is very easy in Automath. The
boolean bit~handling propositional logic can be done in Automath
too, but it is much more clumsy than natural deduction.,
A second option we get from the liberty of using Automath
in the style we prefer, is to give up the 20~th century idea
that "everything is a set™. There is the magic Zermelo—Fraenkel

universe in which every point is a set, and somehow all

nmathematical objects are to be coded as points in that univérse.
The particular coding is a matter of free choice: there is na
natural way to code.

lermelo~Fraenkel set theory is quite a heavy machinery to be
taken as a basis for nathematics, and not many mathematicians
actually know it. An alternative is to take "typed set theory",
in which things are collected to sets only if they are of the same
type: sets of numbers, sers of letters, sets of triangles, etc.
It may take some trouble to make up one’s mind about the question
what basic rules for typed set theory should be taken as primitives,
but if we just start talking the way we did mathematics before modern
set theory emerged, we see that we need very little. Anyway, in
dutomath we have not any trouble at all to talk mathemarics in a
sound old~fashioned way.

Yet, if someone still wants to talk in terms of Zermelo~

Fraenkel universe, Automath is ready to take it too.

1.1.8. One of the advantages of Automath not being tied to
any particular system for logic and set theory, is that we
can think of formalizing entirely different things too, again
in a natural style. as an example we may think of the
algorithmic description of geometrical constructions like
those with ruler and compass. Although 1t has not actually
been produced, we may think of a single Automath book
containing legic, mathematics and the description of ruler
and compass constructions, with in particular the description
and correctness proof (both due to Gausz) of the regular 17~gon.
This description will be quite different from coding the
construction as a point in the Zermelo~Fraenkel untiverse.

We might even think of a robot equipped with ruler, compass,

%+



pencil and paper, who reads the details of the construction

from the Automath book and carries them out in the way (ausz msant.

1.1.9. Yany parts of science are patchwork consisting of pieces
of theory, connected by rather vague intuitive ideas. Ever since
the last part of the 19~th century it has been one of the ideas
of the mathematical community that mathematics should be
integrated: all parts of mathemarics sub~domains of one

single big theory. The patehwork picture still applies to wmost
physical sciences, but also to several parts of the mathematical
scilences. One such part is informatics.

It seems to be a good idea to integrate informatics into
mathematics, at least in principle, And, as in the case of
geometrical constructions, Automath is a good candidate for
describing this. It is possible to write an Automath book
containing: logic, mathematics, description of syntax and
semantics of a programming language, and particular programs
with proofs that the execution achieves the solution of
particular mathematical problems. One might even think of
going further: description of the computer hardware with proof
that it garantees the realization of the programming language
semantics. Or directly, without the intervention of a
programming language, that a given piece of hardware produces
a result with a given mathematical specification.

Needless to day, this kind of integrated theory will
always contain a number of primitives we have no proof for,
but it will be absolutely clear in the Automath book what
these primitives are.

=y
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1.1.10. One thing people like in Automath, and other people

strongly dislike, is the way Automath treats proof as if

they wers mathematical objects. This is called "propositions

as types'. As the type of a proof we have something that is

immediately related to the proposition established by that proof.
One should not be worried about this. Automath does not

say that proofs are objects, but just treats then syntactically

in the same way as objects are treated. This turns out to be

very profitable: it simplifies the system, as well as its

language theory and the computer verification of books. A third

case where things are treated as objects is the one of the

geometrical counstructions we mentioned in 1.1.8.

Lel.11l. In standard mathematics, most identifiers are letters of
various kinds, possibly provided with indices, asterisks and the
like. And then there are the numerals, of course. We have learned
from programming languages however, to use arbitrary combinations
of letters and numerals as identifiers, (with restrictions
like not to begin with a numeral). We do the same thing in
Automath, thus having the possibility to choose identifiers
with a mnemonic value, like "Bessel", "Theoreml 37",
"commutative, This certainly helps to keep books readable.

In contrast to programming languages, the Automath system
does not have the numerals 0,1,442,9. One can introduce them
as identifiers In a book containing the elements of natural
number theory, taking 0" and “suce’ (for "successor") as
primitive, and defining li:=msucc(D), 2:=guce(l), .., 9:msuce(8),
ten:=succ(9).After having introduced addition and multiplication
we can define things like thirtyseven:usum(prod(B,ten).7),
but the AUT system has no facilities to write this as 37.

This decimal notation might be added as an extra (it is one of



the possible "attachments" mentioned in 1.1.5).

l.1.12. One of the basic aims of the Automath enterprise was to
keep it feasible, This has been achieved indeed: considerable
portions of mathematics of various kinds have been “translated"
into Automath, and the effort needed for this remained within
reasonable limits. If we start from a plece of mathematics

that {s sound and well understood, it can be translated. Tt

may always take some time to decide how to start, but in the
long run the ctranslation is a matter of routine. As a rule of
thumb we may say there is a loss factor of the order of 10 it
takes about ten times as much space and ten times as much time as
writing mathematics the ordinary way. But {t is not overimportant
how big this loss factor is (it would not be hard ro raduce it
by means of suitable atrachments, adapted to the nature of the
subject matter), What really matters is that it does not tend

te infinity, which happens in manv other systems of formalizing
mathematics. The main reason for the loss factor being constant
is that Automath has the same facilitvies for using definitions
(which are, essentially, abbreviations) as one has in standard
mathematics, The fact thar the system of references is superior
to what we have in standard mathematics, makes it possible

that the loss factor even decreases on the long run when dealing

with a large book.

L.l.13, Another feature that makes Automath feasible is that we

need not always start at the beginning: we can start somewhere in
the middle, and 1if we need something that we have not defined, or
have not proved, we just take it as a primitive (primitive notion

or axiom) and we go on. We can leave it to later activity to

replace all these primitives by defined objects and proven
theorems.

This kind of tactics was often (abeut 30 cases) applied
at Eindhoven by students (mathematics majors). It usually rook
the student not much more than 100 hours work to learn abour
the system, to translate a given piece of mathematics, to use
the conversational facilities at a computer terminal, and to
finish with a completely verified Automath book containing the
result. In order to give an idea of the subjects that had to be
translated we mention a few: (1) The Weierstrasz theorem that
says that the trigonometric polynomials lie dense in the space
of continuous periodic functions, (ii) The Banach~Steinhaus

theorem, (iii) The first elements of group theory.

lalsl4. Of the more extensive books that were written in Automath
we mention two. The first one 1s L.§. Jutting’s complete
translation of ¥, Landau’s Grundlagen der Analysis. In order to
test the feasibility of the system, the translator kept

himself strictly to Landau’s text, rather than inventing

some of the many possible shortcuts and improvements that

would make the translation easier and shorter., The second

one we mention here was by J.T. Udding, who wrote a new text
with about the same results, muich better suited to the

Automath system, both in its general outline and in

its derails. The gain over Landau‘s text, in space as well

as In time, was roughly 2.5.

1.1.15. One of the ideas of the Automath enterprise was to get
eventually to a big mathematical encyclopaedia, a data bank,

containing a vast porrion of mathematics in absolutely

b¢



dependable form. This is a thing that would take many hundreds
of man years (thus far the Automath project took something like
40). But the idea is feasible, Most of the students mentioned
in 1.1.13 used the Landau translation (see 1.1.14) as a dara

bank, and that way they added to the bank.

1.2, Standard mathematical language.

In close connection with Automath a language was studied
with the same level of precision, but closer to ordinary
language as written by mathematicians, at least when they
are very precise. Let us call it MV (for "mathematical
vernacular'}, !V is the familiar mixture of words and formaulas
in which some of the letters and formulas play a syntactic role
Jjust as if they were ordinary parts of a sentence, like subject,

direct objecr, etc.

l.2.1. 1t is possible to formulate logic and the foundation of

mathematics in terms of the grammar of such a language. The grammar

of MV can be kept quite simple, since all sorts of idiom of natural

language vcan be caught in terms of definitions in the book. This
way we do not need to distinguish more then the following four

grammatical categories: (i) sentences, ({i) substantives, (i11i1)

names, (iv) adjectives. Fach one of these four can occur as a group

of words, but also as a mathematical symbol, a formula, or a
mixture of words and formulas., The four categories correspond to
the four kinds of definitions that mathematicians give. In

the definitions of the first kind the new term i8 a sentence

(like:"we say that p divides q {f ..."™), in the second case

o

:j.

it is a substantive ("a square is a «»"), in the third one
4 name (... is called the n—th Bessel coefficient), in

the fourth an adjective (a sequence is called convergent if .,.).

1.2.2. The difference in syntax is not the only difference
between Automath and V. The main difference is that in Automath
each line contains exactly all information about how the stated
result follows from previous lines: all theorems and inference
rules which are used are mentioned, and their role is made
absolutely clear. In MV such indications do not belong to the
language itself, but can bé considered as having been written
in the margin. In other words, in Automath they are language,
in MV meralanguage.

One can use MV as a stage in the process of writing in
Automath. If the steps in IV are small, and if the
indications in the wargin are sufficiently clear, the

translation into Automath is a routine matter.

1.2.3. Inspecting textbooks in mathematics on school level
one finds very little MV, Most of the texts are written in
metalanguages of various kinds. Quite often, the intersection
of the text with its own representation in MV is little more
than the mathematical formulas, i.e. the part that was

formalized hundreds of Vears ago.

1.3. Effects on mathematical education,

The question was: "How do computers and informatics

influence mathematical ideas, values and the advancement of



mathematical science?”". There will be all sorts of influences,
like the taste for constructivity, and, as far as education is
concerned, the new possibilities to let students have their
own stimulating discoveries with the aid of a computer. But
the influence we get from the fact that we can explain
mathematics to a computer, should not be forgotten. We shall

Look into this in some detail.

t.3.1. First, there are the philosophic aspects. Is it really

mathematics we explain to a computer? Or is it just some piece
of code we happen to interpret as mathematics? How arbitrary

is our interpretation?

There is no definite answer to such questions. If we have
to compare a formal system to something that is partly intuitive,
then the comparison cannot be completely formal.

For example, in the partially intuitive mathematical world,
the question whether the mathematical objects exist in a platonic
reality, might seem fto make some philosophical sense. But if we
consider a completely formalized version to be explained to a
computer, such a question cannot even be formulated. Some people
will react by saying that this definitely puts an end to platonism,
others will say that it shows that no formalization will ever be

complete.

1.3.2. Having to phrase our mathematics in a very definite language,
we have to make clear what part of ordinary mathematics belongs

to the language and what part is metalanguage. llany paradoxes

arise just by confusing language and metalanguage. Making the

distinction will certainly help to understand mathematics better.

1.3.3. Today, most mathematicians have the idea that the
foundation of mathematics is too hard to learn for a
non~specialist, and can only be taught to students who Know
mathematics already. This means that the foundations of the
building of mathematics are laid only after the building is
completed, thus clearly demonstrating that the foundations
were unnecessary. The teaching of the foundations at that late
stage assumes the students to be acquainted with mathematical
ideas (the role of definitions, axioms, theorems) for which one
expects the foundations to give explanaticns. On a lower level,
the same thing happens in the boolean propositional calculus:
it is a mathematical system which is erected by standard
mathematical techniques, and nevertheless it is a popular

belief that it can explain what logic is, what proofs are,

1.3.4. Outsiders would be very surprised to hear that
mathematicians are so vague about their own foundations,
even now, towards the end of the 20~th century, that great
century for logic.

If one really takes the task seriously to write (like
it can be done in Automath) the foundations of mathematics up to
a level such that the working mathematician would be able to
build on it, ome will see that it is not at all that hard,
A sound basis can easily be given at the age of 17 to 19. For
many questions about the relation between mathematics and
computers (questions like program correctness) it is very
essential to have such a basis.

0f course, the basis need not be given itself in a formal
language. It can be quite informal, but the teacher should know

the formal background.

L



The method of natural deduction is a very good candidate for
explaining the foundation of mathematics. It opens the possibility
to treat the introduction and elimination rules of the propositional
calculus in exactly the same style as those of the predicate
caleulus. Moreover, it can be pointed out to the student, by
means of an informal metalanguage, what is a proof, an axionm,

a definition, an assumption, a theorem. And it opens the way to
understanding notions that cannot be properly explained at all
on an informal basis. In this connection we mention the notion of
existence, which has remained a mystery to many generations of

mathematicians.,

1.3.5. A foundation course at an early stage should be
recommended. This is not only because of the computer;
another lmportant reason is the disintegration of the
teaching of geometry.

Traditionally, school geometry used to give the initiation
into mathematical reasoning. Other mathematical subjects used to
train the art of calculation, not the art of proof. But geomeLry
had {ts drawbacks: it was hard and unattractive to keep the
reasoning pure, i.e., to remove every appeal to what we learn by
observation of the physical world. In particular this refers to
the matter of order on the line and in the plane. Another drawback
was that quite often the arguments failed in some exceptional, often
trivial, situvations, and that these had to be treated separately. And
a satisfactory treatment of the axiomatic basis was too difficult to
be treated at school. And, lastly, the logical content was so limited:
no predicate calculus, no quantifiers, apart from a few cases where
sets played a role (the geometric loci). On the other hand, geomerry

showed a wonderful interplay between intuition and argumentation.

o
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Possibly because of the drawbacks mentioned here, traditional
school geometry was almost entirely discarded in most countries,
and replaced by the study of "structures’, called "new math", In
these new subjects there was hardly a chance to train the art of
proof, and now we are left with the sad situation that upon entry
of the university, students, even mathematics and computer science

majors, are very weak in this respecr,

1.3.6. In many parts of the new nmath, in particular in algebraic
areas, 1t is quite hard to draw the boarderline between mathematics
and metamathematics (cf., 1.2.3). And reasoning about sets, with or
without Venn diagrams, is often on a low logical level, In particular
it gives hardly any opportunity for handling variables. It has to be
admitted that the innovations in mathematical education have given us
quite some progress, both in insights as in practical applicability,
but the price we paid by neglecting the art of proof may have been

too high.

1.3.7. Hathematics majors on the university level usually
learn to handle predicate calculus in courses on the
foundation of analysis. At least they learn it fmplicitly,
on a practical basis, and directly tied to the formalization
of notions with an intuitive background, like uniform
convergence.

Needless to say this kind of material will become gradually
harder now that the students enter the university with such a
poor preparation in the art of proof.

Another matter is that it is no longer clear whether
informatics students should take courses in the foundation of

analysis. There 1s a danger that in the near future the anly

¥



intersection of the curricula for mathematics and informatics

will be some kind of simple calculus.

1.3.8. As to teaching the art of proof, it may be a good

idea not to tie it to geometry, and not to any new subject
like combinatorics, sets or algebra, but to take it as a
subject in its own right, in the form of an elementary logics
course.

As a kind of experiment such a course was tried for computer
science students, right from school, at the Technological
University Eindhoven since 1982. It seems to have been successful
in teaching the structure of proof by means of explaining the
rules of the game of propositional and predicate calculus. The
basis was natural deduction (cf. 1.3.4). Only after rhe building
of logic was erected, it was shown how the notion of valuation
gives the link with the boolean algebra aspect.

The course started with a chapter on syntax, invelving
the study of parentheses, representation of formulas as trees,
infix netation, bound variables, lambda calculus notation,
substitution, etc. It turned out to be illuminating to take
the trees as the central theme, in particular in connection

with substitutions in formulas with bound variables.
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n the treatment of predicate logic, predicates were taken

to be defined on sets, and in that respect the course took a

naive peint of view. It was not attempted to develop the language

of mathematics in all fts glory: that would prohably have raken

twice as much time as could reasonably be devoted to the course.
This introductory course on logic took not more than 18 hours

teaching, with about 246 hours added for excercises.

in a sequel of this course (again 18 hours teaching plus

excercises), applications were made to mathematical fundamentals
{treatment of setg and mappings, the system of natural mimbers,
the method of induction, recursion and definition by recursion),
but also to a rnumber of subjects on the boarderline of mathematics
and informatics. These were mainly: the terminology of the free
monoid and its relation to language, contextfree grammars

in a mathematical setting (with terminals and non~terminals),

and the relation of this with the Backus~Naur form.

1+3.9. A course like the one described in 1.3.8 wight be
recommended as the body of the intersection of the curricula
of mathematics and informatics.

What might be added to the intersection is a mathematical
description of what is a computer, a program, Input, output,
program specification and program correctness. At that stage
it is better not to go into details of a programming language,
apart from the description how such languages can be defined

by recursion.

1+3.10. Parts of the logics course, like syntax and
propositional caleulus in natural deduction, aight be
shifted to the school age (16~18 vears). The natural
deduction would be very appropriate for showing what a
proof is, and it would raise the reaching of logic above
the "trigonometry level” (cf. 1.1.7). And lambda calculus

might really help to make school mathematics easier.

1.3.11, Some of the material mentioned in 1.2 was taught “{\

N
at Eindhoven since about 1977 in a course called "Language

and structure of mathematics", for those mathematics



majors who wanted a teachers certificate in mathematics.
tuch of it would be fit for all mathematics majors at an

early stage of their university career.

References on Automath:

N.GC. de Bruljn, A survey of the project Automath.

« Curry: Essays in combinatory logic, lambda caleculus

and formalism, Academic Press 1980,

L.5. van Senthem Jutting, Checking lLandau’s "Grundlagen' in

the Antomath system, lathematical Centre Tracts nr.83,

Amsterdam 1979,
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The effect of computers on the teaching of mathematics students
D.L.3alinger

School of Mathematics, Leeds University

Students of mathematics will seek employment in a large number of
sectors. In most of these, they will be expected to be able to
use computing packages of one kind or another. Some will be inp
the business of ¢reating such packages. Those concerned with
research in maths, science and engineering will need to
understand how such packages work and what their limitations are.
More specifically, some will need to understand the limitations
of computational accuracy, and the posaibility and effectiveness
eof algorithms to solve problems.

On the other hand, certain routine skills for which
mathematiciana have in the past been reguired will come to be
handled by machine. Packages which perform the routine
computations in statistical analysis are widely available (8SAs,
3PSS, MINITAB, GENSTAT). Symbolic integration is avallable
(MACSYMA and REDUCE). but is not 8¢ established. Numerical
solution of differential and difference equations has opened up a
huge field of mathematics but has rendered some analytical
technigues redundant.

What implications do these obaervationsa have? I shall set some
cut below and indicate how far our practice at Leeds conforms to
them.

1. Tegoning programming to maths stugents

This 138 a necessary prerequisite to the more theoretical ABRECLS
of computing. 1 feel it does not greatly matter whether a main-
frame or micro computer is used, nor do I think it matters mucnh
which high-level language is used. Some mathematica departments
teach BASIC on the grounds of its simplicity: it is important for
4 mathematics student to get quickly to a atage where she or hne
can use Lhe machine for calculations. However many versions of
BASIC are deficient in structural complexity. We have chosen to
teach PASCAL on a mainframe computer (with good terminal
facilities - VDUs and a fast reaponse time allowing inter-active
computing) and have achieved most of the objectives of the
course.

Experience at Leeds and elaewhere has shown that the initial
stages of learning to use a compurer reguire a great deal of
manpower. [t 18 important to have enough staff present during
practical sessions so that problems can be guickly dealt with.
Otherwise many students will give up.

<. Theoraticai computing

wWhat courses should be incorporated in the curriculum of a
mathematics student to take provide a theoretical basis for the
uge of computers? Here's a suggestion. In the first year a course
teaching how to compute in a suitable high-level language,
followed by a course on computability including a simple
mathematical model of computers, recursive functions,
unsolvapility of the Halting Problem, computational complexity.

Lavter courses couid contain more on these topica, inciuding a
form of Godel's incompleteness theorem, as well as automata
theory, denotational and operational semantics, theory of
correctness of programs, feasibility and intractibility. (Some of
these courses are already available as optiong within our
mathematics degree scheme. )

3. Difterantial equarions

One of the areas wnere most fundamental change has taken place is
in the solution of differential eguations. One can question how
much of the traditional theory should still be taught. Eguations
of which no analytic solution is available can be sclved
numerically (though one can get a 'solution’ which is not a
solution of the original equat ion.) These developments seem to
reinforce the need for greater theorsetical underpinning of the
numerical methods (convergence of numerical process, closeness of
solution to that of the given differential eguation). There is
also a need for a firm basis of a qualitative or geometric
understanding of the type of sclutions possible and the Way 1n
which they vary with the varying of parameters or initial
conditions. A course which covers both analytic and numerical
theory has been running for a number of years at Leeds.

4. lse of packages in statistics teaching

This has changed the nature of statistics Leaching in our courses
at Leeds, both to specialist mathematicians and to other
students. We use one or Lwo of a number of commercially
available packages, principally MINITABR and SAS. Students can
carry out statistical analyses on data they either type in or ger
the package to generate. Part of the Leaching is to indicate the
limitations of the packages and the dangers in not fully
underatanding the calculations which they can carry out. [1]

5. Use of microcomputers for iHustration

Micros are useful for classroom demonstration. Diagrama which
previously were the province of the Open University or of
commercially produced film are now avallable to the lecturer wit
a minimum of effort on his or her part. Complicated surfaces,
Fourier series, solutions of differential eguations can all be
itllustrated in a way that helps students to get intuitive i1deas
of abstract constructs. Ideally, students would be able to use
computers to produce the diagrams themselves.

6. Move 10 more project-based work

Assessaing work on computers does not lend itself to formal
examination. It seems reasonable to assess skills by something
the student produces on the machine. Mosat usefully, this can form
part of a project in scome other area of mathematics.

Aeterence

{1} E.J.Redfern, Computers. Practicals and Packages in Teaching
Statistics, Department of Statistics Technical Report No.
University of Leeds.
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. Introduction

The progress of computers has been remarkable. Ever Since
the emergence of the first computer, the use of computers has
long been restricted mostly to fast numerical computations.
Today. the extensive use of computers for non-numer:c operations

has begun in a3 vartety of applications. Such  non-numer ¢
operations in the field of mathematics include computer algebra
allowing symbolic differentiation. symbolic integration.

factorization and expansion. etc. The rapid progress of computers
has been brought about by the technological innovation of micro
semiconductor devices comprising computers. The astonishing speed
of the innovation, and thus of computers. will soon realize &
small and cheap computer algebra system as small as the present
electronic calculators or hand held computers, but with
mathematical capabilities as powerful as those of average first
year college students at least for the above symbolic
mathematical operations. The anticipation for technology in the
future is an inevitable consequence  of such technological
progress  as the appearance of electronic calculators. miero-
processors, personal computers. and memories which has  bheen
witnessed in the last decade.

The extensive use of SuUch powerful computer algebra systems
15 anticipated to Inevitably influence mathematical education.
For instance. the extensive use of electronic calculators hasg
already influenced one Part of mathematical education. f an
electronic calculator is used, big numbers do not have to be
calculated by hand. Thus. it 1S now well known that the teaching
of  logarithms has changed due to the emergence  of  electronic
calculators. Namely. a great part of the course on logarithis
used to  he spent teaching how to calculate big numbers using
logarithms. VWhen multiplving, for example. what uased to he
taught was how to use a table of logarithms. how to get an tndex
and a mantissa for addition. and how t0 get the answer Us1ng the
table of logarithms. In the present curriculunm, this sublject is
not included. In addition. slide rules are scarcely used now.

As  seen from this example, technological innovation can
£asily influence mathematical education. Therefore, 1t 15 wvery
tmportant to  consider the foilowing questions regarding the
future of mathematical education.

What influence will computers with the above capabilities have
on mathematical education 2

How will mathematical education be changed by computers 7 (Or,
how wil]l it have to he changed 7

This paper attempts to discuss the above questions and lead
to some basic answers to those questions.
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2. The state-of-the-art of computers today and their future

Before discussing the questions concerning computers and them operate in computer systems larger than minicomputers. Such

mathematical education. it i1s essential to establish the basis of computer algebra systems include MACSYMA, REDUCE.A 5AC~2:
discussion. Therefore. this chapter 15 devoted Lo review:ng the SCRATCHPAD.  SYMBAL, etc. Their capacity to manipulate algebraic
’ algorithms is great [2]. |In personal computer systems, on the

state-of-~the~art of computers today 1 view of mathematical
education. It also attempts to explore the future of computers In
the same view.

other hand, a few computer algebra systems have been developed.
Among them, muMATH is well known.

2.1 The state-of-the-art of computers today The capabilities of these computer algebra svstems include
the following operations [31.

Today's computers can be divided Into the following three

Classes according to their size. and Lhus their capabilities. rearrangement of terms and symbols

)
) finding common terms
) simplification of terms, e.g..
X+2X=3X, X+0=X, X/1=X, etc.
4) substitution of variables by numbers or other expressions
5) symbolic differentiation
6) expansion of polynomials

by

1} mainframe computers
11} minicomputers
1) personal computers

It s noted that rapid recent technological innovations tend to A o : ; oy
blur the boundary of the classes by extending the capabilities of 7) simplification of rational functions
computers In each class. 8) finding the G.C.M. of polynomials

8) calculation of matrices and determinants

Mainframe computers are usually used as central machines in 10) factorization of multivariabie polynomials

computer  centers. They are shared by a number of users as time 11) symbolic integration

sharing systems. Minicomputers are usually shared by a smaller 12) calculation of limits, e.g.,

number of users, e.9.. ten to fifty. On the other hand. personal g ~2 -

CompuLers are cheap enoush for an individual to buy. Computers in Lim(X+1)/5inX™ =X " +X, etc.

this class are mainly for individual use. It 15 noted that a new X0

class of computers to be categorized between 11) and 111) has 13) summation of (infinite) series, e.q..
recently emerged. The computers in this class are called super o, n{n+1) & { ; (.
personal computers or work stations. and they can SUpport several 2:\£'z PO 25:‘73 = g(g)zz~z~
users at a time. L - 2oy=r b

14} solving some differential equations symbolically
18) soiving some integral equations symbolically

16) handling some special functions

17) Laplace transtorm

Let us now review the state-of-the-art of computer s5vstems
assoclated with mathematics. Computer processing associated wilth
mathematics includes

i) numerical computations. 18) series expansion or expansion by continuous fractions of
i) non-numerical computations, functions )
P11}l computer graphics. 19) graphical images of functions

In addttion to the above operations, some of the s5ystems
feature a facility which allows a user to make his own program to
comparatively well known. Thus. this class is not reviewed in combine the basic system facilities for extensive operations. For
detail 1n this paper. instance, REDUCE supports a PASCAL-like language, RLISP (4], for
such a purpose. These computer algebra systems have already been
used extensively in physics and engineering as computational
tools. At the same time. they can be used in mathematical
education as thev are now.

The first class of Processing can be performed by any of the
classes of computers given above and their performance 15

The second «class of processing includes computer algebra.
According to {11, computer algebra is defined as a part of
* computer science which designs. analyzes. implements and applies ®

algebraic algorithms. This 1s a rather broad definition. A .
computer algebra system i1s a computer system in which algebraic computer ~graphics are used widely for CAD (Computer —Alded

algorithms are implemented. The system can also be used for Design) in the field of engineering  Such systems allow a fine
formal algebraic manipulations. display of two or three dimensional graphic images and editing of

It is reported that to date about 60 computer algebra

systems have been developed throughout the world [21. Most of *» It is reported that REDUCE has recently been implemented in a

super personal computer using CP/M-68K as its operating system
[61.
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the images for design. |n addition. simpler and cruder graphical
tmages can be displayved by recent personal computers.

2.2 The future of computers

The major factors which determine the capability of
computers are operational speed and size of memories avallable.
In this section. the technological trend of components for small
computers IS reviewed in order to consider their future. The
development of small computers is anticipated to have a4 wvital
influence on mathematical education. because such computers will
probahly allow students to manipulate algebraic expressions with
the ease of calculation of today's electronic calculators.

Fig. 2.1 shows a historical review of the number of
transistors integrated in a chip. [t shows that the number of
transistors in ICs (Integrated Circuits) and LSls (Large Scale
Integrated Circuits) grew twice a vear during the early stages
and  at  present 1§ still 9rowing twice every two years. ‘he
consequence of this growth is a reduction in price, at an annual
rate of 80%. as shown in Fig., 2.2, On the other hand. the
operational speed of microprocessors has been increased
exponentially as shown in Fig., 2.3. And also. the integration of
MICrOprocessors has grown as shown tn Fig., 2.4, Therefore., Fig.
2.3 and Fig. 2.4 show that from 1972 to 1980 microcomputers were
improved 100 times in their integration and 100 to 1000 times in
thelr speed. From these figures. 1t may be concluded that the
performance of microcomputers was tmproved about a million to ten
thousand times in one decade.

As 15 obvious from these figures, one characteristic of the
astonishing growth of computers is that the growth has been
accompanied by lower prices as well as higher performance. There
t5. 0f course, 4 saturation phenomenon for every technologica
innovation, $0 that the future cannot be predicted by a simple
linear extrapolation of the past. Nonetheless, even after
compensating for the possible saturation for this innovation. it
ts still likely that the innovation will soon realize a computer
with a size smaller than today's personal computers but with
capabilities as powerful as todav's minicomputers. If this
prediction comes true. an individual will be able to have on
hissher desk such a computer algebra system as is operating in
today's mintcomputers.

In addition., a lot of research in many countries 15 now
directed towards the development of fifth generation computers.
This type of computer 1s anticipated to provide superior
capabilities to manipulate symbolic data. Therefore, if such a
computer 1s realized, the above prediction to have a small and
powerful computer algebra system will be more likely.

From all the evidence. It 1s now concluded that a powerful
and cheap small computer algebra system will probably be produced
In the near future.

3. The basic purpose of mathematical education

In this chapter. let us consider the basic purpose of
mathematical education as this forms the basis of the entire
discussion of this paper.

The basic purpose of mathematical educat:on may bhe divided
Into two obljectives, |.e.,

) acquisition of mathematical knowledge and computational
kKills.
1) acquisition of the capacity for mathematical (logical)
hought .

It 15 noted here that the two objectives are not acquired
independently but probably obtained through the entire process of
mathematical education. The classification made above s based on
what <¢an be obtained after mathematical education.

The first objective includes:
1) the mathematica Knowiedae and computational =il which are
often used in daily life and thus ential for evervone.
i) the mathematical knowledge and computational skills which
are necessary to pursue higher educat:on and thus essential only
for those concerned,

The characteristic of this objective {s that the contribution of
an instructional LtOPtC to the acquisition of a knowledge or a
skill 1S generally clear. For instance. g topic on  quadratic
equation directly contributes to the knowledge of  the equation
ttself and to the computational sSKiLL required to solve 1t

For the second objective,. on the other hand, the
contribution o©f a topic is pot as clear as in the f{jrst
objective. Rather It may be stated that a tople  does  not

contribute directiy to a particular goal but that the second
objective is naturally fulfilled through the experiences of
solving many exercises while learning mathematics systematically.

As 1s now clear, the purpose of mathematical education
ttself is multifold. Therefore. the differences between the
PUrposes must be rigorously taken into account when considering
the influence of computers or the methodelogy  of introducing
computers.

In addition to the differences between the PUrposes,
students’ ages and their educational environments are also
varied. Namely, the multiformity includes

-
1) elementary education, Tk
11} secondary education. e

L1} higher education.



Moreover., ti1) can be divided into scrence  and  engineering
courses (math. major and non math. major). and |iberal arts.,

Therefore, the multiformity of education has a tight
relation to the influence of computers or the methodoliogy of
introducing computers. In practice. there are a variety of

problems that have to be carefully considered, taking account of
each educational environment. However, further discussion on this
problem 15 not pursued in this paper.

4. The influence of computers on mathematical education

The possible influence that computers will exert on
mathematical education will be so multifold itself that it 1S not
easy to predict the influence perfectly now. Many experiments and
theories must be accumulated before an answer can be found. As an
initial approach, therefore. this section is devoted to poInting
out the fundamental changes which computers will introduce in
mathematical education and considering how to cope with them.

The changes which computers will bring in mathematical
education can be divided into

1} changes in the methodology of math. education.
11 changes in the topics taught in math. education.

These two categories are not independent but related to each
Gther. For instance. 1f a topic¢ 1s changed. the corresponding
methodology must be changed. However, the two categories are
different In whether they directly influence the topic.

Changes in the methodology of math. education

Many CAl (Computer Assisted Instruction) systems have
already been tested in actual educational environments, in
particular., a representative class of CAl svystems. the drill and
practice mode. 15 now extensively used. The results show that CAl
systems are especially effective in 1mproving students”  ability
to do formal calculations and in helping students to understand a
new concept or topic by the use of graphical images.

This type of application of computers will be greatly
increased in mathematical education. If computers are used as CAl

* Systems more extensively in this way. the methodology of
mathematical education will inevitably be changed. Namely. the
conventional methodology whereby a teacher teaches everything by
him/herself will be replaced by a new methodology whereby the
teacher can selectively use computers for a particulsar topic or a
Situation in which computers are very effective. Therefore. it
will be necessary to establish a new methodology of using
computers most effectively in mathematical education in order to
Q teach what has been taught without computers. That 15 (o say.

n

L3

considerations must be made as to how computers will
intreoduced. for which topics. under in which sort of situation,
and what effects can be obtained. etc.

it 15 noted that most of the CAl svstems which have been
developed so far are destgned for the firs objective of
mathematical education which was given  in section 2, TLel,
acquisition of mathematical knowledge and computational Skills.,
On  the other hand. few Cal systems have been developed vet for
the second objective, i.e.. acquisition of the capacity  for
mathematical (logical) thought. The last fact arises because the
methodology to develop the second obJective 15 not explicitly
established. Therefore, it 15 concluded that we can not fet
computers replace a greater part of what a human teacher Hhas
taught untii the methodology for the second objective s
explicitly established and a Cal System based on it is developed.

Changes in the topics taught in mathematical education

What to teach is determined by the demands of societv. As
computers are used more extensively and become  more mportant .
the demands of society change. Therefore, there may be an
increase  in: 1) the demand that computer orirented mathematics
should play a greater part In mathematical education. Such
computer oriented mathematics includes discrete mathematics,
algorithms, etc. It is noted that discrete mathematics is def ined
here in a rather broad sense to include sets. graph theory,
algebralc structure. boolean algebra. data structure. etc. The
teaching of algorithms includes teaching what sort of idea is
useful for algorithmic operation for use in computers.,

Furthermore. as the capabilities of computers increase. what
can be done by computers increases.  Thus, 4 question arises: 23
can thek part dealing with topics that computers  ©an  do.  be
reduced or omitted ? 1) and 2) are extremely 1mportant as they
have a direct effect on the curriculum of mathematical education.
Therefore, these two subjects are considered in detall below.

1) Should the teaching of computer oriented mathematics be
increased ?

The mathematics used in computers is based on discrete and
finite numbers. It is different from such mathematics as
differentiation or integration which are generally taught in
senior high school or the first year In college., The latter type
of mathematics is based on continuity and infinite numbers.
Therefore, discrete mathematics has been taught in higher
education in computer related fields. In order for computers to
advance further, a larger number of scientists and engineers who
have mastered such computer oriented mathematics will be needed
immediately. Therefore, it is obvious that the part on computer
oriented mathematics will have to be increased in computer
related fields.



On the other hand. ‘as computers are used more extensively,
opportunities for non-computer-specialists to use computers will
greatly increase. Then. a question arises: should the teaching of
computer oriented mathematics also be increased for those people
?7 In order to answer the question. it Is necessary to consider
how computers will develop in the future.

One of the most difficult problems that computer science has
been facing is the low productivity of computer software. There
1s even a prediction that all the people on the earth will have
to become computer programmers in the near future to meet the
demands for software if computers increase in number at the
present rate. Thus. it is firstly necessary to increase the
number of software engineers to increase the productivity. With
regard to this, there 1is the idea that computer oriented
mathematics should be taught to people in non-computer-majors so
as to make them programmers. This idea is not only effective but
necessary to cope with the shortage of software engineers in the
short term. However, is 1t still effective and necessary in the
long term ?

One of the major reasons for the low productivity of
computer software is believed to be the difference in the way of
thinking of humans and computers. It is often said that computer
are still In their infancy. Therefore, a lot of research has now
been directed toward the development of a new type of computer
which can be programmed much more easily. In addition. research
to make software into parts, like the electrical parts used in
assembling a radio. has been making progress.

In the long term, the successful results of such research is
anticipated to greatly improve software productivity. At the same
time. this implies that computers can be used or programmed by
those who do not know computers very well. In essence, this sort
of goal must be reached for the future of computers.

Therefore, it is concluded that, in the long term, a great
part of computer oriented mathematics will not have to be
included in the general mathematics curriculum as long as the
above research is successfully continued to improve computers.

2) Can the part devoted to topics that computers can do. be
reduced or omitted 7

As considered in section 2, the progress of computers and

their capacity to do computer algebra in particular. is
ashtonishing. Therefore. there arises the question: how can
computer algebra systems be introduced into mathematical

education ? For instance, most of the computer algebra systems
can easily calculate differentiation symbolically. Then. can we
let computers do the calculation and not teach differentiation at
all 7 Or. on the other hand. shall we not let students use
computers when differentiation is taught ?

To answer these questions. it is necessary to consider the
questions in the light of the basic objectives in mathematical
education which were discussed in section 3. At first glance, it
seems that computers can replace computational skills. For
instance. why not let the computer calculate differentiation all
the time If differentiation is necessary 7 Why should students
spend $so much time practising tedious calculations 2?2 Why not
finish teaching differentiation altogether by simply teaching the
definition ? The progress of computers is SO fast that a small
computer algebra system will soon be produced as seen I section
s

However., the above idea contains a crucial problem. For
instance., can a student understand differentiation well simply by
learning the definition and how to use the calculating machine 7
Can  he/she really understand it without making efforts to solve
many exercises by hand 7 Obviously, the answer is negative. The
reason is the same when students are not allowed to use
electronic calculators when learning addition. subtraction.
multiplication, division, etc.

Then, another question arises: isn‘'t there any way in which
computer algebra systems can be effective in mathematical
education ? For example, when learning indefinite integration, is
1t essential to master complex expansion into partial fractions

or tricky transformation of wvariables in order to learn
indefinite integration ? As is obvious. such operations are not
S50 essential to learn integration. It is noticed that when

learning a topic there are two things which differ in nature:
those which are quite essential for the topic., and those which
are not essential but necessary as tools to understand the topic.
The expansion and transformation introduced above belong to the
latter. Therefore, in the case of the latter, there is a way in
which computers can be effectively used. since these are not
topics which have to be learnt now but things which have already
been learnt. Consequently, It 1s now clear that when a student
is learning, there are essential things which cannot he replaced
by computers and inessential things which may be replaced by
computers.

Therefore. when considering the introduction of computer
algebra systems to mathematical education in the light of the
educational environment as considered in section 3. it is
primarily necessary to make the boundary of the above two things
clear. Moreover it s necessary to examine the curriculum for
possible changes, taking account of computer algebra systems.
Finally, the development of a methodology for the effective use
of computer algebra in mathematical education and an
understanding of the effects of this methodology are necessary.
These points will be increasingly required as computers progress.
And it should be the responsibility of modern mathematicians and
mathematical educators to consider these points for the future.

In the next section. a new way of teaching by using a
computer mathematics system is presented for discussion.

U
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5. A new way of teaching mathematics
~--=- Introduction of computer mathematics systems =----

This section presents a new type of mathematical educational
model thcorporating computer mathematics systems and discusses
Its advantages. [t is noted that the discussion in this section
15 based on the assumption that cheap and small computer
mathematics systems will be produced as shown in section 2.
Namely. the discussion assumes a situation in the near future
in which every student has i computer math. system on his/her
desk and can use it with the ease of present electronic
calculators.

5.1 Method of teaching

Let us now assume that the same topics as are taught at
present are to be taught throughout mathematical education.
In particular. let us consider a situation where a topic A is to
be taught. Of course. it 15 assumed that the computer svstems on
students’ desks can calculate what Is going to be taught.

The teacher teaches the basic concepts and then the
applications of the topic A in almost the same way as
before. Hereafter, let us call the former part, ‘the basic
course’ and the latter, ‘the application course'.

During the basic course, students are not generally allowed
to use the computer system. This is due to the fact that the
use of computers for what Is being taught will hinder the
students from a deeper understanding of the topic A. Namely.
students would use the computer system instead of thinking or
elaborating a solution by themselves. However, CAl systems,
e.q., CAl systems with graphic images, that will  help
students to understand the basic concepts of the topic
should be frequently used under the supervision of the teacher.
Compared with the conventional method, more emphasis is placed
on  teaching the oprinciples or meaning of the topic A. Thus.
a longer time must be assigned to this course and students
are given more basic exercises. However, more
complicated exercises in which the complexity is not so essential
to the topic A should be reduced. As a result. a greater part of
the topic A is spent on the more basic concepts or principles
compared with the conventional one.

Let us now suppose students have to use a knowledge B which
has already been studied but Is not essential to the topic A,
In order to solve a question during the basic course of the topic
A. That is. B is an inessenttal part of the question of A. For

instance, such a knowledge B includes a complex expansion
of partial fractfons when learning indefinite integration., etc.
In this case, the new teaching method allows the students to

use the computer to solve B even during the basic course of A, if
“{and only 1f it is certain that B js Inessential to A. Namely,
L

students may use the computer to get an answer for a part
of the question and apply it to the question of A. By allowing
the use of the computer algebra systems for an inessential part
of a question even during the basic course, it is possible to
draw students’' attention to the more essential parts of the new
topic being taught. Consequently, a deeper understanding of the
topic can be obtained effectively.

Let us next consider the case of the application course of
the topic A. After the basic course. the students have understood
the basics of the topic A fairly well. The purpose of the
application course is to clarify the position of the topic A hy

applying it to more complex questions and learning the
relation of A to other topics, thereby reaching a deeper
understanding of A. During this course. students are allowed to
use computer systems not only for inessential parts such as B but
for the essential part of A to some extent. Before the computer
can be wused for A, of course, instruction concerning A's
facility on the computer must be given to the students. Such

instruction includes how to get answers to A and an explanation
about the limits. and advantages and disadvantages of the
computer algebra systems with respect to A.

A model of probiem solving by the new teaching method

tncorporating computer algebra systems 1s shown in Fig. 5.1. The
model is different from the conventional ones which do not
use computers in that computers are used for numerical
calculations and algebraic operations (43, and graphic imaging
and simulation of the obtained results (5),

This model features the following advantages. That is to
say, by allowing computers to do the work for (4) and (57,

students can solve problems more quickly and with less effort.
If the input to the system is correct. the results from the
system are generally free from the mistakes which students might
make during tedious calculations by hand. Therefore,

(i) A student can more quickly verify his understanding of the
problem. his basic Strategy, and his mathematical formulations.
Thus, if there is any mistake. he can correct it more quickly
and more easily, f.e.. he can attempt the problem again much
more easily. Due to these advantages, students can focus
their attention on more intellectual work. i.e., problem
understanding., planning basic strategy, verifying the
obtained results, etc. In addition. since students can
verify their ideas much more quickly by examining the
results. they are encouraged to study further. This leads to an
increase in students- motivations to study.

(ii) Students can try several strategies for comparison. This
sort of learning leads to a development in students® proficiency
In obtaining an optimum stragegy. I{  the calculations in (4)
of Fig. 8.1 are complicated. the learning takes too much time
and effort without computers. 50 it is impractical.



(111) Students can solve more problems in a limited time. Thus,
they can see the topic .being taught from a larger number of

viewpoints. This leads to a deeper understanding of the topic.
system as well as the algebra system. The two systems miust bhe

(1v) This new method does not hinder students from developing the Integrated effectively, so that students can perform numerical

second objective of mathematical education. i.e., acquisition of analysis of an expression obtained by the algebra svstem.

mathematical thought. Namely., what is replaced by computer

algebra systems has. In essence, little relation to the (v) The system must allow hand-writing input in addition to the

development of the objective. ordinary key-input, in order to make the system easier to use.
There s a point which must be noted when applying this

new teaching method. Namely, since the computer systems 5.2 Feasibility of exploratory mathematics

return wrong answers to {ncorrect |inputs, it is extremely

important to instruct students not to belfeve the answers Finally., the feasibility of exploratory mathematics is

from computers too much. Therefore, greater efforts must be examined. Exploratory mathematics s a heuristic educational

made to develop proficiency, in order to be able to verify the method which allows students to experimentally or tnductively

validity of the obtained results and select the right answer from discover rules or theorems by themselves using computer

& number of outputs from the computer. mathematics systems. In this way. rules or formulas are not

taught top-down. but bottom-up. Namely, students use the computer

In summary. the advantage of the new teaching method algebra system to find rules and make hypothses. Then. the

using computer algebra systems is that the method can shift the Students attempt to prove their hypotheses. A model for

focal point of mathematical education to more essential point, exploratory mathematics is shown in Fig. 5.2.

such as more emphasis on problem understanding., elaborating basic

strategies and mathematical formulations and verification of AS an example, let us consider a case where the binomial

obtained results. Accordingly. a greater amount of more essential theorem is to be taught. Before showing the expansion formula of

materials must be included in the mathematical curriculum. t1+X) ., students use the computer algebra system and expand the

expression for n=0,1,2,3,..... Observing the obtained Pascal's

In order to make full use of all the advantages of this new triangle, the students can find the rule.

method, there are several points which the computer algebra

systems to be used must feature. In addition. it may be expected that they find associated

formulas at the same time, e.q.,

¢1) The final output from the computer system i5 not always the Cﬂ

most suitable answer for the students' use. Therefore, the qlfz* = ﬂ-ré?r' t ot Lot

systems must allow students to see the important intermediate . )

results. This educational method allows students to find such rules and
verify them. :

(1) The above feature leads to a computer algebra system with

the following two operating modes. Although almost the same method could be performed without
using computer algebra systems. it would take too much time and

(1) Calculator mode: returns only final results. Students use the effort and thus, would be impractical. However, the use of

system Jjust as a computational tool. computer algebra systems will make it practical and effective.

{2)  CAI mode: provides not only final results but intermediate This method can glve students pleasure when they discover

results, explanations of the rules used to reach the final something, so that {t promotes their motivation to study.

results, etc. This mode is used when students want to understand Furthermore, the heuristic ability is extremely important not

the ~ function of the system which Is usually treated as a only for mathematics but also for any sort of scientific

black box, or when they want to use the intermediate results. research. It should be stressed here that such an abflity can be
developed by exploratory mathematics. In addtion, this method can

(111) A graphics system which allows results to be displayed from be used in the educational method Stated in section 5.1. That is,

the algebra system or to be simulated must be effectively * during the basic course, this heuristic method can be included to

connected with a computer algebra system. Thus. students can use teach specific topics.

not only the algebra system but also the graphics system. so that

they can tackle problems more easily. Finally, there are topics in which exploratory mathematics

Is especially effective. Therefore, it is necessary to select

(v} The system must allow students a numerical calculation such topics suitable for this method.
v
o



6. Conclusions

This paper considered  the influence of the progress of
computers on mathematical education. What was shown s as
follows:

1) Small and inexpensive computer systems capable of algebraic
operations will soon be produced. Thus, mathematical education
will be greatly influenced by the emergence of such systems.

2) Inevitably., there will be two types of changes brought about
by computers; changes in the methodology and changes in the
topics taught.

In the case of the former, the extensive use of CAl systems
will inevitably be influential.

As for the latter. this paper considered the necessity of
computer oriented mathematics and the educational strategies for
the material which can be handled by computers.

This paper showed:
i} Computer oriented mathematics must be increased in the short
term,
11}  An increase of computer oriented mathematics in the general
mathematics curriculum will not be necessary in the long term due
to the advance of computer technology.

ot the educational strategies, an educational model which
extensively uses computer algebra systems was presented, and the
advantages were considered.

3) The advantages of the new educational model are:

i} Students do not have to spend as much time on tedious
calculations.

{11 Instead. they <c¢an concentrate on more essential and
intellectual matters, i.e., problem understanding, elaborating
basic strategies and mathematical formulations, and verifying the
obtained results.

4) Exploratory mathematics can be utilized in the actual
educational environment by the use of computer algebra systems.
This method (s especially effective in developing the ability of
heuristics which is very important for all scientific work.

5) A revision of the curriculum will be necessary to incorporate
romputers into mathematical education.

LLike 1t or not, the extensive use of computers is bringing
about a variety of changes into our society and our daily lives.
It s remarkable to note that computers can be an effective tool
in attaining the ultimate goal of education, {f the goal can be
stated as to make a man who thinks by himself, who studies by
himself. and who, having set himself questions, can think of the

+
(Vo

way to solve them. In this sense,

effective way
urgently needed.

of using computers

the establishment of a

in mathematical

education

most
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{

S N 9¢ Hypothesis

|

A Numerical calculation

i Algebraic operation ||  .......... (4)

|

| Confirmation by computers
|

b e e “3n Graphical imaging

! Simulation

|

A 5 Rules

] . Theories

|

! Solution ) L. ... (6)

!

o P e e o e =

I Verification without
T Consideration of the validityl] .......... (7) using computers

) of solution

H
L ¥

Verified rules or
theories

indicates parts replaced by computers

Fig. 5.1 A model of problem solving by the new teaching
method incorporating computer algebra systems. ) .
{ As indicated by dashed lines, it is possible to return from Fig. 5.2 A model of exploratory Mathematics.
one point to any other.)
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The history of mathematics can be viewed ag a counterpoint
between the finite and the infinite, between the discrete and the
continuous. Greek mathematics was finite, concrete, and
specific; modern mathematics is infinite, abstract, and general,
Aristotle inveighed against the actual infinite, reflecting the
Greek cultural distaste for the incomplete form. Centuries
later, Leibniz and Newton overcame Aristotelean scruples in
proposing methods of calculating with infinitesimals. Now, after
three hundred years of Newtonian mathematics, computers are
forcing a return to mathematical preferences of the pre~Newtonian
age——~to the finite, the specific, and the concrete.

This return to our roots is not a retreat. It is, rather, a
natural consequence of increasing mathematical maturity.
Weierstrass resolved the paradox of infinitesimals by reducing
analysis to arithmetic; he showed how to interpret the infinite
concepts of calculus in terms of the finite structures of
arithmetic, Twentieth century mathematics has been dominated by
the Weierstrass synthegig-~=~a working intellectual compromise
between the finite limitations of human mental processes and the
infinite visions of human imagination.

Today we are forging a new compromise~-=or in Thomas Ruhn's
terms, a new paradigm--binding computers with mathematics,

Computers are both the creature and the creator of mathematics,

They are, in the apt phrase of Seymour Papert, "mathematics-
speaking beings.™ More recently J. David Bolter in his
stimulating book Turing's Man (43 calls computers "embodied
mathematics.” Computers restore the specific and concrete to the
ethereal world of mathematics, vet thejr very existence depends
in crucial ways on the abstract and the theoretical. &lthough
computers would never have been invented without the theoretical
support of abstract, continuous Newtonian mathematics, "the
computer specialist has asg little use for irrational numbers as
the Pythagoreans had" {4, p. 6471,

Computers shape and enhance the power of mathematics, while
mathematics shapes and enhances the power of computers. Each
forces the other to grow and change, Despite the weight of
tradition, mathematics curricula and redagogy must also change to

reflect this new reality.

Until recently, mathematics was a strictly human endeavor.
It evolved with human society, achieving a degree of universality
equalled by few other aspects of human culture. Tts ecology was
a human ecology, linked closely to science and language, evolving
as human science and language changed,

But suddenly, in a brief instant on the time scale of
mathematics, a new species has entered the mathematical
eécosystem. Computers speak mathematics, but in a dialect that is
difficult for some humans to understand. Their number systems

are finite rather than infinite; their addition is not ~
A

o
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commutative; and they gop't really understand "zero”, not to
speak of ®infinity", Nenwiheless, they do embody mathematics.

Many features of pp, €W Computer mathematics appear
superficial: notatign gyl a8 " and ** for exponentiation,
linearized expressionsg g,y fOtmulas traditionally represented by
a two-dimensional lavoutr, 4 preference for binary, octal, or
hexadecimal representayqions ©f numbers, and a new action-oriented
meaning to the "equalgw® 4iyn. Some variances are more
significant, and move gigricult to assimilate into traditional
mathematics: finite nyppe, Systems, interval arithmetic, roundoff
errors, computational y,p,actability.

As mathematics goeg, ‘inguistic and notational changes are
truly superficial--j{s really 18 the same subject modulo an
isomorphism., These Jdifferunces can be very confusing to students
learning mathematics ang ~»PM™puting, although perhaps no more so
than the differences jn (.o8bulary and perspective between an
engineer and a mathemarician. The blend of computer language
and traditional mathematic® Produces a kind of Franglais decried
by purists yet emploveg py 8Vfryone.

The core of mathgma+i+v3r however, is also changing under the
ecological onslaught ¢f mﬁChematics—speaking computers. New
specialties in computaejor@l Cumplexity, theory of algorithms,
graph theory, and formay 1991C sttest to the impact that
computing is having ap ga+bPe®8!ical research. As Arthur Jaffe
has arqgued so well im pig FBC®NE egsay "Ordering the Universe"
{121, the computer :@vgluLiO“ in a mathematical revolution. The

intruder has changed ghe H¥OSYhban of mathematics, profoundly and

permanently.

New Mathematics for a New Age

Computers are discrete, finite machines. Unlike a Turing
machine with an infinite tape, real machines have limits of both
time and space. Theirs is not an idealistic Platonic
mathematics, but a mathematics of limited resources. The goal is
not just to get a result, but to get the best result for the
least effort., Optimization, efficiency, speed, productivity=-
these are essential objectives of modern computer mathematics.
Questions of optimization lead to the study of graphs, of
operations research, of computational complexity.

Computers are also logic machines. They embody the
fundamental engine of mathematics--rigorous propositional
calculus. So it comes as no surprise that computer programs can
become full partners in the process of mathematical proof. The
first celebrated computer proof was that of the four-color
theorem: the computer served there as a sophisticated
accountant, checking out thousands of cases of reductions.
Despite philosophical alarms that computer-based proofs change
mathematics from an a priori to a contingent, fallible subject
(see, e.g., [27]), careful analysis reveals that nothing muech had
really changed. The human practice of mathematics has always
been fallible: now it had a partner in fallibility.

Recent work on the mysterious Feigenbaum constant reveals
just how far this evolution has progressed in just eight years:

Computer-assisted investigations of families of periodic maps



suggested the presence of a mysterious universal limit,
apparently independent of the particular family of maps.
Subsequent theoretical investigations led to proefs that are truye
hybrids of classical analysis and computer Programming: the
crucial step in a fixed-point argument requires a tight estimate
on the norm of a high degree polynomial., This estimate is made
by a computer program, carefully crafted using interval
arithmetic to account in advance for all possible inaccuracies
introduced by roundoff error [8]., Thus computer assisted proofs
are possible not just in graph theory, but also in that bastion
of classical mathematics-~functional analysis.

Computers are also computing machines, By absorbing,
transforming, and summarizing massive quantities of data,
computers ¢an simulate reality. WNo longer need the scientist
build an elaborate wind tunnel or a scale model refinery in order
to test engineering designs. Wherever basic science is well
understood, computer models can emulate physical processes by
carrying out instead the process implied by mathematical
equations. Mathematical models uged to be primarily tools used
by theoretical scientists to formulate general theories; now
they are practical tools of enormous value in the everyday world
of engineering and gconomics, They focus mathematical attention
on the relation between data and theory, on stochastic processes
and differential equations, on data analysis and mathematical
statistics,

In many respects mathematics has become the creature of the

computer: by providing compelling tools in combinatorics, logic,

and calculation, the computer has made an offer of intellectual
adventure that mathematicians cannot refuse. But in a very real
Sense, mathematics is also the creator of the computer. David
Hilbert's struggle with the foundations of mathematics=-itaelf
precipitated by the paradoxes of set theory elucidated by Frege
and Russell--led directly to Alan Turing's proposal for a
universal machine of mathematics:

[Turing] proved that there was no 'miraculous machine'’

that could solve all mathematical problems, but ip the

Process he had discovered something almost equally

miraculous, the idea of a universa] machine that could

take over the work of any machine, He arqued that

anything performed by a human computer could be done by

a machine. {11, p., 109] )

It has been fifty vears pPrecisely since Turing developed his
scheme of Computability [26] in which he argued that machines
could do whatever humans might hope to do. His was a formal,
abstract system, devoid of hardware and real machines., Tt took
25 years for rudimentary machines to first demonstrate the genius
of Turing's idea,

During that same period abstract mathematics flourished, led
by Bourbaki, symbolized by the "generalized abstract nonsense" of
category theory. But with abstraction came power, with rigor
came certainty. Once rea] computers emerged, the complexity of
programs quickly overwhelmed the informal techniques of backvard
Programmers. Formal methods became de rigueur: even the once-
maligned category theory was enlisted to represent finite

automata and recursive functions:

Wal

A quite formalistic approach is now both feasible and Sy

desirable, and nowhere is the transition of programming
frqm art to science made more evident., One result of
this more formal, disciplined approach .,. is a sharp

!



reduction in the programming effort needed to implement
a compiler. [2, p.423]

Once again, as happened before with physics, mathematics

became more efficacious by becoming more abstract.

Where's the Reef?

The circumstances that make computing a force for rapid
evelution in the notation and practice of mathematics also put
pressure on the mathematics curriculum in colleges and
universities. The presence of a new and vigorous subject such as
computer science produces enormous strainsg on faculty,
curriculum, and resources., As different ecosystems respond in
different ways to the presence of a new predator, so different
instituvtions are responding in different ways to the incursion of
computer science into the undergraduate curriculum.

Twenty years ago in the United States the Committee on the
Undergraduate Program in Mathematics (CUPM) issued a series of
reports that led to a gradual standardization of curricula among
undergraduate mathematics departments [51. Following two vears
of calculus and linear algebra, students took core courses in
real analysis and abstract algebra (usually two apiece) and
selected electives from among such options as topology,
differential equations, geometry, complex analysis, number
theory, probability, and mathematical statistics. While the
faculty expectations and student performance on theSe courses
varied greatly from institution to institution, concensus on a
central core was always present,

O
S

The subseqguent decade was good to mathematics education.
The number of bachelor's degrees in the United States rose to
about 25,000; the number of Ph.D.s, rose gradually from the low
hundreds to over 1200. But while core mathematics was
experiencing a renaissance, those exploring the frontiers
detected evidence of coming change.

In 1971 Garrett Birkhoff and J. Barkley Rosser presented
papers at a meeting of the Mathematical Association of America
concerning their predictions for undergraduate mathematics in
1984. Birkhoff urged increased emphasis on modelling, numerical
algebra, scientific computing, and discrete mathematics ("a
course introduced over 10 yvears ago at Harvard by Howard Aiken
while director of our computation laboratory®™). He also
advocated increased use of computer methods in pure mathematics:

To my mind the use of computers is analogous to the use

of logarithm tables, tables of integrals, ... or

carefully drawn figures. Far from muddying the limpid

waters of clear mathematical thinking, they make them

more transparent by filtering out most of the messy

drudgery which would otherwise accompany the working

cut of specific illustrations., Moreover, they give a

much more adequate idea of the range to which the ideas

expressed are applicable than could be given by a

purely deductive general discussion unaccompanied by

carefully worked out examples.

Therefore, I believe that [computer-based] courses

should be considered as basic courses in pure

mathematics, to be taken by all students wighing to

understand the power (and limitations) of mathematical

methods. [3, p. 651)

Rosser emphasized many of the same points, and warned of
impending disaster to undergraduate mathematics if their advice
went unheeded:

Unless we revise the calculus course and the
differential equations course and probably the linear



algebra course...so 48 to embody much use of computers,

most of the clientele for these courses wilj instead be

taking computer Gourses in 1984, ,,, 1f students cannot
acquire the Necessary computer proficiency and
understanding in their mathematics courses, they will

have no choice but to take computer Courses instead,

{21, p. 639}

In the decade since these words were written, U, s.
undergraduate and graduate deqrees in mathematics have declined
by 50%. New courses in modelling, discrete mathematics and data
analysis are emerging in every college and university, The
clientele for traditional mathematics has indeed migrated to
computer science, The former CUPM concensus is all but
shattered,

The symbol of reformation has become discrete mathematics,
Several vyears ago Antheny Ralston argued forcefully the need for
change before both the mathematics community [171 and the
computer science community [18]., Discrete mathematics, in
Ralston's view, is the central link between the fields. College
mathematics must introduce discrete methods early and in depth;
Computer science curricula must, in turn, require and utilize
mathematical concepts and technigues. The advocacy of discrete
mathematics rapidly became quite vigorous (see, e.g., [19] and
[241), and the Sloan Foundation funded experimental curricula at
six institutions to encourage development of discrete~based
alternatives to standard freshman caleulus,

Five years ago CUpM issued a new report, this one on the
Undergraduate Program in Mathematical Sciences [61}. Beyond

calculus and linear algebra, they could agree on no specific

content for the core of a mathematics major: "There is no longer

a common body of pure mathematical information that every student
should know. Rather, a department's program must be tailored
according to its perception of its role and the needs of its
students.” The committee did agree that students need to learn to
think mathematically and to study some mathematical subiject in
depth. But they could not agree, for example, that every
mathematics major needed to know real analysis, or group theory,
or any other topic formerly part of the advanced core of the
major.

The niche of mathematics in the university ecosystem has

been radically transformed by
the undergraduate curriculum.

particular local pressures of

the presence of computer science in
As each institution reacts to

staff rescurces and curriculum

tradition, the undergraduate mathematics major has disintegrated
into countless local varieties.

Despite the pressure for radical change, the momentum of
tradition still permits the strongest mathematics departments to
continue the traditional CUPM major for a declining number of
students. Reduced enrollment does make it difficult, however, to
provide advanced core mathematics courses on a regular basis. 1In
larger institutions, computer science operates as a parallel
program, almost always attracting large encollments, including
some of the best and brightest students on campus. It is not
uncommon for undergraduate majors in computer science to 0\\
outnumber mathematics majors by ratios of 20:1 or more. _ML

At smaller institutions a different pattern has emerged.

Many such departments have been forced to drop regular offerings
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of such former core courses as topology, analysis and algebra.
Where resources do not permit full majors in mathematics and
computer sclence, the mathematics program often becomes a hybrid
major consisting of some computer science some mathematics, and
some statistics-~introductions to everything, mastery of nothing.
The need for concensus on the contents of undergraduate
mathematics is perhaps the most important issue facing American
college and university mathematics departments. On the cone hand
departments that have a strong traditional major often fail to
provide their students with the robust background required to
survive the evolutionary turmoil in the mathematical sclences.
Like the Giant Panda, they depend for survival on a dwindling
supply bambvo--strong students interested in pure mathematics.
On the other hand, departments offering flabby composite majors
run a different risk: by avoiding advanced, abstract
requirements, they often misrepresent the true source of
mathematical knowledge and power. Like zoo~bred animals unable
to forage in the wild, students who have never been required to
master a deep theorem are ill-equipped to master the significant
theoretical complications of real-world computing and

mathematics.,

Gomputer Literacy

Mathematical scientists at American institutions of higher
education are responsible not only for the technical training of
future scientists and engineers, but also for the technological

literacy of laymen--of future lawyers, politicians, doctors,

educators, and clergy. Public demand that college graduates be
prepared to live and work in a computer age has caused many
institutions to introduce requirements in quantitative or
computer literacy. Many educators are calling for a total reform
of liberal education,

In 1981 Stephen White, a program officer with the Alfred p.
Sloan foundation, initiated debate on the proper role of applied
mathematics and computer experience in the education of students
outside the technical fields. He termed these "the new liberal

arts:™

The ability to cast one's thoughts in a form that makes

possible mathematical manipulation and to perform that

manipulation, coupled with the fruits of that analysis,
are modes of thought. ... In making use of those modes

of thought one may think with enormous new efficiency.

But it is thinking itself that is the creative element:

thoughtless modelling and thoughtless computation,

impressive as they may be, are devoid of real
significance. ... It is precisely as modes of thought

that they become essential in higher education, and

above all in liberal education [14, p. 61,

Others echoed this call for reform of liberal education. David
Saxon, Presgident of the University of California wrote in a
Science editorial that liberal education "will continue to be a
failed idea as along as our students are shut out from, or only
superficially acquainted with, knowledge of the kinds of
questions science can answer and those it cannot” (2271,

Too often these days the general public views computer
literacy as the appropriate modern substitute for mathematical
knowledge. Unfortunately, this often leads students to
superficial courses that emphasize vocabulary and experiences
over concepts and principles. The advocates of computer literacy

conjure images of an electronic society dominated by the



information industries., Their slogan of "literacy" echoes
traditional educational values, conferring the aura but not the
logic of legitimacy.

Typical courses in computer literacy, however, are filled
with ephemeral details whose intellectual life will barely
survive the students' school years, A best selling textbook in
the United States for courses introducing computing to
nonspecialists is full of glossy color pictures, but does not
even mention the word "algorithm."™ These courses contain neither
a Shakespeare nor a Newton, neither a Faulkner nor a Darwin; they
convey no fundamental principles nor enduring truths.

Computer literacy is more like driver education than like
calculus. It teaches students the prevailing rules of the road
concerning computers: how to create and save files, how to use
word processors and spread sheets, how to program in Basic. One
can be confident only that most students finishing such a course
will not injure themselves or others in their first encounter
with a real computer in the workplace., But such courses do not
leave students well prepared for a lifetime of work in the
information age.

Algorithms and data structures are to computer Science what
functions and matrices are to mathematics. As much of the
traditional mathematics curriculum is devoted to elementary
functions and matrices, so beginning courses in computing-~by

whatever name--should stress standard algorithms and typical data

structures.

For example, as early as students study linear eguations

they could also learn about stacks and queues; when they move on

to conic sections and quadratic equations, they could in a

parallel course investigate linked lists and binary trees, The

algerithms for sorting and searching, while not part of

traditional mathematics, convey the power of abstract ideas in

diverse applications every bit as much as do conic sections or

derivatives.

Computer languages can (and should) be studied for the

concepts they represent~-recursion and procedures in Pascal,

lists for

Lisp--rather than for the syntactic details of

semicolons and line numbers. They should not be undersold as

mere technical devices for encoding problems for a dumb machine,

nor oversold as exemplars of a new form of literacy. Computer

languages
not deal i
persuasion
represent

are not a

are not modern equivalents of Latin or French; they do
n nuance and emotion, nor are they capable of

« conviction, or humor, Although computer languages do
& new and powerful way to think about problems, they

new form of literacy.

As computing joins mathematics as a basic ingredient in

secondary
computer 1
algebra an
computing
science--a
solving en

mathematic

and higher education, liberal education move beyond
iteracy. As mathematics employs the abstractions of

d geometry as tools for problem solving, so courses in
must incorporate the abstract structures of computer
lgorithms, data structures--in a pragmatic, problem= o

vironment. Such computer principles, firmly rooted in
4

5,are a legitimate and important component of the



school and college curriculum for all students,

The confusion evident in university mathematics departments
is an order of magnitude less severe than that which operates in
university computer science programs. In the United States,
these programs cover an snormous spectrum, from businesg-oriented
data processing curricula, through management information
science, to theoretical computer science., All of these interSect
with mathematics curricula, each in different wavs. The
computer science community is now struggling with this chaos, and
has a process in place for identifying exemplar programs of
different types as a first step towards an accreditation system
for college computer science departments.

Several computer science curricula have been developed by
the professional societies ACM and IEEE, for both large
universities and small colleges, Recently Mary Shaw of Carnegie
Mellon University put together an excellent composite report on
the undergraduate computer science curriculum at CMU, surely one
of the very best available anywhere. This report is gquite
forceful about the contribution mathematics makes to the study of
computer sciences

The most important contribution a mathematics

curriculum can make to computer science is the one

least likely to be encapsulated as an individual
J course: a deep appreciation of the modgs oﬁ thought
O that characterize ma;hematiqs.' We distinguish here ?wo
elements of mathematical thinking that are also crucial
£o compu;er science,..the dual techniques of

abstraction and realization and of problem-solving.
[23. p. 551

The converse is equally true: one of the more important
contributions that computer science can make to the study of
mathematics is to develop in students an appreciation for the
power of abstract methods when applied to concrete situations.
Students of traditional mathematics used to study a subiect
called "Real and Abstract Analysis®; students of computer
sclence now can take a course titled "Real and Abstract
Machines.™ In the former "new math®, as well as in modern
algebra, students learned about relations, abstract versions of
functions; today business students study "relational data
structures” in their computer courses, and advertisers tout
"fully relational® as the latest innovation in business software.
The abstract theories of finite state machines and deterministic
automata are reflections in the mirror of computer science of
well established mathematical structures from abstract algebra
and mathematical logic.

An interesting and pedagogically attractive example of the
power of abstraction made concrete can be seen in the popular
electronic spread sheets that are marketed under such trade names
as Lotus and VisiCale. Originally designed for accounting, they
can as well emulate cellular automata, the Ising model for
ferromagnetic materials [10}, They can also be "programmed® to
carry out most standard mathematical algorithms--the Euclidean
algorithm, the simplex method, Euler's method for solving
differential eguations [1]. An electronic spread sheet--the
archetype of applied computing--is a structured form for

recursive procedures-~the fundamental tool of algorithmic



mathematics., It is a realization of abstract mathematics, and

carries with it much of the power and versatility of mathematics.

Computers in the Classroom

Computers are mathematics machines, as calculators are
arithmetic machines. Just as the introduction of calculators
upset the comfortable paradigm of primary school arithmetic, so
the spread of sophisticated computers will upset the centuries
old~tradition of college and university mathematics. This year
long division is passé; next year integration will be under
attack.

Reactions to machines in the mathematics classroom are
entirely predictable. Committee oracles and curriculum
visionaries proclaim a utopia in which students concentrate on
problem solving and machines perform the mindless calculatiens
(long division and integration). Yet many teachers, secure in
their authoritarian rule-dominated world, banish calculators (and
computers) from ordinary mathematics instruction, using them if
at all for separate curricular units where different groundrules
apply. The recent International Assessment of Mathematics
documented that in the United States calculators are never
permitted in one-third of the 8th grade classes, and rarely used
in all but 5% of the rest [25, p. 18].

The large gap between theory and practice in the use of
computers and calculators for mathematics instruction is due in
part to a pedagogical assumption that pits teacher against

i students to
machine. If the teacher's role is to help (or force)

learn the rules of arithmetic lor calculus), then any machine

that makes such learning unnecessary is more a threat than an

aid., Debates continue without end: Should calculators be used

on exams? Should we expect less mastery of complex algorithms

like long division or integration? will diminished practice with

computation undermine subsequent courses that require these

skills?

The impact of computing on secondary school mathematics has

been the subject of Many recent discussions in the United States,

Jim Fey, coordinator of two of the most recent assessments ([7],

[81), described these efforts as

an unequivocal dissent from the spirit and substance of
efforts to improve school mathematics that seek broad
agreement on conservative curricula. Many mathematics
educators working with emerging electronic technology
See neither stability nor consensus in the future of
school mathematics, 19, p. viil

The technology wars are just beginning to spread to the

college classroom. Lap size computers are now common~~they cost

about as much as ten textbooks, but take up only the space of
one. Herb Wilf arqgues (in [28]) that it is only a matter of time

before students will carry with them a device to perform all the

algorithms of undergraduate mathematics. Richard Rand, in a
survey [20] of applied research based on symbolic algebra agrees:
"[Computer algebral is virtually absent from undergraduate
education in the sciences and engineering. ... however, it is
destined for a major role in engineering and applied mathematics,
It will not be long before computer algebra is as common to

engineering students as the now obsolete slide rule once was."” v?



John Kemeny tells a story (in [131) about calculus
instruction that sheds interesting new light on the debate about
manipulating symbols. He asks for the value of j}3 eX dx. A
moment’s thought reveals the answer to be el3-1., fThat's the
exact answer. Kemeny's first question is this: what is its
value to one significant digit? With just paper and pencil,

that's hard to do--beyond the likely skills of typical calculus

students. (The answer: 400,000.) Now comes the second question:

what's the difference between the original question and the
traditional exact answer? They are both exact expressions for
the value we seek, equally unenlightening. 8o the proper
guestion is not to find an exact value, but to choose which of
many possible exact values is more suitable to the purpose at
hand.

The challenges of computers in the classroom are exactly
analogous to those of calculators. The computer will do for the
teaching of calculus algorithms just what calculators did for
arithmetic computations--it will make them redundant. In so
doing, it will challenge rigid teachers to find new way to
reassert authority. Good teachers, however, should respond to
the computer as a blessing in disguise~--as a deus ex machina to
rescue teaching from the morass of rules and templates that

generations of texts and tests have produced.

Following the Rules

Mathematics students, perhaps more than other students, like

to get correct answers. Computers, for the most part, reinforce

P
~O

the student's desire for answers. Their school uses have been
largely extensions of the old *"teaching machines™: programmed
drill with pre-determined branches for all possible answers,
right or wrong. In colleges and universities, computers are
still used most often as black-box calculators, spewing out
numbers in answer to gquestions both asked and unasked.

Core mathematics courses continue this long-standing
tradition, reinforcing the emphasis on rules and answers.
Traditional calculus textbooks bear an uncanny resemblance to the
first calculus text ever published: 1'HOpital's 1699 classic.
They present rules of differentiation and integration, with or
without proof: linearity, product and quotient rules, chain
rule, substitution, etc. After each rule are exercises to
practice on. At the end of the chapter are mixed exercises,
where the challenge is to use all the rules at the same time.

Most students of even modest ability can master these rules.
If there is one thing that school does well, it is to train
students to learn rules. Strong students master them gquickly,
and yearn for tough problems that extend the rules (e.g., to xX),
Weak students work by rote, carefully adhering to template
examples. Students of all types flounder when presented with
"word problems® with which to "apply” their skills: *A farmer
has 200 meters of fence with which to...." Too often such
problems are merely mathematical crossword puzzles--stylized
enigmas whose solutions depend in large part on recognizing the
unstated problem pattern. Indeed, recent research in problem

solving suggests that many students learn to solve such problems



by establishing mental categories of problem~type, and of course
many instructors teach students to identify such types.

The confluence of research on learning with symbolic algebra
has preduced a rich new territory for imaginative pedagogy.
Symbolic algebra packages linked to so-called "expert systems" on
computers of sufficient power (with high resoclution graphics,
mouse~like pointers, and multiple windows) can provide an
effective intelligent tutor for learning algebraic skills.
Computers can manipulate algebraic and numerical expressions as
well as students can, usually better. They cannot however
recognize, parse, or model a word problem except in the narrowest
sense--by matching templates to canonical forms.

It is commonplace now to debate the value of teaching skills
such as differentiating that computers can do as well or better
than humans., Is it really worth spending one month of every year
teaching half of a country's 18 year old students how to imitate
a computer? What is not yet so common is to examine critically
the effect of applying to mathematics pedagogy computer systems
that are only capable of following rules or matching templates,
Is it really worth the time and resources to devise sophisticated
computer systems to teach efficiently precisely those skills that
computers can do better than humans, particularly those skills
that make the computer tutor possible? The basic question is
this: since computers can now do algebra and calculus
algorithms, should we use this power to reduce the curricular
emphasis on calculaticns or as a means of teaching calculations

more efficiently? This is a new question, with a very old

answer.

Let Us Teach Guessing

35 years ago George Polya wrote a brief paper with the
memorable title "Let Us Teach Guessing®” [16]. Too few of us
actually do that: most teachers, the overwhelming number, are
authoritarian, Teachers set the problems; students solve them.
Good students soon learn that the key to school mathematics is to
discern the right answer; poor students soon give up.

But Polya says: let us teach guessing. It is not
differentiation that our students need to learn, but the art of
guessing. A month spent learning the rules of differentiation
reinforces a student's ability to learn (and live by) the rules.
It also, almost incidentally, teaches a computational skill of
diminishing scientific value. In contrast, time spent making
conjectures about derivatives will teach a student something
about the art of mathematics and the science of order, in the
context of a useful but increasingly unnecessary computational
skill.

Imagine a class with access to a good symbolic calculus
package. Instead of providing rules for differentiation and
exercises to match, the instructor can give motivational lectures
replete with physical and geometric interpretation of the
derivative. The homework can begin with exploratory questions:
ask the computer for the derivative of simple functions. Make
conjectures and try them on the machine. After mastering linear

functions, try products, then exponentials. Make conjectures;
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test them out,

The class can discuss their conjectures. Most will be
right; a few will not be. Discussion will readily elicit
counterexamples, and some informal proofs. With the aid of the
mathematics~speaking computer, students can for the first time
learn college mathematics by discovery. This is an opportunity
for pedagogy that mathematics educators cannot afford to pass up.

Mathematics ig, after all, the science of order and pattern,
not just a mechanism for grinding out formulas., Students
discovering mathematics gain insight into the discovery of
pattern, and slowly build confidence in their own ability to
understand mathematics. Formerly, only students of sufficient
genius to forge ahead on their own could have the experience of
discovery. Now with computers as an aid, the majority of
students can experience for themselves the joy of discovery.

Only when the computer is used as an instrument of discovery will

it truly aid the learning of mathematics.

Metaphors for Mathematics

Two metaphors from science are useful for understanding the
relation between computing, mathematics, and education.
Cosmologists long debated two theories for the origin of the
universe--the Big Bang theory, and the theory of Continuous
Creation., Current evidence tilts the cosmology debate in favor
of the Big Bang. Unfortunately, this is all too often the public
image of mathematics as well, even though in mathematics the

evidence favors Continuocus Creation,

The impact of computing on mathematics and of mathematics on
computing is the most powerful evidence available to beginning
students that mathematics is not just the product of an original
Euclidean big bang, but is continually created in response to
challenges both internal and external. Students today, even
beginning students, can learn things that were simply not known
20 years ago. We must not only teach new mathematics and new
computer science, but we must teach as well the fact that this
mathematics and computer science is new. That's a very important
lesson for laymen to learn.

The other apt metaphor for mathematics comes from the
history of the theory of evolution. Prior to Darwin, the
educated public believed that forms of life were static, just as
the educated public of today assumes that the forms of
mathematics are static, laid down by Euclid, Newton and Einstein.
Students learning mathematics from contemporary textbooks are
like the pupils of Linnaeus, the great eighteenth century Swedish
botanist: they see a static, pre-Darwinian discipline that is
neither growing nor evolving. Learning mathematics for most
students is an exercise in classification and memorization, in
labelling notations, definitions, theorems, and techniques that
are laid out in textbooks as so much flora in a wonderous if
somewhat abstract Platonic universe.

Students rarely realize that mathematics continually evolves
in response to both internal and external pressures. Notations
change; conjectures emerge; theorems are proved;

counterexamples are discovered. Indeed, the passion for



intellectual order combined with the pressure of new problems-—-
especially those posed by the computer—-force researchers to
continually create new mathematics and archive old theories.
Until recently, mathematics evolved so slowly and in such
remote frontiers that students in elementary courses never
noticed it., The presence of computers in the mathematical
ecosystem has changed all that: evolution of theories and
notation now takes place rapidly, and in contexts that touch the
daily lives of many students. Mathematics itself is changing in
response to this intruding species. So must mathematics

curriculum and mathematics pedagogy.
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Introducing Computer Algebra to Users and to Students

Jacques Calmet

LIF1A /ENSIMAG, Grenoble, France (*)
and
Dept. of Computer Science, University of Delaware

1. Introduction

Many applications show the excellence of Computer Algebra {CA) as a computational tool
in different field of science [1]. An unsolved problem is to evaluate it as a teaching aid in
mathematics. The goal of this paper is to help to find an answer to this question.

It must be noted that some CA Systems {CAS) or programs either have been or are written
for educational purposes. Some are already commercial products and heavely advertised. This
means that we are already beyond the stage of answering to the "original™ question: do we really
need educational computer algebra systems? They are with us and going to stay for a long time,
whether we like the idea or not.

It may be time still to ask ourselves if we want to use CAS only as a computing tool either
supplementing or illustrating the skills of students, or as 2 mean of introducing conceptual insight
in some domain of mathematics.

The paper is organized as follows. In section 2 some conclusions are drawn from our past
{and extensive} experience in introducing CA svstems and techniques to theoretical physicists. The
reason for such a section is twofold. First, if one analyzes the methods and techniques routinely
used in this field it becomes obvious that they are closer to mathematics than to physics. Indeed a
strong mathematical background is required to be successful in this field. Second, it is probably
the domain where the most remarkable applications of CA have been performed. It is therefore an
area where it is possible to rate the impact of the programming language on mathematically
oriented applications and to draw some conclusions on how to design a system fitting the needs of
mathematicians. .

In section 3 we mention briefly some experiences related to teaching CA at the undergradu-
ate level. The emphasis is put on the mathematical background required from a student in such a
curriculum and on the adequacy of the available systems for this purpose. We also look at the
adequacy of CAS to the needs of instructors in different contexts (i. g. high school, university and
engineering school both in Europe and in the US).

The last section lists some design ideas that we think would be helpful for designing sym-
bolic mathematical systems better suited for being teaching aids. They can be summarized by two
questions. Is it possible to get some insight - instead of simply results - in a problem by using
these systems? What capabilities can we add easely to make them more useful?

2. Computer Algebra sand Mathematical Physics

Theoretical Physics is often referred to as Mathematical Physics, The reason is pretty obvi-
ous when looking at the different mathematical techniques required to make any progress in this
field. They range from the use of special algebra (W, C°, Von Neumann...), ultra distributions,

This paper iz a contribution to the session on Symbolic Mathematical Systems and their Effects on the
Curriculum to be held at the Fifth International Conference on Mathematical Education. Adelaide, Au-
gust 24-30, 1984.

{*} Permanent address.



homotopy theory, groups (SU(rn), Ulr), Poincaré ...} or non-cuclidean geometries to simple cal-
culus. This list is by no means exhaustive. Just for the fun of it, one may add Cantor set, special
or transcendental functions including Riemann's function and polylogarithms for instance. Even
the well known (by physicists) multidimensional integrals arising from Feynman graphs are simi-
lar to those obtained when studying the acceleration of convergence of series.

They are thus a group of users with a strong mathematical background. It may then be
worthwhile to observe their attitude toward CAS and to learn some lessons from this observation.

2.1. The attitude of Physicists

Following are some remarks drawn from several attempts to introduce CAS to physicists.
First as a fellow physicist convinced of the importance of this computational tool. Then as a com-
puter algebraist whose eagerness lies more in learning what implication applications may have on
CAS than on "marketing" them.

(i) To learn a new programming language is a "waste of time". They will invest time and
efforts only when this yields to worthwhile results.

su

(i) If the CAS they are using is not completely debugged {an early version for instance} it
then takes several years to convince them that the next version is error-free. This is the
strongest criticism they can make.

(iii} They have, most often, access to powerful computers and this is probably why they were
among the first users of CAS.

(iv)] The mathematical content of their most successful applications is always simple. Although
many problems, as previously mentioned, call for sophisticated mathematical methods this
does not show when looking at published applications. They are usually dealing with a
mechanizable subset of the mathematics they use.

{(v) Tutorials on a CAS seldom turn a listener into a user right away. But he may go to a local
"expert” later with a specific problem. If 2 CAS helps him to get a solution, then he usually
. becomes "addicted”.

(vi) Because of the preceding remark the style of tutorial is important. Provided the program-
ming language is interactive and looks natural the emphasis must be put on the capabilities.
These users do not care to know what algorithm is used to realize a specific operation. They
just want a reliable procedure to do it. Users are attracted often by presenting a successful
application and stressing the operations common to different classes of problems.

(vii) CAS are not, as a rule, used by physicists to acquire any mathematical knowledge. For
instance to factorize a polynomial requires using finite fields. It is an open question to know
whether a user performing this operation is not interested in the technique implemented
because ro system documents it or because he does not want to learn about it.

(viii) They are always frustrated by the limited capabilities of CAS. This as resulted in the
design of various specialized packages by physicists [2].

2.2. Implieations about Systems

The preceding remarks arising from the attitude of theoretical physicists must be weighted
by the fact that this domain has witnessed some of the most spectacular applications of CAS.
Each of them has some obvious consequences on the design principles of user oriented CAS: ease
of programming, well debugged code, interactivity ... But all have been formulated and written
down many times.

We prefer to make some comments on why the present CAS have not been successful as
tools which give insight into the calculations performed.

Some systems, such as SAC2/ALDES, are transparent enough to allow a user to understand
what is going on during a calculation. But the programming style is such that it is alinost unus-
able as a computing tool in physics. Other CAS have some mathematical knowledge built in
(REDUCE, MACSYMA, ...} but it is difficult to have access to it. Finally, some specialized
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package (SCHOONSCHIP, ..} are lacking any sophisticated mathematical knowledge but are
anyway liked by users. SCRATCHPAD was not known by physicists because not available.

The obvious conclusion is that the available CAS have not been designed as teaching aids.
What is needed is a mathematical knowledge representation system. Some of them are under
design. They will represent a new generation of systems.

Without even considering what the future CAS will be, it must be noted that the present
ones are lacking some easely implementable capabilities, i.e. those connected with data bases of
either results or values. Typical examples are special functions and definite integrals. These
objects are often encountered in calculations. One is usually forced to look into tables or books to
find either some of their values or some relation they obey. It would be helpful if CAS could pro-
vide these informations. To achieve this goal implies to introduce non-constructive algebraic

methods in a CAS.,

Another point worth mentioning is the poor level of communication between a program and
an user: he would be pleased to get informations on how his calculation is done. What he gets
usually is the number of garbage collection calls and the number of occupied memory cells.

8. Tesching Computer Algebra

What we are interested in is to investigate whether computer algebra is an appropriate tool
to teach (some) mathematics. To answer to this question requires to evaluate the mathematical
content of 2 CAS with respect to the knowledge of a student body. We are not, in this section,
rating the CAS capabilities to achieve this goal. Similarly we are not at all interested in the
question of teaching how to use a CAS. We distinguish three different cases.

3.1. Computer Algebra in 2 Computer Science Curriculum

There are at least two different approaches for teaching computer algebra. One assumes that
the emphasis is on algebraic algorithms only. The other considers the system aspect as well. One
illustrative area is simplification. An algorithmic introduction to simplification will be possibly
based on the presentation given by Buchberger and Loos [3]. 'A system oriented approach will
also present the techniques of pattern matching implemented in some CAS such as MACSYMA.
It is our opinion that the second approach has to be selected for a computer science course.

Although such courses are better suited for graduate studies, a recent experience with final
year graduate students gives some answers to the question asked above. The student body
comprised computer science majors from two origins: applied mathematics in an usual university
curriculum and engineering school. The former had a good formation in mathematics and a much
limited one in computing. The latter had a symmetric training. The course had two goals. The
first one was to introduce the basic algebraic algorithms for polynomial manipulation. The second
one was an introduction to the concept of simplification in computer algebra. An attempt to use
[3] as material for the course had to be rapidly ended. The presentation of simplifiers imple-
mented in some CAS (mainly MACSYMA) went well with students familiar with programming
languages but badly with those without this knowledge (despite an introduction to list manipula-
tion).

Without entering into superfluous details, we just want to stress that this course was a good
way to teach some algebra to pure computer science students. But it was not efficient to teach
some programming language theory to students with almost no knowledge in "classical” computer
science. Another remark is that a course on algebraic algorithms must often be system indepen-
dent. Often, the only language taught to student during their curriculum is PASCAL. Further-
more, many institutions are opposed -and this is a right decision- to introducing other program-
ming languages.
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3.2. Computer Algebra in other Curricula

Most of the scientific curricula begin with some courses in mathematics: biology, chemistry,
physics, engineering. Usually they are calculus oriented and intend to give students some skills in
evaluating integrals, manipulating series ... Most of the material thus covered is present in CAS
which could therefore be useful in this context.

For majors in mathematics the situation is different. Although they must acquire the same
skills, they also must get a3 much better insight in what they are doing. Also they, very rapidly,
are faced with topics which are -not yet!- part of CAS. These are analysis and topology for
instance. It must also be noted that in many countries, math department are not very well
equipped with computers: they have often access to minicomputers only.

A possible conclusion from the two previous sections is that computer algebra is probably a good
teaching aid for non-math majors. The mathematical content of the present systems, i.e. the
methods implemented, is not sufficient for majors in math.

8.3. High Schoosl Curriculum

This is probably a place very well suited for using computer algebra methods and systems
as teaching aids. Some of the obvious problems are:

1 Each country has its own type of mathematical curriculum {and sometimes severall). For
instance abstract concepts are introduced very soon in a French curriculum.

2 The only comptiters available in such schools are microcomputers. They cannot support a
very large CAS at present.

3 Very few systems exist for such purposes. One of them is obviously muMATH [4]. Because

of the first remark, it cannot be used in every context. For instance, it is not suited for a
French high-school.

4 Several projects are under way to design CAS directed toward these schools. Whether any
of them will be as well designed as muMATH is remains an open guestion.

4. CAS 8s Tesching Tools

We are no longer concentrating on the methods and techniques implemented in CAS but in
their programming language features. Obviously this aspect must affect the methods which are
implemented as well. "

If technology is going to play a role in a mathematical curriculum, computer algebra sys-
tems must be instrumental in that respect. But this goal is not yet reached. This is well ilus-
trated by the recent book of Sims [5] on abstract algebra. He uses APL as a programming
languape instead of MACSYMA for instance. What we tried to show so far is that CAS are not
mandatory tools to be introduced in the mathematical part of any curriculum. We split our dis-
cussion into two parts: existing CAS and design principles of future one.

4.1. Existing CAS

They already offer some capabilities for being teaching aids. We do not attempt to attach
each capability to one or several CAS but siply to list a few of them.

1 In a caleulus course CAS may be helpful in different ways: to support the course with exam-
ples or to check exercise answers for instance.

2 In a course on algorithms, they can be used to compare different methods to do a given
operation and thus illustrate the complexity analvsis studies,

3 In many opportunities they can be used to free a student from simple calculus problems in 2
similar manner to using a pocket calculator for numerical ealculations.

These are some of the existing available capabilities. Although useful, they are still of marginal
interest when compared to what could be done.
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4.2. Some design principles

What follows are some of the design principles of what a large symbolic manipulation sys-
tem could be. We are interested in those related with the topic of this paper only.

One of the basic idea is that such a system must be a mathematical knowledge representa-
tion system rather than an algebraic system only. To achieve this goal means that it must offer
the following features.

1 Implementation of as many methods as possible to perform a given operation.

2 Extension of the fields of problems tractable with CAS. MNowadays only constructive
methods are implemented. We must bypass this limitation by using heuristic methods when
they are the only implementable ones. Technically this means using some techniques of
artificial intelligence.

3 Once the principle of point 2 is adopted, it is natural to also add theorem proving to the
capabilities of such a system. This is better done using PROLOG than any other language.
Now at least two versions of PROLOQG implemented in LISP are available. This enables to
realize this point of our program.

4 In order for point 1 to be useful we must improve the communication between the user and
the system. Some or all of the following informations or capabilities must be accessible by
any user upon request: information on the method used for a given calculation, selection of
an alternate method at will, on-line documentation on these methods (we do not refer here
to the documentation on the command but on the method itself).

5 Independently of the design options related to the programming language aspect, the previ-
ous points suggest that the best organization for the algebraic part is a collection of algo-
rithms (library) which are put together by means of macros.

] Some features of the programming language part of this project can be used to improve the
mathematical knowledge of the svstem: handling of types and check of correctness of the
semantics are among them. Depending on the approach selected for simplification of expres-
sions, this may also add to the mathematical knowledge of the system.

These are just a few of the principles which would make computer algebra systems better suited
for teaching purposes. Nowadays when setting up a course on algebraic algorithms we use books,
such as Knuth’s volume 2 [6] or [1], never 2 CAS. A well suited CAS would make the option of
selecting both a book and a system meaningful. It must be emphasized that this project is not to
design a specific teaching tool, but that many of its aspects would make it more valuable for such
3 purpose than the present CAS.
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Absiract

Due to the concern regarding teacher math skills, a project was Iinitiated
at the Arizona State University (A.5.U.) Microcomputer Research Clinic. The
purpose of the project was to examine the potential of a remediation program

via the microcomputer.

A math achievement test was developed on the Apple III microcomputer. In
the fall semester 1982, undergraduates in the elementary education program at
A.§.U. took the test. The test was analvzed and revised. In the fall semester
1983, 114 students enrolled in A.S.U.'s Methods of Teaching Mathematics class
were tested with the revised examination. As part of the course requirements,
a score of 70% or above was necessary. Of the non-passing students, eleven
were enrolled 1In a programmed texthook. There were ten students who used the
programeed textbook. There were sixteen students who took a posttest, however,

their mode of remediation was unknown.

There were significant gaina {n pretest and posttest scores in all three
groups. There was no significant difference between the galn scores of the
three groups. The project 1s scheduled to continue for one more vear. The

iesired outcome is an effective microcomputer mathematics remediation program.

First Yesar Results of the Microcomputer Assisted Mathematics

Remediation Profect at Arzona State University

Introducticq

The United States is experiencing a crisis in mathematics education.
There {8 a gsevere shortage of teachers who are well~trained {n mathematics:
and nearly all of the states report critlcal shortages of qualified

mathematics teachers.

There are several reasons for the problem of low mathematics competence
of teachers. College admission standards in mathematics have heen lax and
teacher preparation programs have focused more on educational methods rather
than gubject matter competence. Prospective teachers with minimal backgrounds
In wmathematics consequently often avoid taking even required mathematics
courses as long as possible. 4n underlying anxlety about studving mathematics

creates a poor mental environment for approaching mathematics instruction.

In reaponse te the crisis {n mathematics edcucation, many local
communities states, and universities are {ncreasing the standards for
mathematics Instruction. However, many preservice teachers are caught in a
bind between facing increased mathematics competency requirements and
Increagsed levels of wmathematics anxiety. Thus, there is clearly a critical

need for a novel program leading students toward a positive approach to the

a
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learning of mathematics.,

In the U.S., SAT mathematics gcores have ghown a virtually unbroken
decline from 1963 ro 1980; average msthematics scores dropped almost 40
points. In a report {ssued by the Couferance Roard of Mathematics, remedial
mathematics courses in colleges have increased over 7% percent since 1975,
These deficiencles come ar a time when the nation's Aemand for highly skilled

employees (s rapidly accelerating,

These difficulties are compounded by a severse shortage of well-~trained
teachers, In a 1981 survey 43 of 45 states studied were experiencing critical
shortages of mathematics teachers., The Yational Commission on ¥xcellence in
Fducation also reported that half of the newly employed teachers of

mathematics and science are not gqualified to teach these subfects.

While shortages have been created by rhe greater financial attraction of
industry, forcing schools to  look to less~qualified individuals; it 1is
likewise true that many teachers have been inadequately trained in our
colleges and universiries. However, college admission standards and teacher
preparation deemphasizing subject matter and competence are but a couple of
the problems., In addition, prospective teachers have avoided or delaved taking
needed mathematics instruceion, indicating that the teachers themselves may be

experiencing math anxiety,

In response to the concern for publie education, state and local school

oo
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officials are now ralsing the education standards in their communities. Since
1980, high school graduation requirements have been encressed in 30 astates and
12 other states are considering initiatives to raise present requirements.
Over half of the atates are also raising admission standards for publie
universities, and many states are requiring wore stringent competency tests
for teacher certification. Increased mathewatics requirements are a maior
componient  of the trend roward high academic standards. Schools at all levels,
therefore, will be faced with increasing the number and quality of their

mathematics course offerings.

Unfortunately, the increase 1in standards causes a double bind for
schools. They are to provide more mathematics training but more teachers are
not avallable; without more teachers, schools cannot provide the increased
mathematics education, There are problems for colleges as well. “ost
university mathematics departments are extremely reluctant to offer
mathematics courses to non-wajors. When mathematics departments are forced to
offer teacher-related mathematics courses, they often staff them with graduate
students who are untrained to teach and may even be resentful about their job
assignment., Such conditions drive prospective mathematics teachers, egpecially
members of wminority groups, into other fields thus exacerbating a looming

teacher shortage.

Statemq&gtgg the Problem

The purpose of this study was to explore the potential of a computer assisted



mathematics remediation program that would {dentify preservice teachers who

from elementary reading to high~level military strategy. These studies
were lacking minimum mathematics compentency and effectivly correct rtheir

indicate the effectiveness of CAT in these applications (e.g.,, Misselt, et
deficiencies. The program would have to be flexible in the time requirements

al., 1980; Tatsuoka, et al., 1978: Chambers, 1980: Loop, et al., 1980;
of its administration, Examinations and remedlation would be administered at

Marshal, et al., 1980; Lockhart, et al., 1980),
times convienent to each student.

0f more concern to this particular study, though, are reports of the
Review of Related Literature

effectiveness of CAI programs used specifically in traditional school settings

to eohance conventional methods of educatfon. James Kulik and his colleagues
Prospective teachers with minimal mathematics backgrounds often delay

have opublished an integrative studv of 51 independently conducted evaluations
taking required mathematics courses because of anxlety or fear of fallure., The

of CAI programs uged with students 1in grades six through twelve. Rulik's
mathematically anxious student associates an emotlon, attitude, or expectation

. meta-analysis of these programs resulted in a healthy prognosis for CAL. In
with mathematics 1in such a way that the attitude blocks mathematical

particular Kulik found rthat CAI raised students' final examination scores
performance (Donady and Auslander, 1980). Betz (1978) found that mathematics

significantly: CAI also had npositive, chough less significant, effects on
anxiety 1is more prevalent among women than men. Others have determined that

students’ ability to retaln concepts learned through CAI: CAI {mproved
women drop out of the study of mathematics as soon as mathematics becomes

students' attitudes toward the material thev were expected to learn as well as
optional (e.g., Fauth and Jacobs, [980: Fox, Feana, and Sherman, 1977: Tobias,

toward computers 1in general:; and CAI substantially reduced the time studenta
198Q0), Since more than half of preservice students are women who have taken

required to learn material (Kulik, 1983).
only the minimum number high school mathematics courses, colleges of educarcion

have many students with low mathematics skills and high mathematics anxlety.

Kulik's results have been corroborated by other researchers. Im another
Such teachers who lack confidence in mathematics are often reluctant and

integrative report of ten studies of CAIL prosrams, Vinsonhaler and Rass (1972)
ineffective mathematics teachers and find it difficult to adapt new curricula.

found that drill-and~practice CAI produced gains of hetween one and eight
&nd  so another  generation with mathematical deflclencies 1is spawned,

months of learning time {n children taught via the computer as compared to
continuing the cycle.

those who were taught by traditional wmethods. Jamison, Suppes, and Wells
(1974} showed that students taught with CAI achleved better end-of-course

CALI is being used at all levels of education and i{n myriad applications
scores and required less study time than students taught by traditional

-
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methods., Jamison, Suppes, Wells (1974) found that CAI offers particular
benefits tn disadvantaged students. Cowmparing final examination scores,
Edwards, Norton, Taylor, Weiss and Duseldorp (1975) showed that students
taught with CAI achieved better end-of-course scores and required less study

time than students taught by traditional methods.

Research has alsoc been done to determine how effective computers are in
teaching various subjects included in traditional curricula. For example, the
Educational Testing Service studied the drill-and-practice programs taught in
Los Angeles schools and found that computers could enhance the computational
abilities of students. The same study determined that results in reading and
language CAl were not as promising, although the results were often favorable

(Fagosta, et al., 1981).

Many vresearchers have reached the same conclusion: CAIL is an effective
means of teaching mathematics in less time than required by conventional
teaching wmethods. Reviewing 50 CAI oprograms in mathematics, Overton (1980)
found that several oprograms reported substantial savings of tilme. More
recently Jenson (1982) studied microcomputer—assisted teaching of addition to
first through third graders and concluded that the CAT teaching did save time.
He attributed the time savings primarily to the fact that the microcomputer

repeats only problems with which the student has had difficulty.

CAT possesses qualities that make it an effective learning device., Bright

(1983) outlines several of these qualities 1in explaining the high rate of

o)
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success experienced by teachers Implementing CAI programs. Bright points to
the length of time that students are willing to spend interacting with
computers. He notes that students will spend considerably more time with
computers than with other more traditional instructional materials. Those who
have supervised CAI programs tell stories of coaxing students awav from

computers to participate in other activities.

Bright also notes that the substantive interaction between computer and
user 1s a distinct benefit in the CAI process. The microcomputer can provide
personalized feedback which deals specifically with the user's response to a
given question. This feedback provides immediate and relevant information to

the learner, causing the student to become more actively engaged in learning.

Finally, Bright suggests that CAI appears to enhance the success
experienced by the learner. With software programmed for Individualized
instruction, students lears at their own rate. The element of challenge within
a program can be adjusted according to the abilities of the students., Thisg
enables students who have difficulties to  progress at a slower rate, thug
experiencing success which might be denied them if they were forced to attenpt
learning at the level of a group with mixed abilities. Similarly, a gifted
student can be given a more challenging program of study, preventing boredon

that can ocecur in a group setting.

Research has shown that computers are good teschers, particularly in the

field of mathematics. The computer’s admirable patience allows it to provide



repetivious practice for which human teachers often have too little time. The
computer's interactive capabilities enable it to communicate with students on
a one-to-one, nonthreatening basis. And, perhaps most importantly, the advent
of features such a8 graphics, sgpeech synthesis, and music and color
capabiliries wmake the computer a vivid, exciting tool which helps learning be

more enjoyvable as well as faster

Methods and Procedures

Instrumentation
For this project, a mathematics achievement examination was needed that
would:
1. Tdentify the students not in need of remediation
2. Determine an ablility score for students in need of
remediation (pretestc).
3. Determine an ability score during remediation.

4. Determine an ability acore after remediation (posttest).

In addition to the project requirements, it was decided that the test should
also:
5. Make use of the random digit generation capabilities of
the microcomputer to produce different {tems with each
administration of the test.
6. Use completion-type reaspounses Iinstead of multiple

cholce~type responscg.

7. Inform the student of the test results upon completion of

test sdministration.

After an inspection of the SRA Level H (12 grade level) math battery, the
Arizona Teacher Proficiency Examination, and seventh and eighth grade text
books (copyrights 1978~1982) it was decided that the microcomputer math test
should contain the following topics:

Positive Integers, Common Fractions, Decimals, Percents,
Negative Numbers, Exponents and Roots, Numerationm,
Pre~-Algebra, Geometry, Measurement, Averages, Graphing,
Metric Measurements, Probability, Rates, and Ratio and

Proportion.

A "panel of experts" was selected from the subscrintion list of the
"School Science and Math Journal" and asked to weight each topic. These
results were used to determine the number of {tems per topie needed for a 66

item test.

It was also decided that the test f{tems would sorted as to tvpe:
computation, concept, or application. Using the SRA math battery, CAT mach
battery, and the Arizona Teacher Proficiency Examination it was decided by the
project director that the proportion of the {ten typegs would be in the
following ranges:

Computation : 33%L-30% of test

Concepts : 25%-33% of test

L&



Applications: 251-331 of rtest majors, were required to take the math achlevement test. A score of 70 or

above was a requirement for course completition., Students took the test on

The test was written and programmed by a graduate student working with their own time in the microcomputer research lab. Available times for taking

Dr. Bitter on the project. the test were 8:00 a.m. to 9:30 p.m. Monday through Thursday, 8:00 a.m. to

5:00 p.m. on Friday, and 9:00 a.m. to 12:00 p.m. on Saturday.

The pre~tryout was conducted with elementary education undergraduates in

the fall gemester of 1982, A covrelation of pre«trvout scores and 3RA scores The subject appeared at the lab and was assisted by the lab atvendant in

indicated a .B8 correlation. Each iltem was reviewed for conteat, difficulty, setting up the computer for the test. TInstructions were given by the lab

. 24
and discrimination. 24 of the 66 original test ltems were discarded and 18 new attendant. Subjects were told how to eater their answer and make changes Lf

items were constructed. necessary. FEntering Ffractional and mixed number answers required instructions

with regard to proper keys to be pressed. Other instructions appeared on the

™ .
In the Fall semester of 1983, the revised test was administered to 114 screen. The subject was told that he/she could use paper and pencil to compute

st ud * { bt
students. The difficulty was determined to be answers, but no caleulators were permitted to be used during the test. The

difficuley = -6432 average time spent taking the test was approximately one and one-half hours,

standard deviation = .179 When the student completed the tast a score was displaved on the screen, The

standard error = -0167 lab attendant then recorded the score.

A reliability estimate, using the Kuder-2ichardson ¥ormula No. 20 {(XR20), By class announcements, posters, and memos, the students were made aware

was .885343 of the lab's offering of a remediation program for those students desiring to

better their math skills. Students desiring remediation made appointments with

5
An  ltem analysis determined 49 of the 60 items had difficulties between one of the investigators for diagnosis and program orlentation. There were 21

.4 and .9 with a discrimination index greater than .2 (using point-biserial students who went through the remediation program. They were assigned to

correlation cofficient), either a CAl remediation program or a textbook remediation program.

Students {in FED 380, a math methods course for elementary education Those assigned to the textbook program were introduced to the text

N
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"Arithmetic: A Programmed Worktext, Fourth Fdition", Arthur Heywood. They were
told that they could come 1{nto the lab at their convenlence during the lab
hours and check the book out. Study was to be done in the confines of the lab
since there was only one book avajilable, When the student felt prepared for
the test he/she would then take the test again. The second test score was

recorded for purposes of this investigation.

Those assigned to the CAI program were oriented to the Mathware program.
They were alse rtold that they could come into the lah at their convenlence
during the lab hours and work on the computer. When the student felt prepared
for the test bhe/she would then take the test again. This score was recgrded

for purposes of this i{nvestigation.

Resulta

During the first month of the fall 1983 gemester, 114 students enrolled
in Arizona State University,s Methods of Teaching Mathematics class, went to
the microcomputer labratory and completed the "Computer Assistad Mathematics
Examination", The mean score was 64.32% of the items corvect (S.D.= 17.93,
S.B.w 1,68). Of this group, 58 students achieved a score of less than 70
percent of the items correct. These S8 students were notifled by their
ingtructors that to receive a grade in their methods course they would have
ta:

l. retake the test until they recieved a score of 70% correct or

2. psss the Arlzona Teacher's Proficiency FExamination, Mathematics

subtest,

In the group of 358 non-passing students, 21 students did not retake the
"Computer Assisted Mathematics Y¥xamination" for reasons which were not

tabulated nor analyzed for this report.

One of the obiectives of the project was to initiate a mathematics
remediation program that would increase students performances on the ™Math
Achievement Test. As table I shows, students who did not pass the pretest and
took the posttest demonstrated significant score gains { t=10.9722, df= 36,

p<.01 D).

Table 1

Descriptive Statistics of Scores (7 correct) of
Students who took more than one test (N=37)

Difference 20.37

| Score Standard Standard |
; Type Range Mean NDeviation Error

I ! ! i ! I
i Pre test 15 =70 I's2.22 1 13.72 1 .en |
! Postrest [ 43 -85 ] 72,83 | 9.1 I 49
| I I | I I

The 37 students were classified by their method of remediation and their
results compared (Table 1I). The Kruskal-Wallis one-way analysis of variance
by ranksg test was used to determine {if the differences among the
pretest-posttest difference scores were significant. This analysis indicated

no significant difference among the three groups ( H=, 260155, d4£2, p>.8 3.
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Table 11
Descriptive statstics of pretest posttest difference
acores {7 corvect) for three groups of remediation.

| Type of Standard Standard |
§ Remediation N Range Mean Deviation Rrror

| | | | I !
| Computer remediation | 11 | 4 - 55 | 20.64 | 15.15 4,57 1
| Text remediation ) 8«46 ! 20,70 | 11.59 ] 3.66 I
| Unknown remediation | 16 |10 - 40 | 20.00 | 8,51 I 2.13

Discussion

Two questions arise from the findings of this study:
1) Why did all three groups achieve significant gain scores?
2) Why was there no significant difference hetween the gain

scores of the three groups.

One possible answer to the first question would he seen as a motivationm
factor. In order for a student to successfully complete the mathematics
methods course a student must correctly answer 707 of the ltems. The student
would conceivebly be motivated to Increase his/her performance in order to
pass the class. Some of the students attend Arizona State University part time
in the evenings and live as much as 80 miles from campus. These students chose
textbook remediation because of the limited time spent on campus (the only
available gite for computer remediation). Many resident students preferred the
microcomputer remediation because of 1its novelty and the immediate feadback
provided by the computer assisted programs. Both groups using computer and
textbook remediation received diagnostic counseling in order to {ndividualize

their program of study. The investigators felt that the students, therefore,

>
>

chose the remediation and topics that would maximize their study time.

Srudents needed to score at least 701 in order to complete the course
requirements. Once that level was achieved the student would discontinue
remediation. Since the pretest mean was 52.22%, a galn score of approximately
207 for all groups would satisify the course requirement. Secondly, due to the
small number of subdects in remediation groups, small differences, if any,
would not be revealed after data analysis. As a result, this study may not

have been senstive to gain score differences between groups.

Conclusions

The major lntent of this particular study was to explore the possible use
of computer mathematics rvemediation for pre-service educators. The flrst phase
of the project required the developement of a microcomputer achlevement test
of skills relevent o teachers. First an examlnation of Intermedi{are level
mathematics texthooks and standardized tests was conducted and a list of item
topics was constructed. Then the 1ist of prospective test topics was sent to a
panel of experts in the field of mathematics education for validation and
weighting of each topic’s contribution to the whole test. Another ingpection
of various standardized tests used for pre-service teachers' mathematics
achievement ability was conducted and the proportion of concept, computation,
and application items was determined. A pre-tryout computer administered
mathematics test was then designed and programmed. The test was administered
to a sample of undergraduate students. An item analysis was performed on the

test and those 1tems Jjudged not useful were discarded. The revised version



used in this study was coampleted. In the fall of 1983, 114 students were
tested. Of che 58 students who failed to achieve at least 707 of the i{tems
correct, 37 ware available for study. There were 11 students in the computer
remediation group, 10 In the programmed textbook group, and 16 chose their awn

method of remediation,

The 37 students who participated in cthe remedlation averaged a
significant 20,37 ore-post galn score. Although all three groups showed
significant gains, there was no significant difference hetween gain scores of

the three remediation groups.

Recommendations for Further Study

Certaln anhancements to the profect would 1increase the potential
questions and research activities that could be underraken. A computer timing
device that would measure time spent per test ltem could reveal inefficlent
test  {tems. The same device could be used to more accurately examine and
record time required to take the test far use in various correlational
studles. Time-on~task studies for computer remediation students could he

incorparated for additional {nformation.

Administrative procedures that would recerd student attributes such as:
gender, eathnic background, age, math experience, math anxiety, computer

familiarity, and other variables could be used in further investigatlons.
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DRAFT

COMPUTER EXPERIENCES AS AN AID IN LEARNING MATHEMATICS CONCEPTS

Ed Dubinsky
Clarkson University

(Potsdam, New York 13676, USA)

As a teacher of post-secondary mathematics courses for the last 30 years, I have
never felt very successful in teaching abstract concepts, except in the case of those
students with a special talent for mathematics. 0f course it is possible to train
students to exercise various mathematical techniques, and even to apply these to
phenomena in the physical world. But if one is speaking of understanding concepts
such as composition, induction, linear independence, compactness, Timits, continuity,
homomorphisms, etc., then even with students who are quite successful in all of their
other subjects, in mathematics, experience suggests that they do not Jearn these
fdeas. There seems to be general agreement on this point (see, for example, [6]).

Any serious attempt to alleviate this situation would have to include at least
two kinds of activities. First, theoretical investigations are neecad to explain what

ts going on in the mind of a student when he or she 1s trying to learn concepts as

-sophisticated as the above and second, 1f the standard approach of lectures,

exercises, recitations and tests is not working then new methods will have to be
devised, evaluated and {mplemented.

Although there is a vast literature on these matters relative to concepts in
elementary, secondary and even early post-secondary education, there seems to be
relatively 1ittle study of learning concepts in undergraduate mathematics. There is
some work regarding representation (e.g., [5]) a lot of material on teaching problem
so'ving (for example [10], [11]) and perhaps a 1ittle about the use of computers for

discovery learning on this Tevel ([1], [2]).

In this paper I would tike to describe three on-going projects which attempt to
provide genetic {that is, developmental) data on the evolution of some of these
concepts in the minds of undergraduates and at the same time use computer experiences
as an integral part of the Tearning process. The approach is different from discovery
learning or computer assisted instruction in the usual sense.

In the first section the general approach and some of the ideas behind it are
dfscassed. Then 1 describe the projects: an experiment to test the effect of using
experiences with UNIX in teaching function definition and composition; observations on
the development of the concept of induction in undergraduates: and a fy13 semestor
course in which a very high Jevel programming language, SETL, 1s used to help students
develop mental images to represent various concepts in discrete stryctures. Next 1
present some of the partial results obtained so far and, finally, there is some
discussion of these results and a description of how I think all of this could be used

in an integrated system for teaching abstract concepts in mathematics.

THEORETICAL CONSIDERATIONS

Although it is premature to think of the ideas expressed here as representing a
completed theory that can be applied to the cognitive issues | am raising, I do
believe it is possible at this stage to make some points suggested by genetic data
which has already appeared, to see how they relate to subsequent data and to use them
as a guide in designing further studies.

My starting point is Piaget's theory of cognitive development ({87). Although
many authors suggest that according to this theory the development ends with the
attainment of formal operations during adolescence, Piaget himself is quite clear 1in
his position that “natural thought is a ..

. hierarchy of Jevels ... each of which
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corresponds, “n ... adult intelligence to successive stages of which it is the
stratification. Thus it is never complete ..." [3]. He also admits at least the
possibility that many adults never achieve formal operations, [9). Finally,
statements like, "from the psychological point of view, new mathematical constructions
proceed by reflective abstraction” [3] can be taken as an invitation to attempt to
accomodate this theory to the phenomena of learning abstract mathematics.

This 1s not the place for a full analysis of the notion of reflective
abstraction which is one of the key ingredients of Piaget's theory. Suffice it to say
that it s a mental process for acquiring concepts by building new cognitive
structures out of structures already constructed. It has many characteristics
including: becoming conscious of old structures that were used impiicitly;
reconstructing old structures by abstraction and generalization ; Tinking
several of these reconstructed structures together to form a new system; and applying
this new system to phenomena that could not previously be assimilated,

In studying the development of a particular concept from this point of view,
there are two things to consider. First is the genetic question of how this concept
decomposes into simpler structures which the student already has. One cannot simply
pick one of the possible logico-mathematical decompositions because as pointed out by
Piaget [3,7] in the case of the concept of number,the psychological decomposition may
be quite different. In the description of the induction project below one example of
now this question might be investigated is shown.

Second, there is the pedagogical question of what might be done to help the
student through the various steps in the reflective abstraction process of

nderstanding a concept. As a teacher, I consider this the main issue and [ feel that
najor efforts should be made to develop effective methods. The projects described in

che remainder of this paper are intended to be a contribution to such efforts.

SN
o

Regarding this second consideration, it is necessary to look a little more
closely at the process of acquiring a concept. The Jast step in completing the
construction of a cognitive structure is to apply 1t to various phenomena. At this
point the structure is used implicitly and in order to proceed with the development of
higher structures it is necessary to become conscious of the older structures. Thus,
in dinduction the subject uses the structure of logical necessity to derive P{n+1) once
P{n) is known. However, in order to understand that the method proves P{n) for a1} n,
it is necessary to be aware of the total structure p =» Q and to realize that
Pin) => P{n+l) is an application of this structure to infinitely many situations,

Only then is it possible to think about P{1) => B(2), P(2) => F(3),... which is a
family of implications indexed by n.

I believe that these two activities - using the concept implicitly in concrete
situations and becoming conscious of the concept - are very difficult to induce when
one is concerned with abstract mathematical concepts. The Jatter cannot be achieved
without having done a fair amount of the former and, since the concepts are abstract,
the only useful way to exercise them is by the manipulation of mental images. This
15, I believe, the main difference between the mathematics professor and the students,
When the professor Tectures, he or she ig using words and chalk to refer to mental
images which the mathematician possesses. Unfortunately, the student very often does
nol possess such images and so he or she only hears words and sees chalk. Nothing
happens that induces the student to build and use mental images.

The situation is somewhat better if there exist problems involving calculations
that exercise the concept. This is actually quite rare and even wh: esent, the
result is often that a student simply memorizes an algorithm for so ing a specific
kind of problem and does not come to any new understandings. For exampie | in the case
of composition of functions, one can give students plenty of practice in calculating

feg by substituting g{x) for x in f{x) and they will learn to do this in formylas,



‘Unfortunately this activity does not help the students to encapsulate the function
process and make it a cognitive entity that can be manipulated.

It is at this point that computer experiences can help. There are many examples
in which specific activities in writing and running programs or even Just deciphering
syntax serve as manifestations of quite abstract concepts and can be used by the
student as an aid to thinking of a process as a structured whole. My idea for
teaching a particular concept is to first make sure that the student has had and
remembers the computer experience. Then as the concept is explained (using the
experience as an example) the students are explicitly advised (drilled?) to use the
experience to form a mental image and to work with the concept in terms of that image.

For several years ] have been collecting examples of these experiences and using

them ad hoc in various courses where appropriate. It seems to help. At the very
least, when a student says to me, "I simply don't know how to get started on this
question”, I am able to recall a specific computer activity and suggest that the
student try to relate that process to the problem in question. Invariably this helps
the student to begin thinking.

More recently I have been involved in three projects in which there is an
attempt to employ this approach systematically for specific concepts (or groups of
concepts) and to evaluate the resuits, The remainder of this paper 1is concerned with
those projects. A1l of them are presently in progress so this discussion will not be

complete. Subsequent papers will contain a full report on each project.

UNIX, FUNCTIONS AND COMPOSITION

There are two concepts in this project: creating a function {(by definition,

. - . by a
selection from a class, composition, etc.) and composition as an operation formed by

succession of two operations {as opposed to a simple substitution in a formula). The

subjects were a group of 34 first year students at Clarkson University. They formed

the entire population of a math Tab course {not a required course), The experiences

In VENIX it is possible to define a new command to be any sequence of commands
and 1t is possible to pipe two commands together so that the QULPUL to the first ig
given as input to the second. A software package was developed so that subjects with
no knowledge of the machine or VENIX could practice with these operations using a long
Tist of examples of commands that included text manipulation as well as simple
algebraic expressions. There was the possibility to perform commands, to define a new
command by selecting from a class of commands, to pipe two commands together, and to
define a new command to be the command obtained by piping two commands together,

Al1 students were given a pre-test to determine how much they already knew aboyt
functions and composition. Then they were divided (arbitrarily) into an experimenta)l
group and a control group. Each group was given 4 hours of practice with exercising
various function definitions and composition. The experimental group used the
software package interactively at the machines and the control group worked with
pencil and paper in a standard classroom sftuation, Everyone was brought together for
a traditional 2 hour tecture on functions and compositions. Finally each group had a
2 hour session in which connections were drawn between the experiences during practice
and the ideas expressed in the lecture, In this session the students were repeatedly
advised to develop and use mental images (taken either from the computer activities or
their calcuations) in thinking about these ideas.

A post-test was administered and the results analyzed to see if they indicated
that thinking abouyt defining UNIX commands and piping two commands together to form a

third helps students to understand functions and composition.
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MATHEMATICAL INDUCTION

The initial goal of this project was to use experience with while-loops in
teaching induction to an advanced calculus class of 18 third and fourth year
aathematics majors with varied computer backgrounds. Later the emphasis shifted to
sathering genetic data on the development of the concept of induction in these

students.

The students were asked to read the (rather brief) description of induction in
their text and to do one very simple induction proof for homework. Then, in class
they were offered the following analogy to think about when trying to use induction.

Assume that you have written a very large program which
contains an infinite loop and have asked me to find it.
After some time, I point out the following code in your
program,

N o= 1,

while P(N) do $ PIN) is a boolean expression

N oi= N+1;
end while;
© Now think about what I must say (regarding P(N)) to

convince you that this is an infinite loop.

Two additional, more difficult, induction proofs were assigned for homework.
Then each student was interviewed about induction. They were asked to explain the
nethod; to explain why, after making such a proof, one could be sure that the
statement was true for any specific N; to describe any mental images that they used in
thinking about induction; and finally, to work a problem.

The transcript of the interviews showed that the students could be divided into
three groups as follows:

I. Did not have a completed concept of induction,

11. Had a completed concept of induction but did not use it as a strategy i1
making a particular proof,
I11. Had a completed concept of induction and used it as a strategy in making

a proof.

It was then decided to analyze further the interviews of the students at stage I
in order to obtain genetic data on the development of the concept of induction. This
analysis-gave rise to 7 substructures which needed to be present and then linked
together in order to form the concept of induction. It was possible to partially
order these structures in such a way that if A < B then B does not appear without A
also being present. The substructures are such that it is reasonable to consider
induction as being logically composed of them and this in fact is very likely the

actual psychological decomposition.

SETL AND DISCRETE STRUCTURES

This project is, in several ways, the most extensive activity described in this
paper. It is a full semester course designed to implement the ideas about using
computer experiences that we have discussed. This is now a regular course at Clarkson
University and has been given twice. It will also be given in Fall, 1985 at Dickinson
College.

The SETL programming language implements many of the basic constructs of
discrete mathematics. These include set-formers, existential and universal
quantifiers, vectors, sequences of finite but arbitrary length, relations (finite set
of ordered pairs) and maps on finite sets. Moreover, the notation is very close to
standard mathematical notation. For example, most mathematicians will guess very
quickly, if told that S, T are vectors {of unknown Tength), that the following SETL
expression

#1 0 T IN {1..4S) ST (EXISTS J IK {1..#T) ST S(I) = T(J)))
represents the number of components of S which have the same value as some component

of T.



Another feature of this language is that, because of thes. powerful constructs,

the use of standard Algol-like syntax in general and the fact t\at data types need no-.

be declared, it is quite easy to write programs in SETL. At thy beginning this means

that students enjoy learning the language and fairly soon they ire able to program

guite sophisticated expressions and algorithms.
The course proceeds by having the students learn to Progr . in the SETL

Yanguage. From time to time this process is interrupted for on or more class periods

by a discussion of a particular mathematics topic consisting ot one or more concepts

for which the programmming activity provides useful experiencesA

These experiences occur in two different ways. The first is simply the activity

of using SETL syntax for a particular construct. For example, onsider the following

SETL statement format which forms or constructs a set and estax}ishes the value of ths

variable A to be that set.

A := {expression IN x: x IN & ST boolean expression IN x:

Here underlined words are key words in the language and S must he a finite set (eithe -

previously constructed or actually an explicit set former itseif).

The students are advised to think of a set ii terms gﬁ‘lgs actual construction

by the computer as it is in the process of running a SETL Progr .o which contains an

expression that forms the set. Thus it is strongly suggested ;hat they form some

mental image of the set S (early on, one uses something quite pecific for S such as

the integers from 1 to 100) and to imagine the computer calculktfng the expression for

~each x in S and then testing the Boolean expression. If the Yoy s successful, the

value of the expression is placed in the set A,otherwise it is Ignored. It is help-

ful to discuss in class something about the representation of SETL values in the

machine so that students can think about this process even mor. concretely.

The course then goes into elementary set theory {unions, intersections,

cartesian products, etc.) and the students are constantly remxwded of the value of

thinking of these ideas in terms of mental images such as the bove.

The second way in which the experiences are ysed is through writing specific

programs. For example, the students were given the problem of evaluating choices of
ingredients in manufacturing a certain chemical. There were several ingredients and
for each there was a list of possible materials. The materials had various properties
and certain combinations of attributes had to be satisfied. In their program to find
valid selections, the students had to use existential and universal quantifiers. The
possibility of using the SETL constructs that implement these quantifiers directly
rather than detailed loops helped the students to construct concepts of
quantification.

Aside from attending class, the main activity of the students was contained in a
large set of homework problems (about 50) of which 10 were programs {some, such as a
data base problem were quite tongl. These formed the main vehicle for students to
have experiences. They alse provided drill to tie down some of the ideas and
challenges for the brighter students. Class activities included explanation of
concepts and exhortations to develop and use mental images (based on the SETL
experiences} in thinking about the concepts.

It turns out that many important concepts are amenable to this approach and |
will mention the main ones that are discussed in this course. In additon, there will
be a second semester {starting in 1985) that will try to discuss more sophisticated
concepts, but this will be described elsewhere.

The set former described above turned out to be very useful. The formal

.notation and its connection with a concrete activity performed by the computer led to

the development of useful mental images of set construction. Also, the three

separated parts - expression, domain specification, boolean expression - helped i:i?
clarify thinking. The expression in x followed by explicit menticn of the set from
which x comes provided for many students their first understanding of the domain of a

variable which appears in a function. Finally, using this set former notation to



describe compiicated situations (e.g. the median of a set of numbers, the set of
letters which appear twice in a word, etc.) helped students develop their skills in
simpie modelling and global thinking.

Students have a lot of trouble negating Boolean expression, especially when they
are quantified. In SETL one can write statements such as

FORALL x IN'S EXISTS y IN T STFORALL z IN U | Plx,y,2)

{here S, T, U are sets and P is a Boolean expression}), and indeed the nesting can be
to any depth. In a typical problem the students are asked to program a Jogically
complicated statement in English. Of course this simply amounts to expressing it in
the notation of gym&o?ic logic such as the above. They can negate it in the progranm
by prefixing it with the word, not, or they can develop a more detailed statement by
using a specific algorithm. This is then translated back to English. A1l the time
the students can think about the operation of the program but eventually they are
asked to go directly from the English statement to its negation in English. As a
teacher 1 have few greater pleasures than come from the experience of asking the
students to do this in class and then look at the strained expression on the faces of
a group of 50 individuals and 1iterally watch the process of construction of the
mental structures. 1 sometimes feel like the Kansas farmer in August whp goes out to
the fields at dawn and listens to the corn grow.

An entire unit in the course is devoted to operations with vectors and matrices.
SETL implements the compound operator construct of APL so these operations are not
only easy to program but the result is gquite close to mathematical notation. For
example, the result of applying the N x K matrix A to the vector x looks Jike

Ce/LACD () x(0): 0 IN D1 KD D T IN [1..NT]
The students learn to translate this to
=~ k .
= (Ey Agrydia

and eventually to skip the intermediate SETL notation. In the end the students are

asked to prove that matrix multiplication fs associative.

The last major concept considered in the course is relations. In SETL a
relation is a set of ordered pairs {vectors of length 2). Domains, ranges, inverses
and compositions now all have concrete manifestations in SETL programs and the
students use these to develop their mental images.

At the end of the course each student is interviewed. Various questions are
asked about these concepts and the student is requested not only to give the answer
but to describe the thought processes. The main purpose of these interviews is to see
if the students are, in fact, acquiring these concepts. A second purpose of the
interviews is to generate genetic data on the development of these concepts.

Most of the students in this class will go on to take a standard course in
Discrete Structures and Applied Algebra, which is a required course for majors in
Mathematics or Computer Science at Clarkson. Thus there will be many students who did
not take the SETL course. A comparative study is planned to see if this experience

has a measurable effect on performance in the second course.

RESULTS OF THE THREE ACTIVITIES

The test results on the UNIX experiment must still be subjected to statistical
analysis in order to determine significance, relation to standard predictors such as
SAT scores, and comparison with performance in other areas. It is possible howsver t,
make some remarks about the raw data and to observe that the results appear to be
rather striking.

Overall, the average score of the experimenta) group {who had the computer
experiences) was more than 509 higher than the average of the control group. The
experimental group did better than the control group in each of the seven guestion
areas although in two of them the difference was small and may turn out to be not
significant, statistically. In 4 of the question areas there were three types of

problems. First a problem involving functions [similar to those emphasized with the



control group) of the kind usually discussed in calculus and whose solution involved
substitution of variables. Here there was very little difference between the two
groups. Second there was a problem involving functions similar to those used in the
computer experiences {which had also been discussed briefly with the control group]
and regquiring the student to think about the action of the function. In this case the
experimental group’s score was 40% higher than that of the control group. Finally
there was a problem using functions unlike anything that had been discussed with
either group but again requiring the student to think about the operations. This tim:
the experimental group's scores were again 40% higher.

It should alsc be mentioned that on this test, which colleagues have suggested
is rather difficult, the experimental group's overall average was over 60%. The exam
did not count for their grade in the course nor were they expected to study for it.

It was clear from the time spent and the scratch work shown that hoth groups took the
exam seriously,

Finally, although half of the experimental group was taught by me and the other
half by the regular instructor, there was 1ittle difference in the scores of these two
sections, All of the control group was taught by the regular instructor.

The results on the induction project were much less encouraging. In the first
place, the overall performance was distressingly poor and in particular almost no one
referred to the while loop analogy in explaining how they thought about induction., OF
the 18 students, 6 were in the first stage {described above), 9 were in the second
stage and only 3 were in the third stage. OFf the latter group, only one actually
succeeded in solving the problem.

On the other hand, much of the information provided by the interviews was quite
interesting. The definition of stages and membership therein was quite sharp (three

different people read the interviews without much disagreement on this) as was the

relation of the 6 students in stage [ to the sublevels percieved in this state. Also
the difference in understanding of induction displayed by the students in different
stages was much wider than one might hope for with individuals in the same course who
have studied the topic.

Regarding the SETL course it will be some time before detailed results are
available. The interviews must be transcribed and analyzed while the longitudinal
study wiil of course last for several months at least. The only kind of results
available are the comments of the students which are quite favorable and my reaction
as the teacher which may well be due to various factors other than the methods

¢

described here. 1 do feel that student activity {in class and with homework} is at a
higher level than normal and 1 would expect the data to indicate that they learned a

great deal.

DISCUSSION

None of the projects described in this paper has reached a sufficient state of
completion to warrant any definitive conclusions. It isg possible, however, to make
some provisional remarks and in particular to indicate some directions in which the
research will continue.

The experiment with UNIX suggests that this particular way of using computer
experiences can be helpful with teaching functions and composition, Statistical
analysis of our data and repetition of the experiment should confirm and quantify this
affect. The subject matter seems particularty appropriate for advanced high school
students so our next project may involve this group. We will attempt to develop a
package that can be used by a high school or college teacher as a unit on function
definition and composition. It should be useable in either a classroom or learning
taboratory situation. ~—ry
Even a superficial glance at our data raises some interesting questions

regarding composition. Three of the seven questions involved giving the subjects two



of the functions F, G, H in the formula H = FoG and asking them to find the third. 1%

turned out that both groups did well {about 75%) in finding H or F but not so well
{33% for the control group and 63% for the experimental) in finding G. Also, in the
four sub-questions that involved functions unlike any that had been shown to either
group, they were much more successful in thinking about arithmetic calculations with
triples of integers than about rigid motions of a square. It would be interesting to
analyze these observations from the point of view of cognitive development. It may
well be that the emphasis at Clarkson on numerical calculation has something to do
with this effect.

The project with induction appears in a much different light. In the first

place, the classroom discussion of while loops did not seem to have much affect. [t

may be that explicit, recent activities with the computer experience will work better.

It may even be necessary for those computer experiences to involve directly the
concept being learned. On the other hand, looking at the three stages, it seems that
the while loop image would be helpful only with people at stage 1. It is possible,
although there is no evidence for it, that the people in stage Il got there by
thinking about while loops. This would explain why stage II has the largest
population but it would not explain why they don't mention this analogy in the
interviews.

In any case, the people in stages II and 11l need something very different to
help them learn induction. In fact, the most striking reaction that ! have to the
results of this project is that if one wanted to teach induction to this group of

students any single activity would be largely a waste of time for students in two of

the three stages.
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In our future work on this project we will interview the same students on
compactness (which was a major topic for them during this semester). My expectation
is that there will be a similar decomposition into stages and the students will be
easy to assign to a particular stage. At this point there will be an attempt to
analyze this genetically and use it to advance our understanding of how undergraduate
mathematics students construct the concepts which it is necessary for them to acquire,

As we move into more of the abstract concepts in mathematics, it may become
increasingly difficult to find appropriate computer experiences. This is an area that
will require some creative activity and also, as we grow in our understanding of how
the cognitive development takes place, we may find that experiences which do not
relate to computers may be helpful in the same way.

Although there is no data on the SETL course yet available, it can at least be
reported that this approach makes for a Tively course in which the students are
responsive in class and active outside of class. In comparison with similar groups to
whom [ have tried to teach this material, these students seem to be more prane to
speak in terms of sets and less confused by complicated Jogical statements. They Tike
the material and seem to enjoy working with it. On the other hand, the task of
integrating all of this into a coherent course is not trivial. The issue of how far
the computer experience can be removed {in time and awareness) from discussion of the
concept arises here (as it did with while Toops) and is particularly important in
designing the specific operation of the course. The students in this course did not
do as well with the study of relations, their inverses and their composition. This is
more difficult, it came later in the course and although there was ample verbal
reference to computer analogies, there were no actua) computer experiences directly
related to relations.

It is possible to begin to perceive an emerging overall approach to teaching
concepts in undergraduate mathematics. Broadly speaking, the projects described here
contribute to the study of this approach as, respectively, an effective package for
teaching one topic, a study of the genetic decomposition of specific concepts and the

integration of these ideas in a single course.



Here 1s how [ see the overall approach at this, provisional, stage. All of the
concepts in undergraduate mathematics should be analyzed and their genetic
decomposition determined. The curriculum should be rearranged not in terms of course
but in terms of the interrelationships amongst the structures of which the various
concepts are composed. Appropriate methods, including the use of computers as
described here, should be developed to induce the acquisition of each structure.
Students should be constantly tested and interviewed to determine which concepts
they already have, which structures they should work on next and which alternative
methods are most appropriate for them. Individual courses and classes of students
should be loose and changing, putting together temporarily those individuals working
on the same thing with the same method.

There are many difficulties with the development and implementation of such an
appreoach. The most obvious is the amount of research required before one could even
begin to think of using it on a large scale. The development would be "circular® in
that the testing and interviewing of students would serve not only to assimilate them
to the approach but also to accomodate the approach to our growing experience with
students learning these concepts. The perpetrators would reflect on what was going on
and continually revise the methodology on higher planes. Hopefully there would be
perfods of equilibrated tranquility during which time one could think about evaluating
what had happened and disseminating the results.

Another difficulty is that, however important, concept acquisition is not the
only thing that is required in studying undergraduate mathematics. Problem solving,
techniques, modellina and applications are all essential and may well require entirely
different approaches which would have to be incorporated.

In spite of all the difficulties, the experiences that I have had so far
convince me that the ideas behind this approach are sound and that implementation is

not only feasible but will Tead to important, measurable results. At the very least

have demonstrated in this paper that it is possible to develop and use the approach
piecemeal so that the total system described above can be instituted gradually. 1
prapose to continue this and I hope others will Join me. Eventually, there may come
an opportunity to attempt an implementation of the entire approach in one place. |
would hope that all of this will make a contribution to teaching, to learning and to

the understanding of both.
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Dr. Leo H. Klingen

Bemerkungen 2zu

"THE INFLUENCE OF COMPUTERS AND INFORMATICS ON MATHEMATICS AND
ITS TEACHING"™

sich ausschlieBlich auf den Mathe-
- 19-jdhrige

Diese S3tellungnahme bhezieht
matikunterricht in der gymnasialen Oberstufe (16

Schiler, pre-university-level].

Es wird zwischen 2 Zustidnden unterschieden.

Zustand A ist die Situation, in der sich heute die meisten

Schulen befinden. Zustand B besitzen heute nur wenige Schulen;

" o
es ist jedoch wahrscheinlich, daB er fiir die Zukunft der R

gelzustand wird.
Der Zustand A ist dadurch gekennzeichnet, daB alle Schiler
i nen
dieses Alters Taschenrechner mit wissenschaftlichen Funktio
e
besitzen etwa ein Viertel von ihnen auch programmierbar
?
die Schule besitzt eine Computeranlage, an der

numerische software Kkleineren

Taschenrechner;
fiir den Mathematikunterricht
manchmal auch ein Flotter.

konkreten Funktion

Umfangs vorhanden ist,

pas bedeutet z.B., daB der Graph einer

ne-
nicht mehr unter Ausnutzung der Kenntnia seiner ausgezeich

sondern durch Berechnung von 20 beliebigen Punkten
ermittelt wird; auch Grenzwerte von

ten Punkte,

iiber den Taschenrechner
auf diese Weise heuristisch gefunden.

darunter

Termen werden zundchst
Gleichungssysteme oder bestimmte Integrale,
werden iiber den Schulrech-

Lineare
ndherungsweise auch uneigentliche,

ner gelést die Losungen von expliziten Differentialgleichun~
!

gen ersten und zwelten Gradea approximiert

kurven ebenso wie andere Funktionenscharen liber den

und ihre LOsungs-
Plotter

dargestellt.

Im Zustand B werden symbolische Verarbeitungen mdglich., Das
8ilt fir die Hquivalente Umformung von Termen und insbesondere
fir das L&sen von linearen und quadratischen Gleichungen und
Bruchgleichungen sowie linearen Gleichungssystemen (auch mit
Formvariablen) nach beliebigen Variablen. Ebenso ist symboli=
3ches Differenzieren und symbolisches Integrieren der im schu=-
lischen Rahmen vorkommenden Integrale méglich. In kleinen
Zusammenhidngenden Problemfeldern und Anwendungen wird die
Verkniipfung einschlégiger Funktionen automatisch durchgefihrt.

(Beispiele: arithmetische und geometrische Folgen und Reihen,

Trigonometrie, Zinsrechnung, Kinematik der geradlinigen
gleicbfarmigen und gleichmifig beschleunigten Bewegung,
Strom~Spannungs~Widerstands-und Energierechnungen aus der

Gleichstromrechnung Usw. )
Didaktische Konsequenzen,

Zustand A,

Wdhrend die Lehre fiir die frihen Jahre der Sekundarstufe I
bestrebt sein mufl, gewisse Randfertigkeiten ohne Taschenreche=
ner (z.B, Prozentrechnen) zu erhalten, was zu teilweise defen~
siver Einstellung gegeniiber dem neuen Mediunm fibhren mufB, kann
die Entlastung durch den Rechner fir die &Hlteren Schiiler of-
fensiv bejaht werden, weil sie AnlaB zu vielen mathematisch
interessanten Fragen liefert. (Beispiel: Ein Suchverfahren hat
am Computer innerhalb eines Intervalls keine Nullstelle ergew
ben. Existiert Uberhaupt eine Nullstelle, lassen sich gaf.
Schrankensiitze fir ein anderes Suchintervall finden?) Das
Verstédndnis eines effizienten Algorithmus soll auch zur Not,
wenn der Taschenrechner nicht zur Hand 1st, die Handrechnung
erlauben (den ggt iiber den Euklidischen Algorithmus und nicht
nur iliber eine Zerlegung in Primfaktoren, die Quadratwurzel

Uber das Heronverfahren und nicht nur iber die quadratische
Ergdnzung u.id.)

~Q
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Man wird auBerdem auf die vollstindige Darstellung der Theorie
an den durch die Maschine m"abgenommenen" Stellen nicht ver-
zichten konnen, kann allerdings die Darstellung zugeordneter
Beispiele auf einfache FiHlle beschridnken. So werden z.B. die
aufwendigen Diskussionen konkreter zusammengesetzter transzen-
denter Funktionen, wie sie zur Zeit das Zentrum von Abiturauf-
gaben darstellen, teilweise Uberfliissig. Stattdessen sollte
man allgemeine Funktionseigenschaften ("Jede ganze rationale
Funktion 3. Grades besitzt genau einen Wendepunkt und 1ist

punktsymmetrisch zu 1hm"®) bearbeiten lassen.

Zustand B.

Da das Arbeiten auch mit aufwendigem Kalkiil durch die Maschine
ibernommen wird, {(dazu gehort z.B. auch die Vereinfachung der
Koordinatentransformation fiir den gerade zitierten Satz) wer-
den im bisherigen Zeitrahmen neue Geblete zugdnglich; hier
reicht die Erarbeitung der wesentlichen mathematischen Grund-
gedanken, um zusammen mit maschineller Hilfe vielfache Anwen=-
dungen anzugehen. Wichtig 1ist, daB Tragfihigkeit und Relchwel-
te solcher erweiterter Methoden so durchsichtig werden, dal
Ansatzvoraussetzungen und Ergebnisrestriktionen sinnvoll
durchgefihrt werden kodnnen.

Im einzelnen kann man in Auswahl denken an

- Ansetzen von Differentialgleichungen

- Ansetzen von Differenzengleichungen und Diskussion der I1iw-
nearen Differenzengleichung

- Propiddeutik der Fourier-Analyse

- Reelle FKurven und andere Elemente der Differentialgeometrie

-~ Kubische Splines, auch parametrische

- Chiquadrat-Verfahren

- Regressionskurven und anderweitige multivariate Statistik

- Markow-Ketten

-« Algorithmen der Graphentheorie in Anwendungen

~ Komplexe Abbildungen

- Numerik, insbesondere Fehlerfortpflanzung.

Pddagogische SchluBfolgerung.

Es kann kein Zweifel dariber bestehen, dal eine bisherige
didaktische Notliige aufgedeckt wird: der durchschnittliche
Schiiler bekam durch perfektes, wenn auch schematisches Umgehen
mit trivialen Umformungen an den meisten Schulen befriedigende
oder gute Zensuren und muBte annehwmen, deshalb Mathematik
leidlich zu beherrschen. Wenn ihm die Maschine diese Leistung
abnimmt (Zustand B), kénnte ein Zustand resultieren, daf zwar
eine Fiille interessanter Problemstellungen fiir die Schule
Ubrigbleibt, Jedoch diese weder durch die Maschine noech durech
unsere durchschnittlichen Schiiler gelfst werden konnen. FEs
stellt sich dann die Frage, ob die schulische Lehre von Mathew
matik in der Lage 1st, dasselbe Kunststick zu vollbringen,
welches die schulische Lehre des Faches Kunst in den letzten
50 Jahren vollbracht hat, n#mlich einen erstaunlichen Anteil
von Schilern zu kreativen Leistungen zu erziehen., Fiir die hier
gedachte Mathematik wirden schon Féhigkelten zum problemlisen-

den Denken reichen.

Ein experimentum crucis in dieser Beziehung ist die Konstruke
tion eines neuen Stils von Klassenarbeitse bzw. Klausursufga=-
ben. Dabei muB man davon ausgehen, daB keine komfortablen
Computer~Einzelplitze fiir mehrere Kandidaten oder gar einen
ganzen Kurs aus OSkonomischen Griinden zur Verfligung stehen
kdonnen, wo ad hoec detaillierte Programmierung stattfinden
kann. Dagegen erscheint es tatsdchlich denkbar, daB gut doku-
mentierte und voribersetzte softwaretools in groBem Umfang so
vorhanden sind, daB Schiler bei geelgnetem Aufruf (und unter
entsprechender Aufsicht) schnell 1hre Ergebnisse sukzessive
holen kbonnen. Die Lésung solcher Aufgaben verlangt dann vom
Schiler mehr Verbalisierung als Rechnen, mehr Begriffs- statt
Kalkulorientierung. Sie besteht in einem wohlbegriindeten An-
satz, dem Aufruf vorhandener Prozeduren mit genauer Bezeich-

nung der richtigen Parameter und ggf. dem Verbund solcher



Prozeduren, schlieBlich einer ausfilhrlichen Ergebnisdiskus-
sion.

Ea wére absurd, aus der neuen Lage schliefen zu wollen, die
Schule sollte weniger Mathematik behandeln; im Gegenteil: weil
der numerische und der algorithmische Aufwand entfallen, kinw
nen viel reichere mathematische Aussagen als bisher erschlos-
sen werden und flr die Schiler dle Beziehungshaltigkeit dieser

Wissenschaflt wesentlich erhdhen.



COMPUTERS AS A UNIVERSITY MATHEMATICS TEACHING AID:

TOWARDS A STRATEGY

Dr. Michael Thorne, University College, Cardiff, wales, UK.

Introduction

The fundamental assumption of this paper will be that

there is at least a prima-facie case for the use of
computers as teaching aids within undergraduate
mathematics. Herein, we shall be concerned with the

next stage - organising pilot studies - and the
difficulties of doing so in a cost effective way across
various degree awarding establishments in a given nation.
In doing so we shall draw heavily upon lessons learned

from the leading role the UK has taken in Computer Assisted
Learning (CAL) in schools, and from the current situation
within mathematics departments in UK universities.
Discussions with colleagues from the USA, Canada, Australia
and Tasmania and a visit to Sri Lanka suggest that

there are at least elements of the UK experience which have
relevance and/or counterparts internationally. The issues
we shall raise affect both university teachers and the
entire university administration system, from government

level downwards.

Learning from Experience

It is obvious that spending a lot of money on new computers
and software would almost certainly improve our mathematics

teaching in some respect. But to maintain a government's

long term respect - and hence, long term investment -

the resulting achievements must be cost effective. From

a government's point of view, that means our undergraduate
teaching must get a better report card from industry.

If our graduates meet the modern demand for flexible
thinkers capable of adapting to both the changing demands
of a given problem as well as different product bases,
pressure will come from industry for greater investment

in these new teaching methods, Few countries have a
surplus of able mathematicians, yet there is often a

small proportion of graduates who find it hard to get jobs.

Faust [l] summarises recent UK experience:

Recent figures indicate that about half
those graduating from university with a
first degree in mathematics start
employment in the UK, whilst another
quarter continues in full~time education
here. The final quarter covers those
going overseas, those not available for
work or study, and the unemployed who,

6 months after graduation, account for
just under 10 per cent of the graduates.

If those who do postgraduate teacher
training are lumped with those entering
employment directly after graduation,

the employment sectors of first degree
mathematicians are commerce (40 per cent),
industry (30 per cent), education (20

per cent) and the public service, public
utilities and transport (10 per cent). The
main commercial employers are the financial
institutions, chartered accountants and
computer software houses; in industry they
are electronics firms and computer manufacturers.

Nearly one in ten take a relatively long time to find
work, evidence, indeed that there is room for improvement

in our teaching of mathematics and possibly a reminder



(from O'Shea and Self [7]) being typical:

that our students must emerge as well balanced people.

Faust concludes his paper with a warning:

..... employers were seeking recruits
who were intelligent, numerate, well
educated, capable of solving a variety
of problems, able to communicate clearly
in speech, and in writing, and
personable...., During their careers
they must develop skills and learn much
that is new so that they may £fill more
senior posts or transfer to new fields

of work. To this end recruiters, through
their selection procedures, attempt to
assess the "potential” of the applicants,
and ope important aim of a university
should be to provide the stimuli that

..., as usual, there is more to be

learned from the shortcomings than from

the successes of the enterprise. The
‘institutionalisation' aim led naturally

to the selection of projects which were

more likely to be accepted by the host
institution. Projects tended to play

safe by attempting to implement existing
objectives, and to avoid significant
innovatory develcopments, knowing that

in only five years or less they were unlikely
to bring about major changes in the
educational system itself. Projects were
led away from research to applications, the
NDP being explicitly a development programme
with no research pelicy. The idea that in
1973 there existed a body of knowledge about

"o 7

will res i
inteliegzizllgesgfgpigszna% ii yell as computer~assisted learning which it was worth
e o] eir students. developing without further associated research
seemed at the time fanciful, and in retrospect
absurd.
It follows that the involvement of computers in The absence of a proper experimental design
i ] i ; resulted in a preliferation of 'case-studies’
mathematics teaching must avoid encouraging undergraduates the significange or success of which is ’

to become computer junkies, spending most of their free virtually impossible to determine.

time with machines rather than humans.
And if all that were not warning enough, O'Shea and Self

A decade ago, a five year £2.5 million government sponsored point to the technological short-comings of NDPCAL, which,

National Development Programme in Computer Assisted Learning as we shall later attempt to indicate, may seriously restrict

(NDPCAL) was undertaken in the UK. Tts aims were: the 'assimilatien' of computers into university level

mathematics education.

to develop and secure the assimilation

of computer-assisted and computer-mana
: : ged
iiaigizgnzgla regglar institutional basis iﬁgggzizgigiily'yﬁgi ggzepiggezgsggigial-
e cos .
purpose computer systems, typically mini-
(Hooper [1}) computers, not specifically designed for computer-
P . assisted learning and almost all the teaching

material was written as small programs in FORTRAN
and BASIC, two languages whose design reflects
their vintage, but which do alas provide the desired

with a bias towards undergraduate level science teaching transferability since almost all computer
but away from mathematics in its own right. NDPCAL was gin2532§;§2§§r23¥2rfiiémObéégzdmzzeiigz1325C3§§§i2§5

not an ungualified success, the following criticisms in a conventional author language.



overcome now through government leadership. Hardware
prices have continued their exponential rate of fall

since NDP but software costs have rocketed. Cost-effective

éﬁé&éigeéhgngggnzgetﬁ:vgbgfhgicsgzgmputers, software development will invelve producding teaching and
?gng?iggpggifeyiz szgig?iogogglgzioiingi learning packages which many sites are able to use. Disparate
gﬁ;ﬁ?gi:laﬁztéﬁzﬁ 2?V§h;h§§igi§21rggszfggment hardware forces developers into assuming the least common
woTk 1s nmow seen to be irrelevant. denominator at each site making it very difficult for
Not one NDP-funded package has been adopted by all UK computers to play any key role in the mathematics curriculum
universities, or even by the majority of them. Those at all - as we shall discuss later.

which are still in use show their age because of a

dependence upon 'teletype-style' interactions with their UK primary schools have avoided this problem to a great
users wherein hardware, now obsolescent, could only accept extent by standardising on three machines. One of these

and react to one line of communication at a time. In our has been adopted by more than 80% of primary schools and

present context this remains a major problem since the another accounts for the vast majority of the remainder.

computing power we must make available to the learner ' Apart from its small take-up within schools, the lack of

demands the university mainframe but most university . availability of proper software development tools for the
mainframes either still have the obsolescent teletypes third machine and its slow graphics capabilities make

or visual display units which are incapable of proper ;
piay cap prop software development for it expensive. As a result, it

raphical displa offerin lexibili i .
grap prays, ering less flexibility of presenting has all but been dropped by the official software producing
and gathering data than the cheapest of high street X

agencies.
microcomputers. Increasingly this problem is being overcome

by individual university departments on an ad hoc basis with .
Y Y i The second most popular machine was designed in the UK for

the result that, say, applied mathematics has adopted th

¢ ¥ PP P N school use and 1is not marketed to the home buyer. As a result
Apple II as a graphics terminal to the mainframe whereas -
F aree its user base is so small that educational software development I

statistics are using a BBC Microcomputer.
that machine has been almost entirelv at the taxpaver's exrense.

Commercial publishers cannot hope to recoup their outlay on
Multiplying the problems caused by this non-standardisati
pryne F Y rassation sales of a few thousand packages with retail value about US$10.

with the different types of university mainframe machines :
University level software sells in low volume and at a high

and with the different operating systems on those machines . .
price but there would be a reasonable commercial opportunity
it is easier to have s athy with what 0'Shea and Self
¢ e Y internationally for IBM based Mathematics teaching software
d ibed th hnological ' t ' ixri
eecrived as ¢ rechnologically ‘unadventurous' spirit of at the moment, for example, But the costs of any large G

the NDP.What do Cyber, DEC, Honeywell, IBM, ICL and Prime system development are enormous and it would be foolish W
have in common except FORTRAN? But this problem must be to ignore the contribution hardware manufacturers cou’d

make: software sells hardware.
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Hardware Selection

It cannot be emphasised enough that the hardware is the cheap part

of a computer system. Saving $10000 by buying terminals without

graphics may involve $20000 or more putting a workable
user interface into a single software package. Moreover, the

facility for non~linear input is crucial. Devices such as the
Apple Mouse, light pens and touch sensitive screens are not

frippery - the QWERTY keyboard is very, very limiting.

As indicated before, we do not regard microcomputers as a very
useful hardware base for the involvement of computers in under-
graduate mathematics, given their current level of computing power .
Algebra systems with wide applicability and non-trivial computat-
ional ability cannot be mounted on a 64K, 8-bit, floppy disk based
micro. But the argument for making high computing power available
to each learner really springs from the lack of time for lecturers
to familiarise themselves with software packages. If the teaching
packages are actually professional mathematical tools, any effort
expended on learning how to use them is easily justified by a
lecturer. In algebra, for example, the package CAYLEY (Cannon [1]}
could be used for both teaching purposes and research but it was

day microcomputer.
designed as a research tool. Yet CAYLEY will not run on a present- b

Networked systems of micro-computers are not adeguate either. In
general these are intended as resource-sharing links and do not
enlarge the computing power available to each user on the network.
Moreover, a network manager 1s required which either involves
paying a technician or steals time from a lecturer's research.

The same 1s of course also true of a laboratory of free standing
micros: an individual university department in this way takes on

work which the university's Computer Centre is paid to do.

To redress the balance slightly, I would like to conclude this
section by admitting two useful roles microcomputers could play in
undergr aduate mathematics education. The first is in electronic
blackboard applications and the second as in CATAM (Harding [1])

where the students are expected to do some programming.

Software Development and Maintenance

During an address at CAL 83 Bryan Spielman classified CAL
software into *amateur and '‘professional types. Amateur

software is programmed by the lecturer who uses it and is

not robust in its user interactions. For example, certain
keyboard combinations will cause the program to crash and

the program doesn't explain what has to be typed in at every
stage. This sort of software is very useful to its author but
highly non-exportable because there is no adequate documentation
describing how it works or what it does and the program is

known to fail under certain circumstances. Professional
software, on the other hand, is fool-proof in every sense. The
program can cope with random key depressions at any point of its

operation, the documentation is detailed and complete and the

whole package has been thoroughly tested before release.

For small teaching points, amateur software may be cost effective,
but no amateur or group of amateur programmers could have produced
a system the size and complexity of CAYLEY which took several
pecple fifteen years to develop. 1In general, governments and
faculties may see the economic need for a computerised first

year analysis or algebra course but category theory third year
courses with an average of 4 students a year will not warrant
professional software unless this is developed as a serious
research tool. Moreover, there will be a good market for the
commercial publishers in support materials for these first

year courses which would therefore warrant the necessary outlay

for their development,



But with all large-~scale software, the major costs ave not

only in the initial production but also in maintenance:

In general, 1t is impossible to produce systems

of any size which do not need to be maintained.

Over the lifetime of a system, its orviginal
requirements will be modified to reflect changing
needs, the system's environment will change and

ehscure errors, undiscovered during system

validation, will emerge. Begause maintenance 1is
unavoidable, systems should be designed and implemented
80 that maintenance problems are minimised.

The costs of maintenance are extremely difficult to
estimate in advance. Evidence from existing svstems
suggests that maintenance costs are by far the greatest
cost incurred in developing and using a system, I
general, these costs were dramatically undervestimat
when the system was designed and implemented. As an
illustration of the relative cost of program maintenace,
it was estimated that one U$ Alr Force System cost

$30 per instruction to develop and $4000 per instruction
to maintain over its lifetime.

Sommerville [1]
Educational Software Houses in the UEK and USA producing material
for home and school use have learnt the importance of having
the teachers specify the software which is to he developed
and then putting professional programmers to work on production
It has also become clear that trialling and feedback from
comments obtained as a result of trials (which is then incorporated
into the design) are absolutely essential. But however remarkable
it ia, after all this experience and that described in
sommerville [1] and in the literature in general, some people
still try to develop softwars in an ad-hoc manner in the belief

that they can do it more cheaply that way.

Unfortunately there cannot be short cuts. The financing of
professicnal software has to be on a firm basis - either

commercially or government sponsored or both. This will involve

compromise on content between that which is ideally
desirable and that which will appeal to sufficient other
institutions to warrant the development costs. Just imagine,
two universities forced to agree on whether continuity is

introduced via ¢ - § conditions or via nested intervals and

L&
e‘-;

whether operators are to be written on the left o ight!

Research tools as teaching vehjicles: Algebra and CAYLEY

Computers could transform our undergraduate t

i
H

At the moment students learn fact
propositions, thecorems - and rules: for example, how to find
the inverse of a matrix. The students are then set problems
which can be done in the short time allowed for homework
assunping, in effect, that thevy work on their own. Stacks

of Schaum's Outline series in university bockshops demonstrate
that there is a template from which the majority of such

problems stem. Motivation of the concepts gets

time and wien it comes to proving things rather

students often have difficulty knowing whether what they've

H]

a proof. The very act of symbolism gets no

fary
o

constructe

motivation at all, a situation which could he easily recti
by giving students computer systemsz the behavicur of which

they are to symbolise,

l

S

~

Better than this, it would be possible using the language
Prolog as a base to design a system which would accept facts
and rules about an algebraic system as and when they were
discovered by the students and seemingly decide if enocugh
information had been presented to prove a given hypothesis.

The computer system would have no objection to stud:nt's
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erroneocus or irrelevant deductions and would thereby
encourage students to 'think round’ problems and prevent the

‘drying-up' syndrome (Buxton [11y.

CAYLEY allows serious calculations in very large finite groups
{and small onest laying with group elements in CAYLEY allows
students to experience the great stride a subgroup concept
really is. They can hunt for, try to recognise and attempt

to define subgroups in intellectually demanding groups, not
just 8§,. They can come away actually knowing some groups and
their subgroups. Given time they will discover some of the
concepts like normal subgroups and centralisers for themselves:
thelr role in mathematics will be more active. Matrix
calculations are also done for you in Cayley. Thus, fairly
large groups can be investigated for conjugacy classes, orbits
ete in permutation or matrix representations. But best of all
whether ultimately they turn out to be waak students or
mathematical researchers, they will also have learnt how to

use an important research tool, which has facets atfecting

every year of the undergraduate algebra curriculum.

Concluding remarks

All temptations to adopt programmed learning or drill and
practice techniques through computer use should be eachewed
by mathematics teachers everywhere. Whether our students
enter research or industry & flexible mathematical approach
is vital; behaviouristic training does not encourage
flexibility, The proper integration of computers into
university mathematics curricula most involve more than

Papert's linear mix of technologies (see Papert [1]), which

as he ably describes, is doomed to failure. A good and
economical first step towards this proper integration is to
change our teaching approach so that tools like automatic

integrators are used essentially. The next harder step

will spring from asking - as was done when CAYLEY was first

conceived ~ what computer-based tools would assist both

teaching and research in this subject? Sometimes this will
be obvious; sometimes the historically motivated approach
may be suggestive {as in Toeplitz [13] for example); sometimes
it will be sheer ingenuity: Papert and Feurzighs Logo language
and Abelson and diSessa [1l] together offer a differential
geometry course teachable at a much earlier stage than ever

before thought possible and their Turtle casts light upon

the subject even for the experienced eve.
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REFLEXIONS SUR CERTAINES BASES MATHEMATIQUES
DE L' INFORMATIQUE

Contribution & la question n® 10 du §2

du texte dlorientation de la CIEM

JACQUES STERN

Université de CAEN

I1 est bien évident aujourd'hul que les mathématiciens ne peuvent
ignorer l'informatique ; il en résulte gque tous les étudiants en mathéma-
tiques et en particulier ceux qui se destinent & l'enseignement, doivent
avoir été exposés & la pratique d'un langage de programmation évolué.
Cela dit, 11 n'est guére possible d'en rester 13 : on ne peut éluder la
question des fondements théoriques de 1l'informatique puisque c'est en
somme un point de passage obligé pour relier la pratique nmathématique &

la pratigue informatigque.

En France, une reflexiom sur ce sujet a abouti & la création cette
année, d'une épreuve optionneile d‘informaﬁique 3 l'agrégation de mathé-
matiques, concours ae recrutement d'enseignants qui est, on le sait, de
niveau €levé. L'auteur du présent texte est parfaitement d'accord avec
les thémes qui ont été retenus pour constituer le programme de cette
épreuve ; 1l prépare actuellement, en collaboration avec C. PUECH, un ou-
vrage dont le contenu sers trés proche et il présente ici guelgues ré-
{lexions personnelles qui ont accompagné la premiére phase d'élaboration
de l'ouvrage. Il va de soi que ces réflexions n'engagent en rien les
membres du jury de l'agrégation ni les collégues qui ont rédigé le pro-

gramme.

I1 est bien clair tout d'abord qu'un approfendissement des base thé~
oriques de l'informatique ne transforme pas un mathématiclen en informati-
cien ; c'est plutdt une sorte de "conversion mentale" qui met celui qui
1'a pratiquée en mesure d'appréhender les réalités informatiques ; & cet
égard donc, cet approfondissement est peut &tre plus adapté encore & la

formation en mathématiques qu'a la formation en informatique.

§1. AUTOUR DE LA NOTION DE CALCUL

La théorie de la calculabilité a, auprés de certalns, la réputation
d'8tre pénible et formelle ; pourtant, la premidre tdche du théoricien
est bien de délimiter ce qui est calculable {ou effectif comme on dit par-
fois) de ce qui ne l'est pas. On peut bien siir se contenter de déclarer
calculable tout ce qui est susceptible d'un traitement machine. Tout en
n'étant pas dénué de sens, ce point de vue est vague et ne permet pas de

tester la "robustesse" de la notion ainsi isolée. Par ailleurs, ce point

de la plus haute importance sur la calculabilité antérieurs 2

des premiers ordinateurs : par exemple ceux de Turing [1¢

3 g L .
[1936], de Post [1936] sur la calculabilité, mais également ceux de
. r. a1 - I . - . N
Mo Culloch et Pitts [1943] sur la modélisation des systémes de neurcnes,
3

qui a donné naissance & la théorie des automates.

Clest précisément la théorie des automates que nOUS DPropOSONSs comme

point de départ ; elle présente 1'avantage d'8tre une t}
E I £

bien développée ; elle se préte bien & un traitement
peut par exemple simuler l'action d'un automate par un programme $crit
dans un langage comme PASCAL. La théorie des automates permet également de
présenter les premiers rudiments d'algorithmiques et d'évaluation de com—
plexité (par exemple en comparant divers algorithmes de minimisation) ;

elle autorise aussi une introduction relativement simple du concept de non

déterminisme. Enfin, et ce n'est pas un argument négligeable, elle

que : aux éditeurs de texte et i l'analyse lexicale en particulier.

Cela dit, la modélisation des machines par les sutomates aboutit 3

un constat d'échec ; par la considération de langages simples non rsoonnus
par automates mais aussi par l'observation évidente qu'une notion centrale

en informatique est évacude, celle de capacité mémoire. Il faut donc re-

prendre le probléme et il est raisonnable de montrer que différentes
des permettent de définir la méme notion de calculabilité ; ce qui prouve
le caractére naturel de cette notion et ce qui étaye la thése de Church

affirmant 1'égalité du "récursif" et du "calculsble'.
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Cn citera quatre voies d'approche

1) L'adjonction aux automates d'une capacité mémoire, ce qui conduit

aux machines de Turing.

2) L'abstraction directe des calculateurs, qui conduit & la notion
de pachine & accés direct {ramdon access machine, cf. Cook et Reckhow
{19?3]) controlée par l'intermédiaire d'un langage simple, type langage

machine.

3} La définition d'une classe simple de programmes, par exemple ceux
qui sont éerits dans un PASCAL réduit au type entier et aux structures de
contrfle IF... THEK... ELSE et WHILE... DO.

L) La définition des fonctions récursives, qui peut se faire en adop-

i

tant un point de vue "programmation fonctionnelle" et des constructions

analogues & celles du langage LISP.

La démonstration de l'éguivalence entre ces diverses d4éfinitions est
& bien des égards instructive. Par exemple, la simulstion d'une machine &
acces direct par une machine de Turing est un bon exercice de gestion d'une
mémoire & accds séquentiel. On peut noter A ce sujet que les technologies
nouvelles impliqueraient des solutions différentes et envisager des machines
de Turing ol seule l'écriture est permise comme sur les disques optigues

(write~only memories).

Une fois dégagée, la notion de fonction calculable et donc de probléme
décidable, il est raisonnable de parler de probléme indécidable : la cons-
truction d'une machine universelle ne demande plus gudre d'effort ce qui
permet de poser le "probléme de 1l'arrét”. On est ensuite amené 3 examiner
si cette dichotomie décidable / indécidable est réellement opérante ce qui
conduit naturellement & la notion de temps de caleul. Les simulations des
diverses machines entre elles, montrent le caractdre stable du "temps pOly~
nomial” ; se trouve ainsi définie la classe P qui autorise une abstraction

convenable de la "faisabilité".

§2. AUTOUR DE LA NOTION D’'ALGORITHME

La notion de temps de calcul, dégagée au plan théorique doit Btre
aussi appliquée au niveau pratigque. Une revue de certains algorithmes permet

alors d'une part d'acquérir une certaine pratique pour la conception des

programmes, d'autre part de s’entrainer & des calculs pratiques de com-

plexité, aussi bien en moyenne que dans le plus mauvais cas. C'est 1'occa-
sion aussi de présenter dans un cadre assez général, certaines techniques
de combinatoires (cf. Knuth [1973]) : statistique des permutations et des

distributions, séries génératrices, analyse asymptotique.

Par ailleurs, au fur et & mesure qu'on présente les algorithmes, on
peut également introduire les structures de données de l'informatique

piles, files, listes, arbres, graphes et leurs diverses représentations.

Ce qui suit constitue une liste non exhaustive d'algorithmes qu'on

peut présenter.

1. ALGORITHMES DE TRI

Tri par insertion,
Tri bvulle,
Heapsort,
Quicksort.

La présentation de ces algorithmes de tri, conduit déja & de nom-
breuses observations instructives : on doit justifier le fait wu'on fait
essentiellement le décompte des comparaisons, on doit introduire des struc—
tures de données originales (dans heapsort en particulier)... Les exemples
choisis illustrent également la différence entre complexité moyenne et

complexité dans le plus mauvais cas.

2. ALGORITHMES DE RECHERCHE

Recherche séguentielle
Utilisation d'arbres de recherche binaires.
Utilisation d'arbres AVL ou d'arbres 2-3.

Hachage.

L& encore, des structures de données originales sont présentées.

L

. RECONNAISSANCE DE MOTIFS

Algorithme de Knuth Moreis et Pratt
Algorithme de Rabin Karp

On peut faire ici le lien avec les automates finis.



L, ALGORITHMES DES GRAPHES

Arbres de recouvrement maximaux
Plus court chemin

Cldture transitive.

A propos de ces algorithmes, on peut exposer le principe et les

avantages de la recherche en profondeur.

11 est naturellement possible de parler sussi de multiplication de
matrices, de transformation de Fourier rapide, ete. Cependant, 1l est peut
gtre dangereux de multiplier les exemples, en particulier ceux gqui ne

mettent pas en jeu des concepts informatiques nouveaux.

11 convient & ce point d'aborder le sujet des algorithmes non poly=
nomiaux, par exemple 3 travers l'algorithme de résolution pour le calcul

propesitionnel, ce qui conduit au probléme BSAT de Cook [?97?].

La classe NF et la notion de probléme NP complet peuvent &tre pre-
septées sans difficulté & partir des machines de Turing ou des machines &
acces direct fonctionnant en mode non déterministe. Le principal travail

consiste & établir le théoréme de COOK [1971], aprés quoi, on peut se doter

d'une premidre panoplie de probléme NP complets (ef. Garey, Johnson L197&D,

par exemple :

Probléme SAT,

Probléme du voyageur de commerce,
Probléme du circuit hamiltonien,
Probléme des cliques,

Probl2me du sac & dos.
On peut, pour finir, donner quelques indications sur la fagon d'abor—

der les problémes NP-complets par exemple présenter une heuristique pour le

probléme du voysgewr de commerce 3 partir d'arbres de recouvrement.

§3, AUTOUR DE LA LOGIQUE : SYNTAXE ET SEMANTIQUE

Une premidre approche des problémes de syntaxe est fournie par la
théorie des langages algébrigques développée 3 partir des grammaires algé—

brigues. Naturellement, le lien avec une approche lide & la calculabilité

est fait par l'intermédiaire des automates & pile. I1 est bilen clair qu'il
convient ensuite de présenter 1l'utilisation des grammaires dans l'analyse

syntaxique.,

La notion d'arbre de dérivation pour les grammaires algébriques cons-—
titue également une préparation pour aborder les concepts de la logigue en
particulier les régles de déduction. En effet, de fa¢on surprenante, les
concepts de base de la logique sont quelquefois un motif de panique pour
les mathématiciens. La présentation de la logique et en particulier du thé-
oréme de complétude doit naturellement Etre constructive et adaptée a l'in-
formatique. Les fonctioms de Skolem permettent de ne considérer que des
formules ¥3. Par le théordéme de Herbrand, on se raméne i des conjonctions
de clauses auxguelles on peut appliguer l'algorithme d'unification ; ceci
conduit & 1'algorithme de résolution de Robinson [1965]. I1 convient bien
sir de ne pas masquer le phénoméne d'indécidabilité. La procédure de
Herbrand ne se termine pas forcément. Cela dit, on peut souligner l'utilité

de la résolution en évoguant le langage PRCOLOG.

Ces préliminaires de logigue &tant acquis, on peut bridvement intro-

duire deux sujets assez délicats.

1. La sémantigue des procédures récursives et l'approche "point fixe"

des programmes .

2. La vérification de programmes par assertions et les régles de

Hoare [1969].

CONCLUSION @ 0On a essayé de montrer dans ce qui précéde, la logique qui
sous tend la délimitation des sujets proposés comme bases mathématiques de
l'informatique. Il est clair que le contenu décrit plus haut est appelé

& varier trés rapidement, compte tenu des développements de 1l'informatigue.
Peut-8tre faudra-t-il par exemple y incorporer des outils théoriques pour
1'étude des bases de données ou des circults VLSI, Quoi qu'il en soit, sous
une forme ou sous une sutre, il devrailt s'introdulre progressivement dans

l'enseignement mathématique de nos Universités.

AN
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WAS ERGIBT SICH AUS DER GRUNDLAGENKRISE DER MATHEMATIK?

M. Otte

im Kursbuch 1978 zum Thema "Lust an der Theorie” (Dezember 1984)
peschreibt der Biochemiker Erwin Chargaff sehr arfahrungsreich und
anschaulich viele wirkliche und manche acheinbaren Auswuchse und Ge-—
fahren moderner Naturwissenschaft und Technik. Als Kern des Ubels
identifiziert er die Methoden, ohne die Naturwissenschaft fur ibn
nicht vorstellbar 13t obwohl er aus Erfahrung weid, “wie oft Methode
«in Ersatz fiurs Denken 13¢C. Wie viele der Forscher. die 1ch an den
komplizierten und ach so kostspieligen apparaten sitzen sehe, ver—
stehen was sie tun und worauf die von ihnan verzeichneten Ergebnisse
peruhen? Sie dricken auf Knopfe und werden beriihmt. Was geschehen 1ist,
Jdas METHODE die Menschen iberwdltigt und, im Falle des Computers,
verdrangt hat” (s. 57).

Die Methode ist das Werkzeug der “Sucht, aus der Naturwissenschaft
2ine Erklarungswissenschaft zu machen” (3. 51)}. Chargaff unteracheidet
nun zwischen Methoden, die sden direkten Weg zu einew Ziel bedeuten”
und solchen, die die Umgehung von Hindernissen zum Ziel haben. Alzo
die direkte Methode als dex "Weg zu atwas”, oder die indirekte Me thode
als der “Weg um etwas herum*, und er maint, das wyungsere gegenwartigen
Wissenschaften immer mehr durch die Verdrangundg direkter Methoden
durch indirekte gekennzeichnet sind™, sowie "das die Bevorzugung indi-
rekter Methoden wesentlich einer wissenschaft abtraglich sein kann”,
wag er dann am Belspiel der Chemie zu illustrieren gucht . Derx Kern
seiner Argumentation ist die Uberzeugungt eWirklichksit ist das Un—
mittelbare, das Unvermittelbare® (3. 52). sein Anlisgen ist dabei die
Wirklichkeit als Einmaliges. Unwiederholbares. Die Schiddlichkeit der
Methoda liagt eban darin, das sis diese unwiederholbarkelit zZ@érstart
(4. 54).

aber ist es nicht gerade umgekehrt 3o, das die Einmaligkeit und
Unwiederholbarkeit zeigt, das die menachliche Wirklichkeit
vermittelte Wirklichkeit ist? Wirkt denn nicht gerade deshalb eina
Abbildung *umso verfilgchender je farbenechter® sie 1st? (3. 52).

Mun hatte sich speziell 1in day Mathematik diese gituation zugs~
spitzt. Die Mathematik ohne sichtharen juseren Gegenstand, die ganie

welt Lhren Methoden gegenubergestellt, versuchte sich des Sinng, der
Einmaligkeit der subjektiven Wirklichkeit durch die Wahl der bason—
deren Methode zu versichern. “Moralische Argumentationen im Grundla-
genstreit der Mathematiker” (Paul Lorenzen) sind in keiner Weliss abwe-
gig, aber berauben zie 3ich nicht selbst, wenn sie sich auf die sub~
jektive Bedeutung zu wahlender oder auszuschliesender formaler

Methoden konzentrieren? Hermann Weyl hat versucht, sein eigenes
Resiimee des "Grundlagenstreits" wie folgt zu formulieren; “"Nimmt man
Jie Mathematik fir sich allein, so beschranke man sich mit Brouwer auf
Jdie einsichtigen Wahrheiten ... . In der Naturwissenschaft aber beruh-
ren wir eine Sphare, die der schauenden Evidenz sowieso undurchdring-
lich 1at; ... und es ist darum, wenn die Mathematik durch die Physik
1n den Prozes der theoretischen Weltkonstruktion mit hineingenommen
wird, auch nicht mehr notig, das das Mathematische sich daraus als ein
pesonderer Bezirk des Anschaulich-Gewissen isolieren lasse: Auf dieser
hoheren Warte, von der aus die ganze Wissenschaft als eine Einheil
erscheint, bin 1ch genaeigt, Hilbert recht zu geben" (vgl., Ges. Warke,
gand IV, S. 334).

Heist das nicht, das praktisch die gesamte heutige reine Mathema-
tik eigentlich unmdglich 1st? Hermann Weyl sagt explizic, das nur dasg
“verhaltnis zur Physik deutlich macht, was es mit dieser transzenden-—
ten, rein symbolischen Mathematik auf sich hat" (a.a.0., 5. 332), und
1n der Zusammenfassung $einer Argumentation schreibt er achlieslich:

* selbst in der reinen Mathematik oder Logik konnen wir die Giltig-
keit einer Pormel ihr nicht mittels eines deskriptiven Merkmals anse-
hen, sondern sie wird gewonnen nur durch praktisches Handeln, indem
man namlich von den Axiomen ausgehend in beliebig oftmaliger Wiederho—
1ung und Kombination die praktischen Regeln des SchlieBens anwendet.
Man kann darum sprechen von einer urspringlichen Dunkelheit der ver—
nunft: Wir haben die wahrheit nicht, es geniigt nicht, grofe Augen zu
machen, sondern sie will durch Handeln gewonnen sein” (a.a.0.).

“sehen” oder “Handeln* kann das die Alternativa sein? Uberhaupt izt
der Brouwer sche Standpunkt keine Alternative und das last sich gleich
doppelt begrinden.

Erstens kénnen wir fragen, inwiefern ergibt der Ausschlus st Loy
ter Methoden und Mittel eine Alternative? Es ergibt sich eine Alterna-
tive hochstens aus den Bedingungen des Dialogs insofern ich den ande~
ren ubsrzeugen muf, 438 ein bestimmies Mittel oder eine hestimmte
Methode leistaet was 9is soll. Diese Vorstellung von dem Mittel, das

-
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prwas Zu leisten hat, fihrt nun aber zu der Vorstellung vom verstehen
313 @inen anwenden.

Man konnte auch anders vorgehen., Man xonnte sich fragen, was will
ich denn srgentlich pewirken durch mein Handeln (welches ich dem
“Sahan” qegenﬁbaratekle)? Eigentlich will ich nichts Geqenstandlxches
bewirken, werden jedenfalls dieijenigen sagen, die wmit der Gleich~
Aetzung von verstehen und Anwenden nicht einverstanden sind. S5ie
werden fortfahren: “ich will das Handeln selbst aufbauen, entwickeln”.
nazy findet sich bel Wittgenstein eline anmerkung, die das syliutern
konnte: “Der rechnet niche, dexr, wenn ihm eimal das, einmal jenes
herauskommt, und dar, wenn @r einen pehler nicht finden xann, zich
damit abfindet und sagt: das zeige apen, daf gewisase noch unbekannte
(imstande das Ergebmis peeinflussen. Man xénnte das so ausdrucken: Wem
die Rechnung @inen Kausalzusammenhang entdeckt, der rechnet archt”
¢ Bemerkungen Uber die Grundlagen dexr Mathematik, V = 40). Man konnte
auen sagen, die reins progedur oder Mothode hat keine ”gaqenstandlxche
wanrnehmung” und 13t vollistandig auf aich selbst bezogen. pas Gegen=
srandliche 18t einem aplohen operativen prozep hochstens Anlas, seine
wygnahman 24 wechseln, seine richtung 2u yerandern.

sleichzeitig wird aus dem Zitat auch deutlich, warum das rRegchnen,
Aas "piel wib foymalen Regeln” fiiy die philosophische saibstreflexion
Aer Mathematlik S0 medeutsan erschaint . Heute mussen wir allerdings
vonstatieren, das der computer durchaus das durchschimmernds 1deal
arfilly. warum akzeptiert man diese prinzipielle sedeutunyg des Compu~
ceprs nicht? Han antwortet - wie wirglich auf einey piskussion in Ober-
welfach ~ der Computer wonne dis rhecretischen Begriffe aicht verste—
hen. Das Problem des verstehens sieht dann wie folgt aus. "Man konnte
framen: was kdnnte sin Kind won zehn Jahren am Baweis des
pede <1nd” schen Satzes nichi verstenen? — lst denn dieser Bewels nicht
viel einfacher, als alle die Rechnungén, die das Kind beherrschen mud?
- Und wenn nun jemand gagte: den vieferen Inhalt des satzes kann es
aicht wvepstehen -~ dann frage ich: wia rommt dieser 3atz zu ainem tis~

fen lnhalt?”™ (wittgehstein a.a.0., Iv - 31). pie Antwort wiixda lauten:
durch die Anwendung. Also aufs neus: verstehen ist Anwenden.

yerstenhen xann von den Methoden und Mitteln nur insofern abhingen
als dadurch bestimmte anwendungen armoglicht warden oder nicht. Ver—
stahen verlangt also als Voraussatzung dis Entwicklung der Mittel -
und die Entwicklung des Computers hat uns in dieser Hinsicht einen
grossn schritt yorangabracht -« und die Entwicklung des Subjekts der

Anwendung bzw. des Verstehens.

Was heid
t es also, den Anwendungen einen derartigen prinziplellen

arke i i i
nntnigtheorstischen Status einzurdumen? Es bedeutet, den Gegen-

atand der Theorie als ihre intendisrten Aﬁwe“du“g@n aufzufassen. Das
3 . 3 3
. :

bezu i i Lpi
g haben, dad sie prinzipiell von den Realitdten, auf die sie gich

beziehe i u
hen, unterschieden werden migsen, und es bedsutet weitey, das ihy

Gegenstand von der Entwicklung des Erkenntnissubjekts abhingt. Es oyl
Also die Xommunikation und Kooperation der individuellen Etke;ntnxs~
subjekte entwickelt werden, weil nur sc die Erfahrung einer Theorie
{eines Wissens) und seiner Anwendung oder Entwicklung glexchzexr;q

realigigrt werden Konn adung
en., Die Anwend 18t also auch das Kriterium

Bm End 1 i
e treffe ich mich allerdings doch wieder mit Chargaff, wenn

er meint, *d
, ap es dem reinen Porscher nur wenig hilft, wenn er darauf

behary
: t, dasd nicht er, sondern der Ingenieur schuld sei an der Ver-
Htun i
e g der Welt. Solche Unterscheidungen sind uninteressant flx den

Nichtf 3 ’
achmann; denn wiahrend Dr. Paust nach oben weist, wo die hoheren

Erkennt
e nisse wohnen, zeigt der ungelehrte Finger nach unten auf die
Gi i i
eponie, wo mephistophelisch und wmephitisch Synonyme geworden
sind. 3e
ltsamerweise verharrt die reine Forschung viel zu lange 1in dem

Glaub
en, daf sie mit Peter Schlemihl die Unfihigkeit gewmeinsam habe
einen Schatten zu werfen®. '



s do vl s & s i 5 > o = e
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SUMMARY

This is a report about an experiment in proéresa at Politecnico
of Torino, aiming at an integration of use of computers in ba-
sic mathematical courses. »

With the purpose of teaching mathematics throuch the computer,
we introduce the students to a programming language and to fun-
damentals of computer science. :

Then computers are used in a wide range of situations: in con-
jecturing values of limits and orders of infinitesimals., in
studying discrete dynamical systems and local behaviour of
functions, in computing sums of series.

Graphic facilities of personal computers are very useful in
giving a picture of some abstract situations; for instance, how
power or Fourler series apnroximate a given function or how a
linear transformation changes a nelaghbourhood of the origin in
the plane.

This possibllity of creating a large number of examples helps
the student in understanding the theory, while he becomes mo-
re familiar with the capabilities and deflclencies of the ma-
chine,

At the end of the mathematical curriculum, personal computers
are used also for tutorial programs that introduce the student

to more advanced topics usually not treated in class.

1. INTRODUCTICN

This note comes out from the expericnce we are having, since a
few years ago, in teaching basic mathematics to vhqﬂnccrtnq
students at Politecntco of Torino. In our work wnlhﬂiievc that
it is important to avoid two opposite mistakes: on one hand to
he toc abstract and to aim only at an elegant and loqglcally
consistent presentation of the theorv; on the other to consider
only the use of mathematics in applied sciences, making just
an exposition of a list of formulas and recipes.

One of the possible ways for saving precision and avolding cx-
cessive abstractedness is to use pocket calculators and perso-
nal computers as a teaching ald in basic mathematical courses.
This allows us to make some important abstract ldeas more con-
crete; moreover the students learn how to use an essential tool
in applied sciences; they are introduced into the problems of
numerical analysis and they are stimulated to go deen into it,
taking a specialized ccurse later in their curriculum.

A& correct use of computers requires a new curriculum, in Jhioh
some fundamental concepts (i.e. algorithm, flow-chart, [loating
point computations) and a programming language are introduced;
however it also requires a more radical change in teaching ba-
si¢c mathematics.

The constructive and computational aspects of proofs must be
empﬁaﬁized, whenever possible, in érdez to have methods suita-
ble for computer programming. Let us consider, for instance,
the proof of existence of zeros for continuous functlons; the
method of subsequent subdivisions of the interval is well sul-
ted for computers, while the proof that uses connectedness and
properties of continuous functions is not.

Graphic facilities of personal computers are very useful to
help the understanding >»f some abstract concepts, usually con=

gidered rather difficult (i.e. the pointwise and uniform con-
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ye: nce of serles, the transformations mzu'Rz).

The early exvosition of students to computers can be helpful
for a “"ecritical” use of the machine, L.e. for emphasizing the
Timits of this tool and the necesaity of 8 good understanding
snd position of the problem, Lefore beginning the program; the
computer, in this way, dJdoes not become a "lnyth® as unfortunates=
ly harpens today too often, because of the fast growing use of
computers in rescarch and everyday life.

From these premises, 1t lsg clear that our experience cannot be
daescribed as a "course about computers” but as "teaching mathe-
matics throuth computers”, f.e. an integration of machines in
traditional mathematical curriculum; this integration is reali-
sed in Jifferent ways in the three semesters in which basic ma-

thematics is tauaht; this is described below in more detall.

2. THE USE OF UOMPUTERS IN THE COUKSES

In the first semester the basic ideas of calculus (limits, de-
rivatives, intearals) are introduced; the fundamental problem
in thig course is5 to oive the students a correct method of ap-
proaohinoe mathematics,

This applies also to the use of computers; first BASIC lanaguage
and some fundamental notions such as algorithm, flow diagram,
floating point computations are introduced; then problems are
solved using a method divided into three steps: conjecture,
proof, refutation {(sec /1/).

With  the help of a computer we make a numerical conjecture ab-
out the solution of a problem; then we prove the result in a
rigorous way; eventually we an back to the numerical result we
got. In this way we can emphasize that numerical conjectures may
be wrong and that a global analysis of all errors intervening
in the numerical process is noecessary.

Let us consider a couple of cxamples concerning computation of

1imits and orders of infinitesimals.
Example 1.
Compute lim fi{x} for x =0, whera
fix) = {(x- sia“‘x)/sinsx.
With a pocket calculator (Tl 58) we obtain this table, with a

four diait avproximation:

% £{x}
0.1 -1.6826 107
6.05 ~1.6706 107"
0.02 -1.6673 107"
0.01 -1.6668 107"
0.005 | -1.6667 107"

The numerical conjecture is that the value of the limit is

~0.16666...: this result 1s correct and can be proved using

Taylor’s expansions.

1f we continue ocur numerical experimentéfor smaller values of

%, we have these outputs:

% £ {x)
ER
0.001% ~$.6600 10
0.0007% ]

Thig table shows how we can be led to wrong conclusions; in
this way we are warned against the occurrence of rounding er-
rors.
Example 2.

Compute the order of infinitesimal of

Fix) = sin x- x cosix/ <) for x »0

in comparison with the order of gqi{x} = x .
The numerical results, obtained with an HP J4C, are, with a

four digit approximation:



= fi{n}
5 107" 1.1460 107¢
1 107" 3.7010 1078
5 1077 1.1500 1077
1 1077 0.0000
s 1077 0.0000
1 107° 0.0000

In this case no reasonable conjecture can be made using the nu-
merjcal results; using calculus we have that

5 7 .
fOO= (1/2700%° + 0(x') = 3.7037 10" %" + o(x').

The theoretic result can help to understand the faflure of nu-
merjcal experiment: this improves the capabllity of students of
reading critically computer outputs.
Students work at personal computers too, tryina to solve some
problems suqgested to them; here are two examples aimina at a
better understanding of the concept of real number.
Problem 1. Given a number a = p/g with 043€1 , write a
program that gives the first n digits of its representation
with respect to an assigned base b.
Froblem 2. Write a routine that gives the first n digits of
the square root of a positive real number, using a base b®2,
Alsoc local behaviour of functions, Taylor's expansions and di-
screte dynamical systems have been studied with personal compu~

ters {(see /2/}.

The second semester 1s concerned with the following subjects:
1} Linear alaebra
2} Geometry of the plane and the space
3} Differential qeoometry of curves and surfaces.

Linear aloebra is an interesting field of application of compu~

tery proaramminag, malnly because of {ts combinatorial asvects;

however our first aim (to tcach mathematics through the compuy-
ter) can be easily missed Lf we polnt our attentlion ounly to the
rescarch of combinatorial algorithms; instead we try to develop
with the students some proavams that take care of the underlying
geometrical interpretation of linear algebra. So, for imstance,
together with a proaram that computes the determinant and ths
eigenvalues of a 2x?2 matrix, we always ask for a routine that
reproduces the deformation of a neilghbourhood of the oriagin ra-
presented by a matrix.

The general phylosophy is that compuiers can provide a large
numper of examples of how a given algebralc procedure ~opliizs
to geometry. This should improve the intuition of the students,
thelr skill to recognize at the first glance for a glven pro-
blem the geometric situation that is likely to be expected,.

In the second and third part of the semester the above concepts
are emphasized; computers alve here a tocl for refining the
knowledge of the bhasic methods ¢f geometry of plane and sapace.
They allow to see which change in the geéﬂetry aof a given pro-
blem is introduced by a slight variation of the data.

Another interesting aspect of the application of computers for
teaching geometry is that a general algorithm for the sclu-
tion of a problem often fails when applied to some particular
{(and degenerate) case; indeed such degenerate case must be trea
ted by a "ad hoc” routine. This often implies a better knowled-
ge of the geometry of the problem; in fact learning geometyry
through the degeneration of standard problems is a fascinating

way to understand the abstract theory.

The main topigg treated In the third semester are:
1} Multiple inteqgration U
4} Numerical and function series

3} Ordinary differential equations,



A5

ny numerical experiments can be made in order to show how

¢ definition of inteqgral (in one or several variables) works;
the student can write a routine where a given function is sppro
simated ,by above and below, by step functions and the conver=
gence of the Intearals of these step functions is studied.
in this process, it is natural to introduce a better approxima-
tion of the functlon: we obtain a clase of numerical inteara-
tion formulas that can be compared each other.
On the contrary, the evaluation of the sum of numerical series
is useful to get the student aware of the effects of different
kinds of numerical errors: moreover, the lmpossibility of di-
seriminating divergent from slowly convergent series points out
the necessity of knowing the theoretical results.
Ssveral examples can be provided by personal computers to cla-
rify the theory of function series; this is a good background
for introducing the different concepts of convergence (pointwi-
se, uniform and in Lp norms) and comparing them each other.
st the field where the use of computers changes more radically
traditional educati&nal patterns is that of differentlial equa-
tions.
There are very few equations relevant in applied sciences for
which the solution can be given in an analytic form; the know-
Jedge of simple numerical methods is sufficient for the stu-
dent to see the qualitative behaviour of the solution, helping
ghe 1 vsical and mechanical understanding of the phenomenon.
The study in the ohase plane of planar autonomous systems with
censtant coefficients is emphasized (see /3/); thanks tb the
display it is possible to visualize the concept of stability
of an equilibrium point for linear and non linear systems.
This is an example of the possible use of computers in the rea-
lisation of tutorial programs on more advanced toplcs that are

useful in the further curriculum of an engineering student and

are habitually neglected in basic COUrseB.
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Comments (preliminary version) on the ICMI-Paper:
The Influence of Computers and Informatics on Mathematics and Its Teachinag

The following comments on the ICMI-paper are primarily made on the back-
ground of my experience with my main field of interest, i.e. statistics/
data analysis and its teaching. The ideas presented owe much to the
discussions [ had with some colleagues of mine at the IDM in Bielefeld.

I agree that it is necessary to study the effect computers have on mathe-
matics although, as is well stated in the paper, the developments in
mathematics can only be one important reference point for designing new
curricuyla, for it is equally important to consider social needs. From
reading chapter 1 (effects on mathematics) [ got the impression that
there might have been a certain bias towards pure mathematics in select-
ing the examples. I think it would be important to include applied mathe-
matics more systematically in two respects at least: applied mathematics
as a field of knowledge and research, which has undergone a profound
change due to the availability of computers, and the processes of apply-
ing mathematics, which have changed dramatically because of the availabil-
ity of computer software. Computer software has changed the cognitive
dimension of applying mathematics (how problems are solved) as well as
the social-communicative dimension, i.e. the division of labour between
mathematicians and subject matter experts and the tools (e.q. computer
graphics) of communication about problems and their solutions. I think,

a detailed study of the development in particular areas of (applied)
mathematics is highly desirable and could serve two ends:; to identify

trends working in mathematics im an inductive way and to 1den§1fy the
particular conceptual and “"philesophical® change in particular fields
in order to give advice with which new emphasis these particular fields
should be taught.

In what follows, I shall comment on some selected topics which are parzly
mentioned in the paper and partly seem to me worth considering to mention
in more detail in a revised version of the paper, namely:

Algorithmics

The emergence of new mathematical concepts
Visualizations

Experimentation and the status of proof

The process of applying mathematics

Distinction between secondary and tertiary level

Algorithmics

On page 5, the influence of fundamental concepts of informatics on mathe-
matics is stressed; algorithmics is considered to be found in the fore-
front. But the impact of this concept on mathematics has been at least
contradictory: on the one hand, it gave rise to new theoretical research
on the design and analysis of algorithms, e.g., from numerical analysis,
complexity theory to stochastic analysis of algorithms. The design of
effective algorithms, which for a long time had been considered to be
only second order mathematics, is now appreciated as a challenging

field in its own right, On the other hand, for most people concerred
with mathematics, the availability of computer software liberates them
from having to deal with algorithmic details. They are free to concen-
trate on other aspects of their problems. In a sense, mathematics has
become less algorithmic due to computers. This is well illustrated in
the field of statistics where classical statistics was designed mainly
for routine (algorithmic) analyses when the model was given, whereas the
modern "interactive data analysis" relies heavily on human interventiun

P Y
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in many stages of the process. These changes should have conséquences
for future curricula, but it is far from being clear which relation
setween intelligent use of prefabricated software and design of alac-
~ithms by students is desirable. A subproblem is how to develop criteria
for designing the user interface for mathematical software to

be used in educational contexts.

The emergence of new mathematical concepts

On page 5, it is said, that one "can expect” that the new methods of
computation will lead to the emergence of new mathematical concepts.
This has already occurred to a large extent. The development of statis-
tics during the last, say, 25 years is a very rich source of examples
for this thesis, take for instance topics concerned with robustness
and all the techniques and concepts for the analysis of multivariate
data (see e.g. Efron 1979 for some other examples). The conscious real-
ization of the revolutionary impact of computers on statistics seem to
be -sther old compared o other fields of mathematics (see e.g. Yates
1966, Tukey 1968, Tukey 1965), and [ think much can be learned from the
discuss ons on the relation of statistics and computer science and the
rale of computers in statistics, which can be found, for instance, in
the Proceedings of the Annual Symposia on Computer Science and Statis-
tics (e.g. Yeiner et al., 1983). I think that the change cannot be
adequately described merely by the emergence of new mathematical con-
cepts, The modern computing systems gave rise to completely new strate-
gies or "nhilosophies” for the handling of data. This trend is exemp-

d by the development of the so-called Exploratory Data Analysis
‘see e.q, Tukey 1977, Bishler 1982) in the United States and the move-

for "1'analyse des données" in France (see e.g. Benzécri 1980).
These changes are particularly relevant for the curricula on probabil-
ity and statistics {(see Biehler 1984), The developments in statistics
also 1llustrate the presumable general phenomenon that the computer
has lead to a redefinition of what is "simple" and not only to an ex-
tension of relevant concepts and methods (see also Efron 1979, 439);

of course, this is highly relevant for the sequence of the toﬁics to be

taught in schools.

I think the phenomenon that the computer leads to the emergence of new
mathematical concepts is relevant in yet another aspect. It would cer-
tainly be insufficient to merely imitate the scientific use of computers
in the classroom. Several suggestions, notable Réde (1982) illustrate
how computers can be used as a means for the development of new concepts
{relative to the students knowledge) especially by using simulation in

stochastics.
Visuyalizations

The new possibilities of visualizations are mentioned in the text {p. 8),
but I think they deserve a far deeper treatment. In my opinion, it is
only slightly exaggerated that the visualizing capacities of computers
will/can/should be one of the main contributions to mathematics and

its teaching. Let me comment on that from two points of view.

Statistics has seen a renaissance of graphical methods during the last,
say, 15 years (see e.g. Beniger/Robyn 1978, Wainer/Thissen 1981, Bieh-
ler 1984a), which would have been nearly impossible without the modern
computing systems, Graphical (or semigraphical) displays serve two

main ends: communication and exploration. The use of graphics to communi-
cate information effectively to a broad public has a longstanding tradi-
tion in statistics, but the increasing amount of information available
in science and society together with the new opportunities has led to
many efforts to invent new representations and to use them more effec-
tively. In a similar vein, this trend applies to other mathematical

{or partly mathematical) sciences, and modern curricula should reflect
this trend by offering an adequate “graphico-mathematical education™.
What [ consider even more important is the use of graphs for explora-
tion and analysis. Graphical display has become a research tool in its
own right,whereas using it was mainly seen as an unintellectual business



for quite a Tong time, at best useful for purposes of communiéatien. The
new appreciation for graphics shows up not only in statistics, but also
in domains such as dynamical systems, which is mentioned in the text, A
careful assessment and analysis of the use of computer graphics in mathe~
matics and its applications seems to be of considerable importance. As

to statistics or data analysis, the main purpose of graphics is to reveal
structure in data sets, to aid the process of discovery, related to data,
namely in situations where trustworthy analytical {probability) models
are not available. This might be slightly different compared to other
fields, where graphics are also employed to study features of models that
are analytically not tracable and where graphics allow to handle the vast
amount of numerical output of simulation studies effectively, in order to
discover new (qualitative) features of the system under study.

Visualizations are certainly important from another point of view, as well,
They have always played a role inthe day~-to-day practice of mathematics
teaching as means of facilitating the learning of abstract mathematics.

The new possibilities of computers should alss be explored in what they
can comtribute to this important aim. But this aim has to be redef ined

if one takes into account the changed attitude towards computer graphics

as a genuine research tool in mathematics (see Biechler 1984b).

Experimentation and the status of proof

The paper well states that computers have greatly increased the possibil-
ities of experimentation in mathematics and affected the status of proof
{p. 7¢f). Euler is cited to make clear that pure mathematics in its re-
search practice has always been a mixture of inductive and deductive rea~
soning resp. observation and demonstration. ! agree, but [ claim that the
new developments cannot fully be described on these lines, at least not,
if one includes applied mathematics in a broad picture of mathematics.

For one thing, computers have increased the amount of “mathematics
without proof". Let me take one example from statistics: the case of

robust estimators. The famous Princeton Robustness Study (And;ews et atl,
1972) studied sets of estimators under a system of different madelling
assumptions by means of Monte Carlo simulation. Although the results
also led to new mathematical concepts and theorems, the results in it-
self have not been "reproduced" or validated by mathematical proof.
Although one may wish or hope that this will be done some time, the most
important point is that the results have already influenced the practice
of analysing data. I guess that this is guite similar in other areas
where simulation studies are conducted. The results are imnortant in
themselves and can, to a certain extent, be validated by *neir sucress

in applications outside mathematics. Fven if mathematica’ results on

the performance of statistical procedures can be proved, such proofs
should be interpreted as "test" of procedures under idealized conditiong,
which are never fully met in practice. It is therefore necessary to study
the performance also under real conditions, i.e., to evaluate nrocedures
on real data (see Tukey 1962). Another case in point may be numerical
analysis, where algorithms are applied often without compiate proofs,

and where their performance on selected "exemplars” is equally important
for the user as are some mathematically proved resylts.

For the natural sciences, N.F. Lane, the president of the consuliting
committee of the National Science Foundation for “Advanced Scientific
Computing” has stated a fundamental methodological change comparable to the
Galileian revolution: the two principal research methods of natural
science (experimental and theoretical) have now been supplemented by a thir:
the use of computer simulation and related methods of computer science
(see Physics Today, May 1984, 61). This development seems to be closely
related to the rise of experimental mathematics and has led to changed
relationships between mathematics and other sciences.

Let me summarize. The interplay between experimentation and proof in
mathematics will certainly continue, but the experimental results have
become more important and cannot be expected to be completely suybsti-
tutable by mathematical proofs. Although this might have always been a
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feature of applied (engiaeering-?ike} mathematics, the computer has en-
hanced this aspect. In my opinion, it will be important to discuss the

pedagogical relevance of such a broader understanding of "experimental

wathematics” in depth.

T should like to add that Papert's {1980) pedagogical and epistemological
concapt of “nicroworld" which is increasingly discussed, at least in
circles of math educators, is highly relevant for this issue, because it
shows an interesting way how mathematical concepts and theories can be
tzarned by experimental interaction with a well-designed microworld.
The relationship of this approach to the developments in “experimental
mathematics” in a "scientific® context should be further explored.

The process of applying mathematics

quite a long-standing discussion on how to teach applying
mathemat s 5r mathematical modelling during the last 15 years, and that
> secondary level and to the tertiary Tevel as well. |

be reasonable to take up this point more systematically

does, i.e., how should/could the teaching of applying

matrenat os be changed because the useof computers while applying mathematics

is becoming the rule rather than the exception in most application domains
af mathematics. Certainly, a shift in the competence required of an in-
t=17igent applier of mathematics can be observed. On the one hand, less
knowledge seems to be required because the "mathematical intelligence”

of existing software can be exploited. On the other hand, new qualifica-

tinng necessary for the intelligent use of software, but these quali-

are still to be defined more precisely, and one can expect that
tnese - uslifications cannot be reduced to mathematical qualifications in

3 traditional sense.

The use of computers while applying mathematics has not only led to new
educational demands but also to new educational possibilities. It is not
unplausible that the use of computers allows an education in applying

mathematics which has been requested programmatically for sevéral years
but has hardly been put into practice because the complexities of more
realistic problems were not feasible for the average student. The com-
puter provides leisure to concentrate on the more difficult and important
aspects of realistic problems. Joiner {1982) presents some interesting
suggestions for teaching the processes of applying statistics, which I

do not intend to reproduce here. But [ think much more experience has

to be gathered before it can be judged whether such an approach can be
effectively implemented in curricula.

Besides, the attempts to teach modelling or problem solving often explicitly incluc
teaching heuristics, modelling strategies or principles of scientific

research while hoping that this will provide a substitute for the students’

own problem solving experiences. [ have the impression that these

approaches have had only a rather Timited success, and [ agree with

Kelman et al. (1983, pp. 65) that the computer might provide a “problem

solving environment® which allows the students to gather their own cog-

nitive experiences more effectively and systematically so that the

"geientific method-substitute” is no longer necessary.

Distinction between secondary and tertiary Jevel

Last not least, I find it very important to make a clearer distinction
between the secondary and tertiary level of education than the paper
does. Secondary education has to provide general education, and even
yniversity-bound courses have to lay foundations not only for studying
mathematics and computer science, but also for all other sciences where
new efforts of mathematization go hand in hand with teomputeriza-
tion". The curricula on the secondary level certainly should alsoreflect the
yse of computers in other domains of society such as business and industry.
Therefore, it seems to be necessary to widen the background of the
ICMI-paper not only by including applied mathematics,as [ have tried to do,
but also by considering the use of computers and mathematics in other
sciences and non-scientific contexts more systematically.



Besides, the motivational and cognitive prerequisites of students at
the secondary level in general are different from those at the tertiary

level.

In consequence, similarities and differences between teaching mathematics

in the computer age at secondary and tertiary level should be elabarated.
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ABSTRACT

John MIMAN

The Influence of Microcomputers on the Elementary School

Mathematics Curriculum.

Analysis of how programming with LOGO is changing the
teaching of two-dimensional geometry. CAI role in
emphasizing problem solving. Introduction of new
vocabulary and concepts e.g. iteration and recursion.
Changing students' and teachers' attitudes towards
mathematics. Negative influence of microcomputers -
other areas are being neglected, e.g. 3-dimensional

geometry. overdependency and unrealistic expectations.



James S. OKON

COMPUTER ASSISTED INSTRUCTION IN UNDERGRADUATE MATHEMATICS

The California State University system has funded a probject to
develop aoftware that will assist in the teaching of undergraduste and
remedial mathematics. I would like to discuss and demonstrate, if
possible, the software that has been developed by this project in
mathematics.

In the ares of remediation, "Hecalling Algebra”™ by J.¥W. Einch is
designed to help a student who has learned algebra &t one time but needs
a refresher course before entering a college mathematics course. It
covers many of the toplcs on the Entry Level Mathematics examination
required of all students who wish to enter a mathematics class at a
California State University. There are also some toplcs which perhaps
can be best illustrated by use of a computer. Professor Dan Rinne and
I have written a computer aided instruction module which shows ths
relationship between the graphs of :af{xzbltc and f(x}. In one
particular segment a student selects a basic functions, say f(x) = x.
Then, by using various keys, the graph can be translated Lo the left,
right, or reflected about the axis. Each time the graph is moved,
the function is changed accordingly. The goal of this module is to
dynamically illustrate the effect translation/reflection has on a
function and enable the student to graph a complex appearing function

by recogunizing 1t as a translation/reflection of a familiar function.
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the discussion contained in the articles [4] and [S] of Prof-

SCIENGE AND THE MATHEMATICS CURRCUL LM ton
FONCE AND THD MATHEMATICS CURRICULUM essor Anthony falston, Ralston's conclusion is,

:

" ! I3 * 2 s
Anthony Kanel Seda It is time to consider (i.e., Fry)
an altermnative to the standard

undergraduate mathematics curriculum

"As soon as an Analytical Engine exists, ) which would give discrete analysis an
it will necessarily guide the future course of the equivalent role to that now played
sclence, Whenever any rvesult is sought by 1ts by calculus in the first two years

lon will then arise -~ 8y what course of the undergraduate curriculum',

can these results be arrived at
In 83 I nave listed the topics which Ralston proposes 10 ordaers

Dy the macnine in the shortest time?"
: : : 1 4 - s : S o
to achieve his aim. Actually, Lﬂ] is a detailed versien (83
~ N . Y ~” e 5 sy PO .
Charles Babbage, 1864, pages) of [5], and [5] will suffice to support the main thread
A A - [ S
of the argument here.
§1 Int

In the quotation above, Babbage 1s of course talking

any of computer scien and its relation-

tj,are

ce .. R . -
apout algorithms, and algorifthms in the words of Knuth
mathematics. from an educational viewpoint, certain "

5

... really the central core of the subject (computer sciencel,

come to the fore:

or

he common donominator which underlies and unifies the diff-

L) ¥hat is the role of mathematics in computer science educ- erent branches'. Indeed, Knuth has, Jjust prior to writing
ation? this, chosen to describe computer science as "the study of

£ . : N o . . X N alco iEh 1 F1 ; i+ by study of 1 e

ves What 1s the role of computer science in mathematics educ- algorithms®. Now, as confirmed by Knuth, the study of algor
ation? ithms is very mathematical and it is worth stating this fact

PN . in order to dispose of the short, negative reply to Questicn 1

{o7  What is, or has been, the response of mathematicians to

, . lat whicn just might be proposed from the other vantage point!
computer sclence In relation to the mathematics curric- )
o, i smaties corric Furtner confirmation of this fact, i.e. of the mathematical
w3l s

nature of computer science, can be gained by consulting the
list of topics in Section 88 of the 1880 Subject Classificat-

There are two viewpolints, at least, from which these , . : s
ion of Mathematical Reviews, or by actually reading some rec-

questions can be contemplated. One is that of the computer . . R
ent reviews in this section; see also [l}.

sclentist engaged in teaching/research in a third level inst-
itution peering over the ramparts at the mathematicians, )

The other, which is ours, is that of the mathematici simil-
T N ) relan simi 2., Some History and Some Educational Philosophy

o

rly engaged in teaching/research and similarly peering at the

. X . . : . : R . il
computer scientists. Having thus declared my vantage point, Whilst our main discussion centres an Question 1, it will

P . . n ng 3.
and for reasons of space, I wish to concentrate here on Ques- not be out of place to devote a few words to Questions 2 and

tion 1, and only to touch on Questions 2 and 3. Specifically,

I wlsnh to bring to the attention of rteaders of the Vewsleifen One might wonder why it is today that there is a division
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betwsen computer sclientists and mathematicians, and that there
is not more sympathy shown by each for the other's subject.
After all, computer science grew ou{ of mathematics and in
its sarly days, some twenty filve-thirty years ago, it was
necessarily closely bound to mathematics. However, today,
digital computers vastly predominate over analogue computers
and digital computers are essentiaslly discrete. What, though,
is being taught in most mathematics departments? I suspect
that 1t is larqedy either continuous mathematics, such as
armalysis, or relatively abstract mathematics, to the great
sxclusion of discrete mathematics. Certainly this is true

. C

n UL.C.C., but may be less so0o in non-university departments.

—

Indesd, Ralston [Q] argues that in American universities the
present-day structure of the mathematics curriculum (mainly
calculus/linear algebra - at least in the first two years)

hag come about for reasons more to do with history and inertia
(human) than with a2 judicious choice of topics to meet the
gducational regulrements of those students other than majors

in phnysicalscience and engineering.

As far as Juestion 3 is concerned, there are at least
three discernible responsses:?
(a) lanore the problem - maybe it will qo away.
(b) Conmtinue teaching traditional material but illuminmate it

with examples/projects worked on the computer.

(c) Meet the problem head-on and design/update courses to
more nearly meet the needs of those students studying

computer sclence.

Response (a) needs no comment: (b) is outside the scope and
limits of this note but surely has a lot of merit, see [2]
and its references for some experiments, and also elsewhere
in this Newsleiiea; (c) is the main topic of this discussion,
see §3. A
i
Before leaving thls section, there is another aspect

worth noting. Mathematics courses are widely held to be

educational, irrespective of their content, for purposes of
traininng the mind. Can the same be said of computer science?
This touches on Question 2, because the solution Ralston has
in mind for (c) is best framed in terms of a mathemstical
sciences degree programme and, naturally, the educational
value of such a programme, over and above its content., has to
he considered. To quote G.E. Forsythe, see B], "The most
valuable acauisitions in a scientific or technical education
are the gereral-purpose mental tools which remain serviceable
for a lifetime. I rate natural language and mathematics as
the most important of these tools, and computer science as a

third", Some of Knuth's own views on this can also be found

in [3].

3. Ralston's Proposals for the Mathematics Curriculum

I went, now, to list the topics which Ralston belisves
could form a sultable basis for the discrete component in a
better halanced curficulum For mathematics students, computer
science students and others. The headings below are taken
from [4] and [5] and the topics from [4)].

i) Algorithms .and their Analysis. Topics: the notion of

an alnorithm: notatlon for expressing algorithms: basic

analysis of alaorithms,

Mathematical Loagic. Topics: the notion of
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nroofy the propositional calculus: Boolean
algebra: the notation of the predicate calculus:i intro-

duction to the verification of algorithms.

iii) Limits and Summatlion. Topics: the notion of infinite

processes: ideas of convergence and limits: limits of

discrete functions: summation.

iv) Mathematical Induction. Topics: the principles of ind-

uction: examples of induction proofs.

v) The Discrete Number System. Topics: real numbers and

finite number systems; definition and laws of the discrete

number system; number bases other than 10.



vi) Basic Combinatorial Analysis. Topics: the binamial

theorem and Stirling numbers; permutations and combinat-

ions: simple combinatorial algorithms.

vii) Difference Eqguations and Generating Functions. Topics:

recurrence relations;: linear difference eguations and

their solution: generating functions.

viii) Discrete Probability. Topics: basic laws: discrete

probability distributions; ranmdom number generation;

gueueing' theory; probability and alqorithm analysis.

ix) Graphs and Trees, Tapics: basic definitions and

theorems of graph theory; path and colouring problems;:

tree snumeration and binary trees.

x } Basic Recursion and Automata Theory. Topics: basic

definitions: recursive algorithms: recursive functions;
regular sets and expressions; finite state machines;

languages and grammars: Turing machines.

In connection with this list, the following points

should be noted:

(A) These topics are only suggestions. Moreover, it 1is
assume d by Ralston that they will be presented In some comb-
ination with abstract algebra, linmear algebra, analysis etc.,
for in [4] it is observed that "... there are numerous areas
of computer science where calculus plays an important role...”
Moreover, a better balanced curriculum is being argued for,

but not a complete reversal in favour of discrete mathematics.

(8) These topics are, with the possible exception of some
in viii), mathematics subjects and as such are best taught by

mathematiclians,

(cy Due to the differences between the educational systems
here and in America, certain additions and subtractions might
need to be made were these proposals to be adapted to fit into
cur context (Probably extra more advanced material such as more

computability theory or computatiomal complexity could be

added faor, say, honours students ).

(0) These proposals are at least worthy of consideration,
for Professor Ralston has wide experience in both computer
science and mathematics and backs up his suggestions with an

exhaustive study.

More questions are asked here than are answered. For
example, consideration needs to be given to the feasibility
of such topics for various types of student, ranging from
students of management through to honours mathematics stud-
ents, But space permits no more comment, and for answers
to such guestions the reader must either consult [ . arg [s]
or, if Ralston [5] page 484 is correct, undertake experiment

for himself or herself.

fducational problems are not usually very well defined:
they are likely to be controversial and to raise temperatures.
Indeed it may be that Ralston's criticism does not apply here
ard that all is well. If mot, and this article creates soms
discussion or starts people thinking about the problems caised
here, then it will have achieved its purpose. We hardly need
reminding in 1983 that computer science is a major undergrad-
vyate subject. But what has perhaps not been widely recog-
nised yet 1s the fact that the next generation of students
will be taught computer science in secondary schools by those
currently studying it at third-level. Future incoming stud-
ents may therefore slect to study computer science "hecause
it is familiar™ just as many do now, I suspect, in the case

of mathematics.
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Introduction
T

1, LtInformatigque est

1 noug reférant & la définition de 17U
l'ensemble des disciplines et des technigues de traitement systematigue
des dannees et ge l'information considérées comme un moyen g'acc2s au
savoir,le but étant la conservation dans le temps &t la communication
dans l'sspace de ce savoir,..ODans le conteste sctuel,on englobe dans
1tinformatigue les activités de conception,de mise en nlace,d’'evalua~
dlapplication et de mise 3 jour des systémes de traitement .de
tockane 2t de communication des donneea ,en ce qui concerne tant les

"

matériels gue les logiciel,les aspects organisationnels 2t humains,
11 apparait donc que l'informatique est une science et une technigue

nui comprend & la fois at de manidre indissociable:

- Les moyens de traitement et leur fonctionnement { ctest & dire

la technologie des ardinateurs,ses fondements techniques et théorigues

ainsi que ses aoplications)

les methodes de traitement( c'est & dire tout ce qui est 1i¢

5 Jtytilisation des ordinateurs )

~ o . . . s
Les domaines d'applications quags illimités cui vont des

- .. .
4 Liadministration en passant par la commandas wes upérations

la telscommunication, l'enseignemaent,

y . . .
Pendant langtemps en afrigue,l'ides de lL'informatique 2st reg

1 . . . ey s .
liee 3 la notion ce comptabilité,de gesticn das entreprise

£ o T 3 ™o {
ltaveénement des microprocesseurs ,2n entrainant una chute desg

permis de généraliser l'utilisation de Ttinformaticue,

duction dans le systéme sducatif soulive esncore

formatique est  la fois une sciencs et un outil

czveloocpement

"

i

e un retard imo

le gomaine de l'informatigue.,lLe tiers-

nonde n'ocoupe qu'lanviron S oo

marche mondisl;un deséquilibre informatinue Qui s'ajouts X Ata

desdquilibres.

i1

construycteurs o'sraine

informatigue,la

i
fu
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informatiques furent creent 2t an

nena (Tchad)

tigue pour 1

besoin avec si 4 wibreville {Gabhon

portes en Novembre 1571,1'1x1

une trantaine de DrOGrammeurs. t
cress par certainsg ctats tels que L'15] Instite Sl
matique) en (Ote d'lvoire,l'IUT de yskar (senegal),cée avec concours

Ty

. S .
de 1'IB] qui dispose d'un centre regional pakar pour une forrmat

Informatigue,

L'informatique représente un intérdt de plus en plus craissant
leg pays en voie de developpement,in effet ,l'utilisation des moyens

@

L

et des methodes de l'informatigue dans les pays develappes a fait



o effet,l'introduction de 1tinformatique doit Btre accompagnée

par une recherche visant 3 coneevoir,2 mettre au point ,3 expérimenter et

3 dgiffuser des logiciels, La formation des gnseignants est un préalable

mecessaire & l'introduction de 17i tique & L'e car elle est

la gerantie la | Gre o ; : i methodes

dlenszignamnant at

w

ns 1l'Cuest

J
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e nlest
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ssources humai

pedagoglicoue

jegiplinaire comoosée o
cien,l informaticien,l sociclogue, 2 instituteurs,] psychologue envoyes

vent Btre & 13 ig utiles - efficaces,Mais e 5 des hor u'il en formaticn au "Logo computer center de New=York" dirige le projet,

Le langage Logo cree sar le srofesseur Ssynour pPapert,mathématicien

du MIT, cermet de solliciter & + de l'enfant,son ralsonnement,son
imagination,sa créstivitaz.L'enfant congoit son orogramme,llaxecute et
verifie la logigue =%t 1'exsctitucde (e langsge sermet de nasser de

con erve une orioritée dans tous les ltintuition & 1'sbstractionibesucoup de notions de la geometrie euclidie
jouer pour rémédier au mangue de ne sont percues intuitivement & ltaide de sa'"geometrie de tortue . le
heurtent les pays mBmes developogs, tangage permet de saisiry intuitivement la rotion mathematicue de ltinfi-
"imfarmatique et ni, L'expérience porte sur un semantillon dl'éléves provenant ce 5 écolecs

srimaires de uyakar gui est re~vésentatif des réalités socio-éccnomigues
L tintroduction de l'informatigue dans les lyces et Universitz suppo- . .- . , . . .
st culturelles du Sénégal. pans chenue école,lyU €léves sont choisis
se L'élaboration d'un vasts programme pédagogigue,et la formeiion de

¢cialistes pour L'éducaticn dans les lycées et Universites,



(moins bons,moyen,bons)  Chaque séance Logo accusille une ecole et dure 90
minutes,Chague 2léve est regu 4 fols par semaine,l 'éguipe sluridiscioli-

naire a axé ses rechsrches sur la grammaire (conjugaison),sur le langage
tigu
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Some comments responding to the "ICMI discussion document®

The Influence of Computers and Informatics on Mathematics

and its Teaching (L'Enseignement Mathématique, tome 30, 1984)

The ICMI study gives a well balanced view upon all important

aspects of the topic. It is an encouraging paper starting a new
discussion upon the changing foundations of mathematics, upon

the philosophy of mathematicians, and upon the impact of both on
teaching mathematics. Perhaps the paper still concentrates a bit
too much upon a traditional view of mathematics. As a researcher
in mathematics education (learning process, impact of technology
on mathematics education) and a specialist in training teachers
and teaching mathematics I would give some more emphasis to the

following aspects.

1. The effect on mathematics

The computer will affect the selfcomprehension (in Germans
"Selbstverstdandnis®”) of mathematics and (pure) mathematicians in
a radical way. The picture of "a mathematician working alone"®
(p. 164) will become less and less typical. Complete chains of
reascning from the question to the answer (from the axioms to

the theorem) or explicit seguences of deducing will become too

complex and too artificial to be understood by a single person
Mathematicians will lose their independence. Using computers
effectively they will become dependent on computer specialists
Using the computer they have to create team work and wOorking
groups. The group then will "be able to follow and verify ever

step” (p. 164), but not the individual.

A changing working style also will change basic icdeas of
traditional mathematics: "Chains of reasoning” will be replac
by "hierarchies of reasoning”, the "sequence of logical steps®
will be replaced by a "logical sequence of black boxes®,
"computing” will be replaced by “computability® {in German:

"Berechenbarkeit®).

Symbolic systems (p. 165) also may have a dramatic effect on
mathematics. There will be a second progress to mathematical
ideas and insight after the first being caused by numerical
calculations. "An entirely new art of experimentation”™ {(p. 163
also 1is possible with symbolic systems. Manipulations and
simulations with software packages using spreadsheets and
graphics for visualization will create cognitive dimensions no
known yet to mathematical i1deas and relationships.

N

i

2. The effect of computers on curricula

I am not sure if the present mathematics curricula perfectly
meet the needs cf the society. Many of our students (age

» 16 years) probatly will use the computer after their
examinations just like a car, a washing machine, a ', pewrits

or like television or telephone. Did we teach them the



~propr ite mentality for that kind of use, did we teach then
how to se the computer most effectively under these
ircumstances? The creative use of computers probably will be

restricted to a small minority of our population. Only those

might "demand more mathematics, better understood” (p. 166).

Maybe that we have to accept changes. Mathematics in the
curricula has to become more dynamic and more algorithmic. A

static view of mathematics is no help for producing a computer

using mentality. Also the working style in mathematics education
might change. No longer fights one against all the others, but
more team work is necessary. Discussing the dangers of the

computer use also might be part of a curriculum.

Using the computer most effectively the majority only may need

. an introduction into the basics {little programming,

ot

itvie narvdware and software knowledge, ...),

s« powerful experiences in solving successfully complex

probiems from different subject areas (using hardware and

&

ftware mainly as black boxes),

Lad
"

explicit knowledge and experiences upon the possibilities

and the limits of a computer use.

Lt

. The computer as an 2id to the teaching of mathematics

There are at least three advantages using a computer as a

teaching aid: visualization, interaction, and speed.

1%

The visualization ot mathematics on a plotter or on a screen
enriches the learning process. Aspects of Gestalt psychology may
enter into the teaching process by using graphics, spreadsheets,
etc. Also the knowledge about the recognition of shapes and
patterns (either graphic or symbolic representations) may Dbecome

more important.

The interaction between the learner and mathematics is one of
the fundamental assumptions of the cognitive learning
psychology . Learners do not simply add new informations to thelir
store of knowledge. Jew knowledge has to be “constructed® by the
learner, has to be "invented® by himself. The computer (with
appropriate softwarc learning packages) can become a powerful

tool within the procsss of learning.

Also the speed of a computer is essential. Each answer of the
computer gives a feed back to the learner. Many computer
tutorials give emphesis on that feed back. (Our research project
concentrates on feed back by using guess-and-test procedures) .
Since the years of Programmed Instruction it is well known, that

reinforcement is the more effective the gquicker it is.
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mathématique du continu ntest p embles Infinis est pare
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tagée par ls quasi-totalité des mat conviction est devenue un
dogme d'autant plus prégnant que 1'enseignement contemporain de Iz mathématique met
ie plus grand sofn & évacuer gystématiquement la seule conmaissance qui efit permis
de te relativiser ¢ celle de 1'histolire de la mathématigue, gui rvépond & la question
comment et pourquoci en est-on arrivé 13 1

11 faut donc rappeler certalng falts blen ocubliés. lorsque Hilbert 2 inven-
té la mathématique formelle, c'était pour pouvelr conserver ls théorle cantorienne
deg ensembles infinis, qui lul pavaissaic indlspenssble pour fonder la géométrie et
1e caleul infinitdsimal (dont {1 ne peut Bitre question de sriver la mathématique) et
qui sous sza forme primitive était inconsistante (vovezr les célébres paradoxes).
L'idée de Hilbert, qui constitue le principe fondamental de la mathématique formelle,
fut de nier tout caractére objectal aux engembles 3 seul un eystime de propriétés
détachées de toute intuition resterait obiectif, & condition d'ftre dépourvy de CORLIE
diction interne [ 4] , Oublier cels et crolre nalvement que les termes de la théorie
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méne tout droft au cercle vicieux dénoncé par le mathématicien L.E.J. Brouwer ¢
i1

ge fait dang le cadre d'une

sitionniste) des

entiers naturels. 5% aprés cela la mathématique formelle ?ﬁéi@%ﬁ svoiy constrult ces
mBmes objlets gu'elle n'a falt que restituer, elle mystifie. Par contre, sl elle

prétend fournir une théorie scientifique sur ces objets qui, eux, nous sont donués

e

en quelque sorte par la nature, elle rend un trés grand service & la mathématique.
ta théorie formelle des ensembles est donc une invention remarguable, mais 11 faut
la prendre pour ce qu'elle est t une théorfe, c'est & dire un systéme logique fabri-
qué de toutes pléces par l'esprit, et qui permet, & partir d'un petit nombre de
principes de base et de concepts, de retrouver par déduction toutes les propridtés
obgervables des objets auxquels elle s'applique. Et pulsque ieg engembles Infinis
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non dénombrables ne sont certainement pas des objets (Hilbert dixit) clest & son
adéquation avec les propriétés observables du continu par exemple qu'on pourra
tester la théorie des ensembles. Notons bien que sur ce point, elle a donné jusqu'ici

entiére satisfaction, sauf qu'elle est bilen compliquée.

Ainsi, vue de l'extérieur, par un observateur impartial, mais nécessalre-
ment intuitionniste (du seul falt qu'il s'est placéd & l'extérieur), la théorie des
ensembles n'a pas la mBme apparence que si on la vegarde de son intérieur : elle
est relativisde., Clest de lfextérieur qu'on peut poser la question célébre : fles

entiers naifs remplissent-1ls N 7¢(1) & laquelle Reeb a répondu par la négative,

Je voudrais montrer dans cette communication que cette réponse est lide
4 un enjeu de taille : si on admet que les entiers nalfs ne remplissent pas H
la seule théorie des ensembles finis suffit & rendre compte de toutes les propriétés

du continu, et {l est inutile de recourir & des ensembles non dénombrables.

Ay départ nous admettrons donc l'arithmétique formelle de Peano, compore
tant les concepts bien connus KW, Z , et § ; en outre, nous admettrons tout théo-
réme portant sur les ensembles finis de la théorie formelle des ensembles, c'est &
dire l'analyse, combinatoire. Et bien entendu, la c1é sers 1'élément ® de ¥ , non
nalf.

Posons alors les définitions suivantes 3

a) Nous dirons que deux éléments k et § de Z sont équivalents ,

k= g , 8L pour tout nalf n , n‘kwﬁé < W o

b) Nous dirons qu'un élément k de Z est limité (2) s'il existe un
na¥f n tel que §k§ < nw .

& propos de ces deux définitions, {1 faut 8tre bien conscient de leur
caractére externe ¢ elles ne peuvent 8tre posdes que par un intultionniste qui
observe l'aritimétique formelle de 1'extérieur, et avec une bienvelllsnce presque
paternelle, Pour un esprit dogmafique quil refuse de sortir de sa chére théorie for-
meile des ensembles, ces définitions n'ont aucun sens.

fa définition a) nous fournit, entre &léments de 2 , une relation d'équi-
valence externe (qui n'existe pas dans la théorie des ensembles) et donc sussi des
classes d'équivalence {(gui ne sont pas des ensembles). Nous appellerons halos ces
classes dféquivalence, Puls, nous posons encore ls définition

¢} Un pombre réel est le halo d'un élément limitéd de 2 ,

Donnong tout de gulte deg exemples de nombres réels
1. les entfers ®,2n,3, et plus généralement les multiples na%fs de w ,

gont limités, Leurs halos sont donc par définition des nombres réels.
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2. Congidérons 1'ensemble = f(k, g} € Z % Z E%z + ﬁz < wl . Cet ensem-
bie est fini ; donc, d'apris un théorime de la théorie des ensembles, son cardinal
est un élément a de W ; on vérifie facilement que a < 4w, c'est & dire que a
est limité, Son halo est donc un nombre réel, que nous sppellerons 7w .

3. o et {m~?i)&%i sont deuw éléments de W § on peut falre la divi-

i

W i
=0 b+vr,0gr<y ; en

gion euyclidienne du second par le premfer ¢ (Wi} g

85
développant {wt+l)  suivant la formule du binBme, un raisomnement diarithmétique
3] 13
trés simple montre que (W+1) <« 30" s done b est imité ; son hale est un nome

bre réel, désigné par le symbole e ,

En analyse combinatolire, {1 est souvent nécessaire de diviser des entiers,
et par conséquent 1l est commode de vecourir aux fractions si on veut éviter que
L'écriture ne devienne trop lourde, De mBme que sur Z , on peut définir sur Q

une relation d'équivalence externe, des éléments limités, etc 1

DEFINITIONS, Soit r € Q . Nous dirons que 1 est Infiniment petit, ou négligeable,

si pour tout nailf n , ﬁ‘f! < 1 . Hous dirons que r est Jimité g'{] existe un
nalf n tel que \r{ < n . Nous dirons que deux éléments r et s de G sont

infiniment voising (et noterons x = g) si r-g est infiniment petit,

A tout nombre rationnel r 1imité, on peut associer un nombre réel, que
nous appellerons son ombre ; et que nous noterons 5t{r) 1 en effet, r s'écrit

gsous forme de fraction frréductible r = % avec g > 0 . Soit wm(r) le guotient

euclidien de pw par aq i si t est 1imité dans G 5, m{xr} est limité dans 2 ,

donc son halo est un nombre réel qui par définition sers 1'ombre de ¢

®

Deux rationnels limités et infiniment volsing ont la mBme ombre {Exercice

ie démontrer).

{1] CGeorges REEP 1 Ls mathématique non-standard, vieille de soizante ans 1

Publ, IRMA, 1978,

{2} G. TAKEUTI s Two applications of logle to Mathematics (Princeton University
Press, 1976},

{31 Les entretiens de Zlirich sur les fondements des sciences mathématiques.

Fditeur 1 5.4, lebmann fréves & Cle, Zlrich, 1941 .

[ 4] D. WILBERT : Ueber das Unendlichen . Mathemstische Annalen, vol.95,1926,
p 161 - 190

HOTES

{1) On peut considérer que cette guestion demeure posde depuls Brouwer,

quoique sous une forme moing directe (ou moins brutale),

5

{2 % Plug loin, dans G nous donnerons & ce mot un sens tégerement

différent, plus proche du sens usuel. Dans @ , 1'échelle sers @ fols plus petite,

8
%



4 FUNDAMENTAL COURSE IN HIGHER MATHEMATICS mathematics. These proposals usually place discrete mathematics

INCORFORAT ING DISCRETE AND CONTINUOUS THEMES courses hefore continuous mathematics courses, at the beginning
by ot students university careers.

Michasl D. Rice and Stephen B. Seidman In this paper, 1t will be argued that these proppesals do

George Mason University not respond to students perceptions that discrete and continuous

Fairfax, va 22030, USA mathematics are unralated subjects, and therefore will not provide

students with a flexible collection of mathematical tools that

Traditionally, students’ first exposure to higher mathematics [=
& bhe applied 1n both d -
pli isorete and continuous situatl 5
t tons. Such
comes in the form of the differential and integral calculus, S i
. collection of tools 1
; is absolutely essential for th
8 study
@1 ther 16 agcondary school or inn the first year of university of
¢ computer GClence as  wel t
" well as forr the modern st
T udy of the
studies. This initial exposure emphasizes the fundamental role 1
physical sCciences and  en I
z BNQL NESr LG . The paper will owt
. . utline a
0f  continuous mathematics 10 Contemporany mathematics curricula, fundamental

course in  higher weathematics that introduces both

whicoh Zan he attributed to the historica 5 £ - kl &
™ 3 sas OFf ContiMNUOWEs sorete an continuous i1deas 1 a synergistic nutuall e
o + ) 9 g e : v
&) AR Tt Y f " infaro:

mathematical nodels in the physical sSClences and enginegring. In m
o * ANNer providing students w1 th ot
) “ =1 oth the discrete models that
2t ls that
recent decades. increasing  attention has been paid to discrete
. 5 are needed far the study ¢«
v of computer science and the cont)
2 1 OUS
mathematical models, motivated Dy the ever greater role played fmer
. . oidels that are needed {for
T tar the more traditional stud ot i
=3 Voot the
oy computers both (9! a wide wvariety of applications andg as a physical scliences and engin
< Jineering.
study of intrinsic importance. The widespread interest in these

models has led to the introduction of discrete mathematlics COUrses
nto  university curricula . Unfortunately, thess courses are
generally affered at an advanced stage in students’ academiC
carears, sn  that the discrete mathematical tools are acouired
too late to be effectively used 1n the study of computer sScience.
in addition, these topls are not well integrated with the more
traditional continuous mathematical tools learned earlier.

Several nroposals have bDeen made in the United States to address

Pl

this  proablem by restructuring the first two years ot university



DISCRETE MATHEMATICS

- Two years experience with an introductory course -

T. A, Jenkyns and E. R, Muller

Brock University, St. Catharines, Ontario, Canada, L2S 3A1

Introduction

The computer, more than any other scientific or technological deve-
Topment, is raising concerns about the undergraduate mathematics curriculum
[11. Many of us have grown up with the present first two years of the
undergraduate curriculum where some gradual changes have been introduced,
mainly on the Algebra side. It is therefore not surprising that we are ner-
yous about a rapidly growing area of knowledge gnawing at these very courses.
what makes things even more difficult is that the computer technology is
developing so fast that we cannot afford to sit back for longswaiting for
the discipline to stabilize. If we do, we will probably lose stu-
dents in mathematics and will also find a proliferation of mathematics
courses in computer science departments. We are of the aopinion that mathe-
matics should be taught by mathematicians who in turn should be aware of
developments arcund them and,where appropriate,the needs of their clientele
[21.

Generally the mathematics curriculum has been developed with an eye
on applications in the physical sciences. Lip service has been paid to app-
Tications in other areas with changes in the undergraduate curriculum coming
mainly in the senior years. 5Such developments are not surprising as the
cciences have traditionally required a strong component of mathematics within
their programs. We have argued [37] that the calculus course, with some diff-
erent emphases, should remain as a core course in the first two years of the
yndergraduate program. What concurrent core mathematics course should now be
developed as we keep the other eye on the computer? At this time it appears
that Computer Scientists are prepared to also require a strong component of
mathematics within their program. To meet this demand and to offer our own
students a broad mathematics education we must survey the field of mathematics
and search out the appropriate areas. We follow others, e.g. Ralston [4], in
isolating two fundamental areas that an undergraduate should be exposed to
early. The first is an algorithmic way of thinking, the other, less well de-
fined, are the mathematical concepts presently applicable in computer science
which we group under the term "discrete mathematics". The first year course
we have taught at Brock for the past two years, and to which 500 students
have been exposed, emphasizes and explores these two areas. A detailed course

outline is presented in Appendix I.

Course Philosophy

Algorithms are fundamental to much of the arithmetic and algebra taught

in school. Unfortunately, the algorithms are rarely made explicit or discussed.

They are the basis of learning by rote and the teacher's method becomes the

on?x gcceptab1g method, however inefficient or cumbersome it may be. These
famitiar algorithms form a valuable source of examples which can be used to
mot1vate!the fundamental characteristics of algorithms, for example, that
for all inputs they terminate in a finite number of steps. One is naturally
led to proving that they are effective, i.e., they produce the correct answe
where a "correct solution” is often an approximate solution with some bound
on the error. These algorithms can also be used to motivate initial dis-
cussions on efficiency. Furthermore, introductory ideas of iterative and
recur31ye~p(0cedures are easily motivated, for a simple example consider the
Short Division Algorithm stated traditionally as

Given integers D > d and d > O there exists unique i
R such that que integers Q » O and

D=Q* +Rand 0 ¢ R < d.

Qf interest is the algorithm which for a given D and d will generate Q and K
i.e. for an Input of [) and d will Qutput @ and R.

Two contrasting algorithms are:

(i) Iterative
Proc sd{D, d, R, Q}
Q«0; R«D
Repeat
Q«Q
R+« R
until [R <

+ 1
- d
d]
(i1) Recursive
Proc sp(D, d, R, Q)
If 0 <dthen §Q « G; R+ 1D
else SD(0 - d, d, R, Q)5 Q= Q + 1

Stepping through these algorithms for 0 = 27 and d = 7 we find

(i) @ R R < d (i1) sp(27, 7, ., i <d No
0 27 sh(20, 7, . INo
1 20 ) SD(13, 7, . lHo
2 13 No sD 6, 7, , )Yes
3 6 Yes S0 we build back up through
Qutput Q = 3, R = § the stack.

sl 6, 7, 6, 0)
So(13, 7, 6, 1)
sp(eo, 7, 6, 2}
so(27, 7, 6, 3)
and Qutput R = 6 and § = 3.

From the bgginniﬂg Qf the course students develop algorithms, step through
them for different inputs and follow through proofs of their effectiveness.

N
~£
My
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Deductive logic can be introduced with computer language constructs )
and it forms a useful baselfor a discussion of the structure of proofs. Stu-
dents in introductory courses are rarely exposed to a discussion of mathema-

Qk*d * Rk = q*d * (Qk = Q)*d * Rk

tical proofs. We somehow assume that they will learn by repeated exposures = q* + r hence r 3 d
as proofs are presented in their various courses. We review traditional proof . N
constructs, mathematical induction playing a major role, and compare Lhem with or (i1) Q < q then D = g*d + r

proofs for algorithms where the algorithm logic is used in the proof. We have
found very little on this,in the Titerature,which is of use to an introductory
course. The following proof constructs for the iterative and recursive Short

Division Algorithms is what we are looking for,

2 Q¥ +d+r

> Qk*d + Rk +opr
{1} The iterative algorithm is effective, i.e.

#

. 0+ r hence r < 0.
{a) it stops for all inputs {with correct values for Q and R)
{(b) the output is unique for any given input. Thus Q, With 0 s Rk < d is unique.

For ease of proof we rewrite the algorithm as follows (i1) The Recursive Algorithm is effective.

1. Set Qo = 0 and Ry = D

a) The procedure must stop since successive values of D form a
{then Re = 0 and 0 = Qu*d + Re) ) P P

strictly monotonic decreasing nonnegative finite sequence with

difference
2. If Rj < d then stop

S
else Q5,9 = 0y + 1 and Ripp = Ry - d
) N b} By induction on I we prove that the algorithm does always produce

{then D = Q€*3*§ + R the correct result.

g+

1. If D=0 then D < d and result

= Qj*d +d+ R, - d would be correct.
)

2. Assume correct for

MR TRy mdzd-d=0) D=0, 1,2, ...,k
a) The procedure must stop since 3. Then for D= k + 1
Qy*d = Qy*1 = if k + 1 < d then result is correct, and
and if it didn't we would have after D iterations ifk+12dsinced >0
b= Qo*d + RD 2D+ RD =0 +d> 0D, 0sD-dsk
b)  Suppose the algorithm stops after k iterations with and therefore by assumption {2) the result is correct, i
0= Qk*d + Rk and 0 = Rk < d 0-d=0Qd+Rand 0 s R<d
and suppose that Qy is not unique, then there exists a D=(Q+T1)d+R
g which either with unigue (Q + 1) and R.
(i)0=qc« Q, The initial and continuing effort has been to use the algorithmic way

of thinking as an underlying theme. (learly for some topics, e.g. graphs,
then

R



counting and generating, etc. this is not difficult while for others, e.qg.
sequences and series, it is not so natural and perhaps not desirable. These
can be used to contrast and underiine the importance of the non algorithmic
mathematics. As we review the course we are also finding common links {for
example, graphs, recurrence relations) between what were initially separate
topics. We have found it useful to conclude the course with an introduction
to automata as we can return to the fundamental properties of algorithms.

DISCUSSION. This course is a required course for Computer Science and Mathe-
matics/Computer Science combined majors. The latter take a full year Calculus
course concurrently and a half course in Linear Algebra in the second year,
The former take a half course in Calculus normally combined with a half course
in Linear Algebra in the second year. We have, up to now, had close to 500
students through this course and we intend to present at the conference corre-

lations between performances in this course and the Calculus and Linear Algebra

courses. We are fortunate that a large proportion of the students in this
course take a Pascal course concurrently. MWe still regard the content and em-
phasis of this courses as experimental. Even if there was an agreed set of
topics the content within each has so many possibilities that we have not re-
viewed all the alternatives. For example in the section in graphs we have
concentrated on paths and trees, in the section on counting and generating, we
have selected algorithms which reflect lexicographic ordering. The section on
probabitity and discrete random variables is well motivated by average case
analysis of algorithm efficiency.

We are encouraged by the support we are receiving both from our Mathema-
tics Department and the Department of Computer Science to continue to develop

this course. We look forward to sharing the experience of other mathematicians

who are attempting similar changes to the mathematics curriculum of the early
undergraduate years.
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SECTION 6 - RECURRENCE RELATIONS - DIFFERENCE EQUATIONS

APPENDIX Basic definitions, applications. Homogeneous with Constant Coeffi-
cients (theory and solution of first order - Example [Fiobanacci]
SECTION I - ARITHMETIC ALGORITHMS AND THEIR ANALYSIS of second order with solution. First Order Nonhomogeneous with Con-
stant Coefficients (solution procedure and applications). Examples

Basic definition of algorithms. Algorithms for multidigit addition of other types of Recurrence Relations (Pascal's triangle, calculator
and subtraction, Jong and short division; intuitive introduction to functions, deterministic simulation).
effectiveness, approximation, iteration and recursion. Primality and
Factorization - intuitive introduction to efficiency - worst case SECTION 7 - ITERATIVE anp RECURSIVE ALGORITHMS
analysis. Highest Common Factor (Euclid's algorithm and its effici-
ency). Square roots {Doubling of digits method and its rationale, Review and definitions. Iterative procedures {Examples of iterative
more general methods for solving x¢ = A, bisection method and Newton's algorithms - zeros of functions by fixed point methods). Programming
method {without proof), stopping rules and rounding). recursion (examples of recursive procedures).

SECTION 2 - NUMBERS AND MACHINE ARITHMETIC SECTION 8 - COUNTING AND GENERATING SETS AND SEQUENCES
Computer representation of numbers. Review of Sets (basic definitions Examples where previously counting and generating procedures were used
including partitions). Binary Relations (basic definitions and ex- - what procedures to look for. Four Basic Principles of Counting
ampies of Cartesian Product, Relation, Function, Characteristic function, (addition and multipiication, inclusion-exclusion, pigeonhole princi-
Partial and Total Ordering, Equivalence, matrix and graphical represen- ples. Sequences of length n from set X with (X! = n (procedures for
tations of relations). Real Numbers { review of definitions). Posi- counting and generating sequences of length n - extensive section which
tional Representation of Numbers (the importance of positional represen- discusses various algorithms both iterative and recursive, defines new
tation, introduction to different bases). Round-off errors concepts such as permutations, natural order permutations, signatures,
{errors and their behaviour under the four arithmetic operations). Bases, minimal differences, etc.) Counting and Generating Sets (similar in
Conversion and Arithmetic (simple algorithms for converting from one style to the previocus section it brings in new concepts - Gray code,
base to another and arithmetic in any given base). Modulus Function, next in lexicographic order, etc.). Sequences with limited repetition
Floating point representations, Complement Arithmetic (basic definitions of elements (small section on counting). Counting and Recurrence Re-
and an application to complement addition for subtraction). lations (examples of Recurrence Relations in counting). Binomial and

Multinomial Theorems.
ECTION 3 - FORMAL LOGIC AND PROOF TECHNIQUES

oy

) SECTION 9 - PROBABILITY AND RANDOM VARIABLES ON DISCRETE SAMPLE SPACES
Formalizing arguments, axioms and rules of inference. Propositional cal-

culus (definition of Boolean variables and the operations, ~,n,u,+,»,+. Difference between deterministic and probabilistic systems. Probability
Conventions for evaluating complex expressions and other basic definitions for discrete sample spaces (Basic definitions and axioms, equally likely
required for proof techniques). Is it correct? -- or how to prove it and not equally likely simple events - Application of counting principles
(proof techniques, including 1. Valid argument forms. Z. in the former - development of further probability axioms, conditional
Direct proof. 3. Indirect proof. 4. Construction. 5. Counter - example. probability, independence). Random Variables and Probability Oistribu-
6. Mathematical Induction (1st and 2nd principles})), tions (definitions, applications, basic discrete distributions, uniform,
binomial, geometric, Poisson [the last two as examples of infinite sample
SECTION 4 - SEARCHING AND SORTING space]). Expectation value and Average Case Apalysis {definitions and
applications to the basic probability distributions of the previous sec-
Application of proof procedures and further efficiency analysis. Search- tion, also to sequential and binary search algorithms). Random number
ing Lists {algorithms for searching random and sorted lists with their generation (pseudo random numbers generation using the linear congruen-
analyses). Sorting a List (Minsort, Bubblesort and Mergesort and their tial method - an application to simulation).
analyses - concept of a recursive algorithm). Slow Algorithms (Examples
of the Tower of Hanoi and Travelling Salesman problem). Complexity of SECTION 10 - GRAPMS AND TREES
Algorithm {summary of complexity of algorithms studied to date with a
graphical representation of the growth curves of these functions). Definitions and Examples (definitions, algorithms for generating a simple
path, theorems on simple paths, Euler paths). Forest and trees (defini-
SECTION 5 - SEQUENCES AND SERIES tion, algorithm, on connectedness, shortest path, minimum connector pro-

blem, depth-first vs breadth-first transversal).
Concepts have been introduced intuitively before - arithmetic algorithms
produce either sequence or series approximations. Sequences (definitions,

o< limits of infinite sequences). Series (definitions, convergence). Some

Q}“ discussion on order of convergence numerical Timit computations and round -9 -

Y:y off errors,

SECTION 11 - ELEMENTARY AUTOMATA

Turing machines (examples, definitions, and simulations). A
universal machine. The Halting Problem.



Whast Should 2 Discrete Mathematics Course Be?

An apgoer (o quention 3 of (CMI sindy desement " The isiivence
of zompuiern nad infermation vn mulbemetice ead its tesching”

Kenneth P. Bogart

introduction. In "What i3 a Discrete Mathematics Course? 1] the
author reported with Kathy Cordiero and Mary Lu Walsh on a joint survey
research project 1o deter nune the extent and nature of freshman to
sophomore level discrete mathematics courses. Virtually all our
respondents (13% of the 3600 questionaires were returned) indicated that
their institution has or contemplates a course in discrele mathematics.
Most courses described have al most one Progranming course of one or
iwo calculus courses as prerequisite, confirming that they may be regarded
as freshman-sophomore level courses. Though some of the courses are
aimed at a fawrly broad audience, most are aimed at computer scienoce
majors {or perhaps both computer science and mathematics majors.) The
typical course described (3 a one semester course meeting three hours a
week. These courses are likely no more sophisticated or proof-oriented in
their approach than freshman calculus, and are somewhalt algorithmic in
flavor.

Projected content of discrele mailh courses, We asked
respondents 1o choose {rom a menu of lopics chosen Lo 1ypily the contents
of current books in discrete mathematics, combinatorics and probability.
We also asked respondents (o indicate which topics on the menu should not
be included in such a course. We analyzed the results separately for
courses taught in mathematics departments, courses taught o computer
science departments and courses taught in joint departments. With the
exception of probability topics, there was (airly general agreement as (o
whal would be taught regardiess of where it would be taught. The overall
results are summarized in Figure | This Figure shows more detail than
was possible in our earlier report. The topics on the menu correspond (as
shown} to the columns of the Figure; the perceniage of respondents
favoring a topic i3 graphed in that column with & */" and the difference
between the percentage favoring and the percentage excluding a certain
topic is graphed with a "\". Both graphs have {airly evident points of
inflection; these points show where the degree of consensus on what should
be in a course is changing most rapidly. A plausible generalization i that
the topics in the “left hand group” are likely to appear in the majority of
discrete mathematics courses while the topics on the right may appear in a
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significant minority of discrete mathematics courses. If a topic was
excluded by significantly more respondents than included it (more than ten
per cent), then the column for that lopic was not labelled with the topic.
The topics not included were topics in abstract algebra, abstract linear
algebra, further probability, the general theory of difference equations and
combinatorial designs.

i1 is possible to organize the topics shown in Figure | into natural
groupings daecording 1o how they might appear now in various courses.
They are organized in this way below,

Seis, relations, functions, equivalence and ordering relations, muitisets

’ %rmaméag& combinations, partitions, recurrence relgtions,
inclusion-exclusion, generating functions and difference squations

Graphe, digraphs and wrees
Induction and recursion
Truth tables. propositions, Boolean algebra, predicate logic

Probability, expected value, random variables binomial probabilities, standard
devistion

Mairix algebra

Comparison with the MAA Discrete Math Panel course. For the
sake of comparison we lisi here the major topics but not the detailed
subtlopics of the one vear course outlined in the preliminary report of the
i&gm; on Discrete Mathematics of the Mathematical Association of America
4.

. Seis 3. Funclions and Relations 9 Trees and order

The number systemn 4. Recursion 10, Algebraic Struclures

The pature of proef 7. Combinatorics 11, Algorithmic Ligear Algebra
Formal logic & Graphs

s Lod B3 o

The overlap among the ouiline proposed by the panel, the cutlines
proposed Lo the panel by correspondents {and included as appendices in
their report), and the survey responses indicates a Growing CONSensus on
the content of discrele mathematics courses. { Although the panel had
access 1o detads of our survey they considered a grest deal of other data as

well) We comment below on the differences between the survey results
and the panel outline.

First we did not include College Algebra topics in our meny; this
decision means we cannot comment on the percent of our sample which
would include a unit on the number system.. From lhe answers (o our
open ended guestions we have no evidence that respondentis thought we
should have included such topics. Despite the fact that most of this
material is supposed to be covered in high school algebra, American
students are often deflicient in their understanding of the number sysiem,
Because the panel is recommending a one vear {reshman course (which
means that weak students might not be able to take college algebra lirst) |
believe the panel's recommendations in this ares are realistic. Inour
survey results | {ind considerable sentiment for discussing the nature of
proof in an integrated fashion rather than as a separate unit. St it
appears 1o me that most of the Panel's recommendations for Unit 4 will
appear somewhere in a discrete mathematics course.  The majority of the
material in the algorithmic linear algebra unit is matriy algebra; the survey
teads us 1o conclude about hall of the courses will have some of this
materizl. The survey did not ask about linear programming, $o we can
make no comment on this topic. One point of significant difference
between the panel outline and the survey results is iz the unit on algebraic
structures. Our survey suggeests thal Boolean algebra is the only topic in
that unit likely to appesar in a significant number of courses.

There is one other ares where the Panel's cutline and the survey
resulls do not agree, namely probability. There was also a clear difference
between courses taught by mathematics deparimenis and courses taught
by computer science departments in the depth of coverage of probability.
This is also the one are | hope the pane] will reconsider its
recommendations before its final report. The Panel recommends
probabilily as a topic in the combinatorics unit while | argue on the basis
of both the survey results and the needs of computer science students that
a separate unil on probability is quite imporiant. The topic of expected
value was included by more than hall of our respondents. 11 is natural to
assume that this is because of the imporiance to computer science students
of being able to analyze the expected run time of algorithms. One may
argue thal some institutions will require separate courses in probability
and statistics of their compuler science majors and that these courses will
cover expected values. Many institutions, mine included, will not, however.
Further the ususl caleulus-based probability course Lreats conlinuous
random variables rather than discrete random variables as ils main lopic,
30 the tools needed 1o analyze expecied run time of algorithms will be
touched on indirectly I at all. Finally, the time for s student lo



understand the probabilistic background for an analysis of quick-sort or
tree-sort is before they come up in computer science courses, not after!

A ome semester course. The only other major divergence beiween the
panel recommendations and the survey resuits is the duration of the
course. Cur survey data indicate that the typical course will be a one
semester course rather than a two semester course. The remainder of this
paper is devoted to giving an outline for this course. Since the outline
beiow (5 in close agreement with with the MAA panel recommendations it
is natural to ask "How i3 the course to be squeezed into one semester? [s
the instructor to talk twice as fast? Are the siudents supposed 1o think
twice as fast?” | have three answers to these questions. First, | believe
that the course could quickiy evolve 1o a four semester hour course as
calcutus courses have. Second, by requiring only one semester of discrete
mathematics, a depariment opens up one semester in which it may require
students to take a course in abstract algebra, combinatorics, graph theory,
linear algebra and linear programming, logic, probability or statistics.
Third, this course outline is based on the assumption that the student has
mastered high school algebra or will take college algebra before discrete
mathematics. In fact half the institutions surveyed (Dartmouth included)
have or intend one or two courses in calculus as a prerequisite. This
experience with a substantial college course will accustom the student to a
faster pace and develop a student's manipulative skills so less time need be
spent on them in discrete mathematics.

In the course outlined below, | have marked with an asterisk those
topics an nstitution might choose 1o leave to later courses. Of course
leaving all these topics Lo later courses is undesirable and probably
unfeasible for the student. Our course at Dartmouth leaves the second half
of Unit 6 and all of Unit 7 for a later (optional) course in combinatorics.
With regrets, we plan 1o cover oniy as much of Unit 10 as time allows; |
expect time may allow little or none of Unit 10. Since cur computer science
majors do not flock to logic courses, we may vet try to redesign the course
to allow coverage of Unit 10. Since our course devotes only three quarter
hours to discrete mathematics and one quarter hour to computer
programming and compuler science topics such as sorting and searching,
and since our stronger students take a more rigorous course, | believe it is
reasonable 1o base a course for average American students on this outline.

Qutline for 2 One Semester Discrete Mathematics Course
(Topics marked with (%} are included as time and local circumsiances dictate)

Unit { Sets and Logic Sets as truth sets of statements, logical connectives
and set operations, circuits to test the truth of statements, conditional
statements. Bquivalence and implication and their relation o tryth sets.
Equivalence of a statement and iis contrapositive as the basis of an indirect
proof.

Unit 2 Functlions and Relations Relations and digraphs, transitivity and
reachability, transitive closure, partial orderings. Symmeuric relations and
graphs, connectvity and equivalence relations. Functions one to one and
onto functions, review of logartithmic and exponential func.ions, "big OH"
notation.

Unit 3 Mathematical Induction The principle of mathematical
induction. Examples of divide and conquer algorithms and inductive proofs
that they work. Inductive (recursive)} definition of functicns. (Recursive
definition of sets and applications to context free languages)®

Unit 4 Baszic Combinatorics The sum and product principies,
permutations as one to one functions, combinations as subsets and
multisets. Pascal's triangle and the binomial theorem. (The orinciple of
inclusion and exclusion)*

Unit 5 Advanced Combinatorisl Anslysis Recurrence relations, [irst
order linear recurrence relations (constant coefficient case), reduction of
recurrences from divide and conquer algorithms to first order linear.
(Second order linear homogeneous recurrence relations and Fibonacet style
problems)® (Generating functions, product principle for generating
functions, the extended binomial theorem, application to second order
recurrence relations)*

Unit 6 Trees Trees as connected acyclic graphs, spanning trees. Rooted
and Binary trees. Binary trees as data structures, tree traversal. (Breadih
and depth first search trees)® (Minimum total cost and minimum total
path length spanning irees)?

5,

Unit 7 Graphs® Mulligraphs, isomorphism, polynomial time verification  \n
algorithms, the travelling salesman and Chinese posiman problems, Y

Eulerian and Hamiltoruan graphs, mention of concepts of NP hard and NP



complete. Colorability, planarity, Euler's formula. Digraphs as models of
finite stale machines.

Unit 8 Probability Sample spaces, probabiity measures, conditional
probabiiities and independent events, expecied values, (binomial
probabilities)® {Standard deviation and iis interpretations)*

Unit 9 Matrix Algebra™ Matrix operations, malrix equations and
systems of linear equations, inverse matrices, determinants, applications of
matriz powers (o graphs and Markov Chains, Hamming codes.

Unit 10 Symbolic Logic®™ The language of the propositional caleulus,
truth assignments and satisfiability, Boolean algebra, conjunctive and
disjunclive normal form, Boolean algebras ag lattices, unigque decomposition
into atomic elements. The language of the predicate calculus, quantifiers,
prenex form, database query languages. The ideas of inference and their
importance in artificial inteiligence.

Conciusions. There is, at least among institutions in the United States, a
reasonably well defined body of material that is important to intorduce
early in a computer science student's carreer. This is leading to a discrele
mathematcs survey course taught to students in their freshman or
sophomore year. Although the conteni of Lthis course is reasonably well
established, it will vary on the basis of local needs. There is not a general
consensus in the community on the status of algebraic structures and
probability in such a course, or on the duration of and prerequisites 1o such
a course.
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Symbolic Manipulators
and the
Teaching of College Mathematics:
Some Possible Consequences and Opportunities

Kenneth D. Lane
Department of Mathematics
Harvey Mudd College
Claremont, CA 91711 USA

ABSTRACT

The widespread availability of computer systems possessing some of the
mast cherished skills of cur undergraduates is fast approaching. There now
exist systems that factor, differentiate, integrate, sclve, and what-have-you;
all symbolically. It is arguable that mathematics curricula have, for the most
part, igno: the existence of digital computational power. Will symbolic
manipulative power also be ignored?

The author ocutlines an experimental mathematics curriculum under develop~
ment at Colby College which makes use of symbolic manipulators. Specific

of the

Th inclusion of this technology in mathematics curricula raises
some di issues In June of 1984 3 small group of mathematics educators
gathere tby to study Colby's experience, to experiment with the capabili-

ties of systems, and to discuss the implications for further curricula
i The author reviews some of the issues that arose during this

d offers suggestions for their resolution.

egration of the fechrnology into the curriculum are presented,
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Dr. F. Pluvinage

IREM

10 rue du General Zimmer
67084 Strasbourg, Cedex
France

Dear Professor Pluvinage:

Enclosed is an abstract for consideration for the March meeting. The
work described in my paper is part of a curriculum project at Colby Coilege
being funded by the Alfred P. Sloan Foundation. [ am on the faculty at Colby
but am on leave during this academic year. The overal] geoa! of the Slean
project 15 to build a two-year curriculum which provides 3 balance between
calculus and discrete mathematics.

We are very excited about our experiences using these new technologies.
However, the problems and issues that accompany the uses of th gystems are
enormously complex. A vigorous discussion among far-sighted individuals who
are intervested in curricula matters {s nesded to help identify and solve these
problems. [ suspect that this meeting would provide a forum from which this
discussion might begin.

¥

1 have made a preliminary dnauiry to A, Ralston with respect to the
appropriatenass of this paper for the meeting. During my discussion with nim
he indicated that some funding may be available. In the event that you are
interested in my paper, please consider me for any funding that may be
available.

1 hope that you find my proposal useful and I look forward from hearing
from you.

Sincerely,

Kenneth D. Lane
Visiting Assistant Professor

of Mathematics N
KDL/ssc N

MEMBER OF THE CLAREMONT COLLEGES



USING COMPUTER SYMBOLIC MATH POR LEARRNING BY DISCOVERY

by
David R. Stoutemyer
University of Hawaii
Honolulu

December, 1984
ABSTRACT

Computer symbolic math can help support mathematics education
in numerous ways. However, the most exciting and easiest way is to
encourage discovery via experiments that would be too tedious to
perform manually, This paper presents a scenario of working on a
project of this nature, then presents of list of analogous project
ideas relating to elementary algebra, linear algebra, summation,
power series and calculus.

1. INTRODUCTION

As outlined elsewhere {11, computer symbolic math, also known
as "computer algebra®, can play a major role in traditional computer
alded instruction. This role can span from routine drill througn
sophisticated mixed=-initiative tutoring systems that attempt to
discover, model and repalr student's misconceptions, However,
effective realization of this potential will require lengthy collab~-
oration between experts in computer algebra, computer—aided instruc—
tion systems, and math education. The potential is well worth this
effort, but mearwnile there are other immediate ways of using exist-
ing computer algebra systems to support mathematics education,

The most exciting of these immediate opportunities is to use
these systems to motivate students by exercising the process of
discovery. By this I mean the experimental process by which
mathematicians guess then prove new mathematics., Our traditional
mathematics curriculum is so burdened with teacning useful known
mathematics that little or no time is spent cultivating this experi-
mental process. Indeed, experimental math was such a slow process
in the past that devoting nonnegligible secondary school and under—
graduate time to it was understandably regarded as impractical.

However, computer symbolic math systems now permit such rapid
and flawless processing of nontrivial examples that it is easy to
search for patterns which suggest conjectures and general izations,
then search for counterexamples or macnine-aided proofs. With their
rapid abllity to process examples that are impractical to perform
manually, these systems permit us to wander deeply and widely,
following our curiosity as it is provoked by features that only
large examples reveal. Moreover, the experience of working with the
a Stance of such a tireless brute~force agsistant provokes
curiosity about the underlying known mathematics too.

One can imagine the ultimate computer-aided educational mathe~
matics project assignment being:

"Use a computer algebra system to qiscover something
interesting, and submit a corresponding report.®

However, most students are likely to negd guidance and concrete
suggestions —— at least initially. Accordlngly, the purpose oﬁ this
paper is to provide an example of such guidance and a collection of
concrete project suggestions.

Berfore commencing such a project, the studeg; should become
comfortable with routine use of the system, including the protocol
for invoking the system, for editing expressions and for accessing
on-line or printed documentation, This does not necessarily include
the use of "programming® control constructs such as procedure;,
loops, and conditionals. Most systems have a rich set of comman%s
that are directly executable in a straightforward "calculator modelf
and many explorations and projects require no more thﬁn a modest
subset of these commands together perhaps with thg use of assignment
to preserve results for use in subsequent expressions., For example:

p: DIF (=93 x4 v™3 + 439/2 x"2 v™2 - x ¥v"5, %)

; ; 5 e D
might assign the partial derivative -372 ®3 y3 + 439 % ¥ y~ to
the variable p, after which the command

FACTOR (p + 163308 x74);

5 -
might produce the equivalent form (372 x3 + y2)(439 x - 3»5>._ o
Prorficiency in such elementary use can be promoted by straight-
forward exercises such as

- 1
"Ugse the computer algebra svstem to factor X0 . 64 y24,“

Without first witnessing a demonstration, most students are
unlikely to know how to use a symbolic m&th(systam on an Qpenmandga
project., Conseguently, the instructor $nagld‘dam0ns;:ate tng
pursuit of at least one such project. Accordlngiy, section 2 is a
éartial scenario of how suchn a demonstration could pzoiged; with a
corresponding supplementary discussion in section 3. The appendix
lists a number of suggested discovecy*orlentea computer algebra
projects related to various mathematical topics,

2. A DETAILED EXAMPLE

To pe specific, the damonstzatiqn here uses an agpe:%mﬁng%t
version of the muMATHS® system. This version is scneduleu%ﬁuf
distribution sometime during 1985 for the §§ﬁ~§C and other C?m?”“?f?
using the similar MS-DOS operating system [2]. The examp}e Eéew%it
within the capabilities of virtually all systems, some of which are
referenced in [3].

; JTR

The system used here prompts the user with a nunbered l¢b§$
beginning with the letter "i® for “inputf and fq;lowed by a col:;.
The user then enters an expressicn terminated by a semicolon., The



svstem then displays the computing time in seconds 1if it is
nonnegligible compared to the computer clock resolution, HNext, the
system displays a numpbered label peginning with the letter "o" for
"sutput”, followed by a colon then the corresponding result. The
outputs can DE nunbers, expressions or function plots.

previous inputs and outputs can De recalled for editing or for
use in subsequent expressions, For ease of typing, inputs use "/7
for division and """ to denote raising to a power, For ease of
reading, outputs use raised exponents and use built-up fractions
where it is attractive to do so. ‘Tne entire dialogue can automatic-
ally be recorded on diskette for subsequent editing, printing or
reentry. The students would be familiar with such details from
their earlier trivial exercises mentioned in the introduction,

T would give the students time to ponder the following mock
project assignment for several minutes before commencing the
demonstration:

Project: Use your computer alygebra system to explore inter-

relationships among the coefficlents of (x + vy, expanded for

increasing n., Discuss the issues listed below and any other
relevant ones that you discover:

a) the number of terms;

b) relations among the exponents in successive terms;

¢) symuetries among the coefficients for a particular n;

e

relations among coefficients for two successive values of n;

e) relations between a coefficlent and factorials involving the
corresponding exponents;

£} the asymptotic growth of the largest coefficient with n.
g) the asymptotic growth in computation time with n.

rnclude plots that helped lead to your discoveries or that
vividly summarize them. Include proofs if you can. Don't worry
if you cannot decisively address all of these issues,

Superficially, this particular example would seem most approp-
riate at the point in the curriculum just before first exposure to
binomial expansion, However, some parts of the project might
require more maturity. It certainly doesn't ruin such a project if
the students already know some of the answers. Such reinforcement
can be beneficial. Moreover, elementary demonstration examples
permit the students to concentrate on the exploratory techniques
without being distracted by a flood of new mathematical facts.

I have enclosed the spoken narration below in guotes to help
distinguish it from the computer dialogue with which it is
interspersed.

2.1 Coefficient Patterns

myell class, here is how I might proceed with this
were as new to me as 1t is to you, Pirst, I woulc
successive values of n to see wnat that reveals:”

ily EXPAND: TRUE; *etts set the expansion control variable to
ol: TROE request automatic expansion untll further
notice,"”

i2¢ (x + yy~0:
ol: 1 "7 knew this result, but such degenerate

cases may be an important part of a pattern,”
i3y (x + y) 71y

03: x + Y »rnis is the only other degensrate case that
I can perceive,”

i4: (x + y) "2

od: x2 + 2 2y + y2

i5: (x + y) "3

of: 23 + 3 x2 y + 3 x vy 4y

i6: (x + v} "4

o6: x% + 4 x3 v+ 6 22 v2 + 4 x y3 + ¥4

P70 (% + v)75: ) .

07: 22 + 5 x% v+ 10 x3 2 + 10 x2 3 +5 x v 4 S

“Tt appears that there are n+l terms when (x+y)® iz expanded.”

wrhe exponente of x appear to start at n and decrease Dy 1 tog
in each successive term while the exponents of y appear to start at
0 and increase by 1 to n in each successive term”

she coefficients appear to be symmetric about the center term
or central pair of terms."

"phe end coefficients appear always to be 1.7
*The penultimate coefficients appear always to be n.”
“1 can't yet see how the other coefficients relate to n.”

"However, the project assignment first suggested looking for
relations between the coefficients for successive values of n, and
I'm not too proud to accept a hint,”

"7+ does appear that the coefficient 6 in o6 eguals the sum of
the coefficient 3 directly above and the coefficient 3 to its left
in 05. In fact, this "sum of above and to its left® pattern holds
for every coefficient if we imagine coefficients of zero surrounding
the displayed nonzero coefficients! This remarkable pattern Seems
too simple to be true, I'l1l check n = 6 to see if it provides a
counterexample:”



i8: (x + y)"6;
08:x6+6x5y+15x4y2+20x3y3+15x2y4+sxy5+y5

"The pattern still holdsi®

"How far should I explore? I could write a procedure with a
loop that increments n by 1 each time and compares the coefficients
in (x + yv)? with the appropriate sums of those in (x + y)?L yneil a
counterexample is encountered or until the computer runs out of
memory. I can run the program overnignt. Even if the program does
not find a counterexample by tomorrow morning, the increased
evidence for the rule would encourage me to seek 3 proof. Parts f
and g of the project may even permit me to estimate how large n can
become before I run out of memory space or patience., However, I'l1
postpone writing, debugging and starting thnat program until I have
no further ideas for quigk interactive experiments,”

"The next part of the assignment is to discover a relationship
between each ceoefficient and factorials involving the corresponding
exponents. Well, Olsli=l, 21=2, 3i=¢, 41=24, 51=120 and 61=720; so
toe coefficient of xX yP™% {g clearly not simply nl, ki or (n=k)!
Thus the coefficient must be some conpogition of factorials if it
invelves factorials at all. Moreover, since the coefficients are
symmetric, the composition should be symmetric in k and n-k,"

"I cannot yet perceive an obvious relation, 50 I will give up on

that -- at least for a while. Perhaps an inspiration will occur
after some experience with other aspects of the project or after a
surficient incubation period,”

2.2 Coeoefficient Growth

"The next suggestion is to study the asymptotic growth in the
largest coefficient as n increases. The largest coefficient appears
to always be the central one when n is even or either of the egual
central pair when n is odd. Through n = § the growth is rather
modest, so rather than ¢ atinuing to creep along by uniform
increments of 1, let's next try n = 8, 16, 32, ..., doubling n each
time untll we run out of memory or patience.”

"When n is even, the center coefficient is that of xn/2 yn/z.
Accordingly, we can use the built-in coefficient extraction function
as rollows to avold cluttering our screen with superfluous
informacion:

2.6 sec,
0l8: 6010_8039%

il9: COEF ((x + y)"64, x™32 y"32);
7.6 sec.
0l9: 1832 62414 09425 950534

"This sequence will soon become too time consuming for inter-
active exploration. If I decide to do more, I'll write a procedure
containing a loop and run it overnight., A vague pattern of sorts
has already emerged anyway:®

*Considering also the previcusly done cases n = 1, 2 and 4, each
doubling of n appears to approximately double the number of digits,
Thus, the number of digits in the largest coefficient appears to be
roughly proportional to n.®

"Since the number of digits in a coefficient is approzimately
propertional to the logarithm of the coefficient, the coefficient
itself appears to grow approximately ex cnentially with n,
Logarithms to differing bases are proportional, 50 the choice of
base is not crucial. However, since we ar eRted 1n o ne number
of decimal digits, let's plot the viecewise 1linear interpolant of

&0370 (largest coefficient) as a function off nal to see how well it

approaches a straight line with increasing n:®

120: LINEARSPLINE ([1,LOG(1,10)1, [2,L0G(2,10)1, [3,L0G(3,100 ],
{4,LOG(6,10}1, [5,L0OG{10,10], [6,L0G(20,10}], [8, LOG(ol6e ,1051,
(16, LOG(0l7,10)], (32, LOG(ol8,10)], (64, LOG(019,10)]1);

020: lower left corner = {1, 0}, upper right = (64, 18.26):




"The semi~log plot appears to approach a linear asymptote quite
well, so let's £it a line througn the two largest measurements to
use for predicting the number of digits with larger n:™

121: SOLVE(s-LOG{018,10))/{L0G(019,10)~L0OG({018,10))=(n-32)/(64-32), s};

021: {8 = 0.296379 n - 0.705209}

"ix + v)? nas n+l coefficients varying from 1 througnh this
maximum number of digits s, Thelr average appears to be more than
half s, so let's conservatively estimate the total space as n*s:®

i22: n RHS (021 [11);
022: 0.296379 n? - 0.705209 n

*Thus, n = 128 would use a total number of digits about:”

123: SUBST {022, n: 128);
023: 4765.61

"My computer has enough memory for simultaneously holding a few
tens of thousands of digits total, Consequently, allowing a generous
margin for other numbers created during the expansion, there should
be sufficient room for one or two more doublings,

2.3 Computing Time

"Now let's estimate how much time these larger values on n will
require: The computing time appears to increase by a constant factor
of about 3 as n increases by a factor of 2, This suggests an
asymptotic power-law dependence: t ~ ¢ nP, Just as exponential
growth is associated with a straight~line semi-log plot, poweﬁ}aw
growth is associated with a straight-line log—log plot. The choice
of base is not crucial, so I'll use the natural log:"

124: LINEARSPLINE ([LN 8, LN 0.3}, [LN 16, LN 0.8], [LN 32, LN 2.6],
[LN 64, LN 7.6]):
025: lower left corner = (2,08, -1.204), upper right = (5.16, 2.03)

i

"The log-log plot appears to approach a linear asymptote quite
wWwell, so to fit a line through the logarithms of the two largest
measurements to use for prediction:”

i25: SOLVE (

(LN t = LN 2.6)/(LN 7.6 - LN 2.6) = (LN n -~ LN 32)/(LN 64 - LN 32), t);

025: {t = 0,0191558 nl-54743)

"Thus, I guess that if we don't run out of space, the number of
seconds required to compute (x+y)<56 would be apout:"

i26: RHS (025 [1]): .
o26: 0 0151558 mi-54749

127: SUBST (026, n: 256);
026 64.9389

"This is feasible to try right here in class, but my plan was to
compute and compare expansions for all successive n up through the
maximum allowable by the memory. Consequently, our total time as a
function of the last value of n, which 1'11 call m, would be at
least:"

128: SUM (026, n, 0, m;

m .
028: 0.0191558 3 ot -54749
- =)

"The system was unable to find a closed form for this indefinite
sum, and I would't be surprised if none exists in terms of the
elementary functions with which we are all Familiar. Consequently,
let's try approximating the sum by an analogous integral:"

i29: DEFINT (026,.n m) 3
029: 0.00751948 m2'54949,

"Now we can estimate how far we can get in a 12-hour computation:”

i30: SQIVE (029 = 12%60%60, m);
030: {w = 450.107}

"It appears‘that an overnight run will indeed be the right order
of mathuﬁé*fOr ‘proceeding by increments of 1 until we exhauyst the
memory ava@ilable for numbers.” ...

3. DISCUSSION

The space limitation here prevents me from completing the
scenario, However, the demonstration would continue on to the point
of showing how computer algebra can be used to support theorem
proving, Next I would distribute a sample written report based on
the demonstrated experiments and proofs, Then I would distribute an
appropriate project assignment of this nature for the students to
do. The appendix contains a list of such projects addressing a



variety of mathematical topics, This list is the beginning of a
list that I plan to collect and refine for publication, Suggestions
and additions will be gratefully acknowledged,

It might be wise to give each student two or three choices,
because their individual insight could vary erratically on open-
ended problems such as these, For mathematical toplcs that suggest
a great many projects, it might be especially motivating to allocate
the cholces in such a way as to collectively attack most of the
problems, with each report then presented to the group S0 as to poel
experiences,

It is important to note that the scenario and the projects in
the appendix have not been classroom tested. I am not a mathematics
aducator. so I do not expect to have an opportunity to test these
ideas directly myself, Rather, these are merely proposals that I

ncourage math educators to try, criticize, supplement and modify.

Hore specifically, I hope to have available throughout the
conference at least one suitable computer so that you can try out
some of these ldeas and react to them
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5. APPENDIX: MATH DISCOVERY PROJECTS USING COMPUTER ALGEBRA
5.1 Elementary Algebra:

i. E¥periment with your computer algebra sysgtem to form a
conjecture about how the reduced form of the algebraic expres—
sion  (x® - 1) / (x% - 1) depends on m and n. Then, use the
system to help prove your conjecture inductively. Discuss the
growth of computing time (and perhaps also space) with m and n.

*. Use your symbolic math system to factor x" £ y? over the
integers for increasing n, Form some conjectures about the
umber and form of the factors versus n. For example, are the

of n levant? How do the coefficient magnitudes vary
Try your conjectures, What is the asymptotic

growth of computing time (and perhaps also space) with n?

a)

b)

Using computer algebra, determine the reduced forms of

1/(1 = x2/(3 = x%/5)),
/(1 = x2/(3 - x2/(5 - x2/1))),
/(1 - x2/(3 - x2/(5 - x2/(7 - x2/9)))),

etc., with the constants being successive odd integers,
Superimpose plots of these functions., Does the sequence of
functions appear to be converging to a well known function? Is
the convergence monotonic? How does the computing time appear
to grow asymptotically with the number of operations in the
truncated approximation? If you know a power-series approxima—
tion for the same function, how doess it compare in speed versus
accuracy for different ranges of x?

Matrices & Determipants:

Use your computer algebra system to form the matrix products

a 1 b 1 a;g’«
10 10 4, 10 {:

w
ey
R—

eacn time including one more = ntil you ¢an . .fer the
general form of the elements in product. Then, see {f you
can use the system to help inductively prove your general form,

For each of the following exercises, use your computer algebra
gystem to compute successively higher—order determinants of tne
indicated family until you can conjecture the qeneral form. Try
to prove your conjecture, What is the nature of the growth in
computing time and space versus order? Beware that
behaviour may differ for odd and even orders, Alsae, vou
need to expand, factor, or otherwise rearrange the n
results in order to reveal the most regular form,

101 1 1 { dy 1o~ 0 0 o

Loa+l 1 1 %*x h -1 o o i

101 belod 2 hx. B o~ 0|

11 1 o+l x> hx? hx_ n 1|
x* hx? nx? nx nl

a b < .

é ; 0 @ Y 1 a ac ad

b 0 1 0 1 b b2 p?

¢ 0 0 1 1 ¢ c? o3
1 4 g4 g3

6 1 1 1

1 0 b b £ x 0 0 vy

1 b 0 b Yy x 0 @

I b b 0 0 v x 0 v
0 0 v =
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5.4

5.5

5.6

1.

Summation:

n n

Note that 50 =n and S k! = n?/2 + n/2.
k=1 kel n

Guess a relationship between the highest degree term of 51 k™ and
k=1

J'nm dn, then prove this relationship 1f you can. Use your

computer algebra systems to experimentally determine all of the

n

terms in k™ for several successive m beginning withm= 2,
k=1

and use the system to inductively prove each of your formulas,

Then see if you can devise a formula or an algorithms that works

for arbitrary nonnegative integer m.

Generating Functions & Power Series:

Using your computer algebra system, verify the following power
series and determine their intervals of convergence:

i

1=t =1 +x+x2+x3+ ..,

(1= x)72 = 1 + 2% + 3x% + 4x° + ...

(1 +x3/(1 +x + x2) =1 - x2 4+ x3 - x® 4+ x8 - x84 x% - |

1+ x/(1 -3 =1 + 4% + 9% + 16%° + 25%%

o

Then, using these as building blocks or inspirations, see if you
can experimentally discover rational expressions having the
following power series expansions:

5

aj) 1 - x + P T T = PN

b) 1+ 2x + 4x% + 8x5 + 16x% + 32%° + ...

) 1+ 2x +3x%2 + x3 + 2xd +3x5 4 x84+ 2x7 + 38 4 Ll

d) 1+ 2x +3x2 + 253 + x4+ 2% +3x6 4 2x7 + x84+ L.,

Integration & Differentiation

Use your computer algebra system to evaluate the indefinite
integral of xP e? ¥ for increasing n beginning with n = 0, until
you can infer the general form., Then use the system to help you
inductively prove that form,

The size of successive partial derivatives can grow rapidly,
especially if the original expression involves nested function
compositions or nontrivial denominators, Find a particularly
compact and innocent looking expression whose successive deriva-
tives grow remarkably., The most dramatic example earns a prizei



Formula manipulation in teaching perturbation methods

(Department of Computer Science, Leiden University, Wassenaarseweg 80,

2333 AL LEIDEN, The lotherlands).

Abstract
The paper gives an examrle of the application of an interactive
formula-manipulation system in obtaining a solution of a simple
perturbed ordinary differential equation of the second order.

In a2 general way it is shown how one arrives step by step at the
terms of a solution in the form of a rruncated Fourier expansion.
Afterwards one notices certain regularities, which may be used as
a basis for further expansions or theorems. The methods are suf-
ficiently general and may be applied to less simple perturbation

equations, for which symbolic solutions are required.

1. Methods for the solution of differential equations can roughly
be said to fall in two categories: exact integration methods (in
which the quadrature of integrals is sought) and asymptotic methods

(in which solutions in the form of series expansions are considered).

Among the expansions we may distinguish between Taylor expansions
with respect to the independent variable, and Fourier-expansions

with terms periodic in the independent variable. In this paper we
consider only asymptotic methods and we are especially interested

in methods which vield the coefficients of Fourier expansions.

Such expansions are particularly relevant if an ordinary differential
equation containg g 'small’ term, i.e. if there is some coefficient

in which the solution can be proved to be analytic, and which can be
considered to be so small that the associated term is a perturbation

term in the equation. As an elementary example of such a situation

we consider the following equation

3
A Y
yu:wy + oy {‘:j
where x is the independent variable, y' = dy/dx and 5 is a small
z

quantity. Then 5§ y~ is a perturbation term.For 5 = ¢ and choosing



A8

the integration constants as follows

y(0) =0 y'(0)y = 1 (2
we find the exact solution

v = sin(x)

It is known that for 5 # O there is no asymptotic periodic solution
in x. But there is such a solution periodic in u where u depends
analytically on xu:

N 2
| 5 + CZ 57+ ...

u = x{1 + ¢
In the next section we discuss a method of finding this solution, in
which the usefulness of modern powerful formula-manipulation systems

is shown.

2. First we observe that the given equation transforms to

~ -~

vy + ¢, 5 + <, &A + ..')4 =~y + § yé

(3)

where u is the independent variable and ¥ = dy/du. Our task is

then the determination of the coefficients y. as periodic functions
i

in u in
2
y=y0+y}5+3’25 +
In order to resolve this problem we use one of the modern formula-
manipulation systems, such as REDUCE or MACSYMA. In this paper we
use the REDUCE formalism.
First we decide on the order to which we shall calculate the required

expansion, say n : = 3, Next we assign the lefthand side of the

equation to a variable 1 by

i

s : = for i : 0 :n sum c (1) ¥ & * * 1.

y : =fori:=20:n sumy(i,u) * 5 * ¥ i;

L:=df (y,u,2) ¥ s * %24
The righthand side of the equation. is assigned to a variable r by

r @ = -y + § ¥y ¥ % 9.
and then we can assign the first n coefficients of l-r to n elements of
an array ar by

array ar(n);

coeff (l-r,b6,ar):

Inspection shows the value of ar(0), which is S §o + Yo
In view of the chosen integration constants and because c = I we set

in REDUCE notation
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o

y(O,ul: = sin(u); L

so that ar (0) vanishes.
Inspection shows as the next step the value of ar(i,, whiioh is
. : L2 5 o
~4CE sinfu) - sin (u) + vyt Yy e dn this term one has to go ovey
' . . 2 .
from the angle u to the double angle 2u and express sin (u) in

terms of cos(Z2u). In RFIUCE we set the transformation by the rule

for all % let sin (x) ® % 2 = (1 - cos (2 % x ))/2;

We are then left with

ar(l) = -2 ¢ sinf{u} + } cos (2u) + Y + §E - 4

The objective at this stage is to lei ar(l) vanish by suitable

choices of ¢, and y, . Inspection of above formula shows that we

T i
must use the following form for ¥y

a sinfu) + bH cog{u) + b cos{2u) + const

Il I

12
After substituting this into the formula for ar(l) it is easily seen

that ar(i) vanishes if and only if

1
c, = 0 b§2 = ¢ comst, = i

which leaves us with the problem of determining the values of the

P
from the initial conditions(2), which formulated in terms of u say

remaining integration constants aH and b, .. But these are found

y(0) = 0 J(0) = 1.

©

This is satisfied up to the first degree of & if and only if sub

(u=0,y(l,u)) and sub (u = 0, gﬁ_(y(l,u),u,i}} yield zero. That
is the case if and only if ag, s 0 and b%% $*~%, so that
o2 os (u) + i o8 (2u) + )
v 3 cos (u g cos (Zu 5

3. Before we are prepared to draw some conclusions we consider the
P

2 . . . .
next step and inspect the coefficient of &, which 1s ar(2)y. It 1s

. . . i ., . 4 ,
-2 ¢ sinfuy — sinfu) ~ g cos (Zu) sinfu)y + 3 cos (u)y sin(u) +

As there are two products of sines and cosines in this expression we

introduce the rules

for all x let cos(2 * x) ¥ gin(x) = (sin(3 * x) - sin (x})/2;
for all x let cos(x) * sin(x) = (sin(2 ¥ x))/2;

.
This gives for av(2)

., 5 . Z . . . .
~2¢,, sin(u) - & sir + = osin{2u) - e sin(3u) + oy, o+ Y
<, sin{u} £ S n{u) 5 sanl2u) 7 Cdu, Y Y 5
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From this formula it is seen that we must use the following form for Yot

a.. sin{u) + b

71 sin{2u) + a sin{3u) + const

23

cos{u) + a

21 22 2

Upon substitution in the expression for ar(Z) it is seen that ar(2)

vanishes if and only if

= 5 Ca, . = . a. = -1/42 . =
¢, 5/12 55 2/9 323 1/4¢ constz 0

The remaining integration constants a_. and bz; are again found

21
from the integration conditions (2). We find from the requirements

zZeros

55
A =TT 54 Py 70

We have therefore

55
Yo = Tid sin(u) +

ol N
P
o
o]
o~
N
o
N’
t
|
1
0
vt
o
o~
[o%
o
p——g

Continuing in the same way we find
c, =0
3 1

17 7
Yy = 578 cos(u) — =, cos(2u) + = cos (3u) -

5
“ [ o
776 108 54 cos(4u) + 74

1
432
As a final check on the calculations we determine anew s,y, | and r

(see section 2), but now using

€y = ] ¢ = O ¢, = ~-5/12 ¢y = 0
and the calculated values of Yoo ¥y0Ys and Y- It is then seen that
l.r indeed is zero up to degree 3 in 5. Note that the 'mew" r contains
products of sines and cosines stemming from yz. These, however, cancel
one antoher im the "mew" ar(0) ... ar(3) so that no new for all rules

need to be introduced.

4. Summarising the discussion of the preceding sections we can state

that we have obtained a solution of the differential equation

£

yho= -y + 5 Yz subject to the initial conditions y(0) = O v'(0y = 1
as a truncated Fourier series in u, where

u=x (I + C16 + 02 62 + ...

by a semi-automatic method. We have used an interactive formula-manipu-
lation system (REDUCE in fact) and we have determined step by step ci(i = 0)
and Y (1 = 0). Each step consisted of the foliowing.subgteps:

- inspection of ar(i) in which the coefficients of ' in ¥ *

(1 + < 5+ ...+ ci'61)2 + oy - 5y2 are collected; this yields . and

the form of y; as a linear combination of sines and cosines of multiples
of u, supplemented with a constant term

-~ determination of the coefficients of the linear combination from the



condition ar(i) = 0
~ determination of the two remaining coefficients {(the integration
constants) from the conditions yv_ (0) = 0 b;(O) = (}

i i
A posteriori we note that only for even i, ¢, # 0 and furthermore

i

for even i, v contains only sines and for odd i, vy contains ouly
cosines. Furthermore the multiples of u in the Fourier terms of Yy
range from u to (i + 1) ¥ u. One may have suspected these facts in
advance, but only after having carvied out the expansions as shown
it becomes worthwhile cousidering a proof.
In conclusion we learn from this example the usefulness of a program-
ming environment which supports semi-automatic formula ﬁanipulaticn.
The idea of a perturbation method is nicely illustrated by the facili-
ties of the system and can even be shown in an interactive session in
a classroom situation. At the same time a solution is developed. One
shows how one keeps track of the various steps involved; at any

moment the database containing results obtained so far can be inspec-

ted. All of this helps to clarify the methods employed.
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Appendix: REDUCE script
Below follows a set of instructions writtem in REDUCE for the symbolic
solution of the differential equation

§ou oy a8

discussed in the paper. The set is a kind of script. It contains assign-

ments of which it is known a priori that they are needed, and assignments

and substitution rules, which are found to be needed in order to meet
certain requirements as explained in the paper. The latter are showm
by indentation. We are currently engaged in preparing a VHS-video

tape displaying sn actual session based on the soript.
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TABLE 1

N

10 REM GRAPH MANY CONICS

20 DEF FNIX) = INT (5 + X}

30 DEF FN X{U} = (U — 1407 ‘8

40 DEF FN Y{V) = 96 V) / T

50 DEF ENU(X) = 140 + S » X

60 DEF FNV(Y} =96 ~Tay

708 =10:T = 10

80 HOME : PRINT " THIS PROGRAM GR
EQUATIONS OF CONICS ™ GRAPHS

90 PRINT | POKE 362

100 PRIN‘;“AX“Q*BXYAGCY”Z%\DX+EY
+ F =g

110 PRINT : POKE 36,15 PRINT
PAINT EXAMPLES -

120 PRINT"ABCOEF GRAPH"

120 FOR =0 TO 39 PRINT CLIINEXT R

PRINT
MHOOPRINT Y1 0 1 g 0 25 ”
: - CIRCLE
W0OPRINT Y g 2 g Q -
VERT 25  ELLIPSE,
180 PRINT“2 0 1 o g -
RS 25 ELLIPSE,

170 RPRINT "1 0 -1 g g —25
HYPERBOLA, VERT .

180 PRINT1 0~y 9o g 25
HYPERBOLA, HORIZ.

180 PRINT "0 1 o o g -~ 25
HYPERBOLA, 45 DEG.

W00 PRINT 1T o 5 g -9 @
PARABOLA, P

216 PRINT 0 0 1 g g 0
PARABOLA, LEFT"

220 PRINT "0 0 0 w0 >0 <0 LINE

o OX4+BY +Cw=0
0 PRINT "1 g —1 ¢ ]
LINES™ 0 e

240 PRINT { PRINT "YOU REALLY SH

J MANY OTHERS. TOO. ouLp TRy

250 PRINT . PRINT “PLEASE INOUT
COEFFICIENTS AB.C.0.EF .~

INPUT “ A B.C.0EF

HOME © HGR - HCOLOR = 3

IF B = 0 THEN 320

IFA = CTHEN G = ATN (1

Go= 5w ATN(B/ (A~ O)) ) eoTo I

U= COS(G)V = SIN (G)
1=ABI=BCl=CDl = DEf = EF1 —
IF B = 0 THEN 390 FR=F

A:A“Ust&ET«U:\/—»CTOV-V

S)r«vBY*{UvU»*V’V)ﬁ»Z-{CTﬁAI)sUc

C o TeVaV o BlallaVeCle
N:O?*U»ET:V Truey
E = ~DlaV 4+ E1eyF = £t

PO o= 0 THEN 430
:aD«DwEvEsA*C~4tAaF

¢ SOR { ABS Q)

Ve e BT e )

430 IF A = 0 THEN 460
G40 H o D 2w A
450 R = ABS Q17 (2« A}

400 A = ATB=B1.C=C1D = 01:E = 1 £
50 A : U0 = O1E =
470 FOR Y =070 278 HPLOT .96 NEXT U ‘
= 190 YOO STER ~ 1° HPLOT 140,y

TO 279 STEP S HPLOT U 98
280 — U.96 TO 280 — U.98: NEXT U

140V
520 HPLOT 138,192 - v TO 140,162 — VI NEXT v

1110 PRINT " INPUT A.B.O.DEF
1120 INPUT* " A B.CDEF =

1140 END

) oH JRUN

10 Fe /= OB TO 161 © P 5 T =3

510 FORVY = 96 TO 1491 STEP T. MPLOT 138,V TQ THIS PROGRAM GRAFHS EQUATIONS QF
3 )

530 VTAB 21: PRINT "PLEASE w

o PRGRAPH APPEARS, ar“E AT 1ENO
INT "S "OFF THE SCREEN * ;
UNT IS OF EEN.' CURRENT

550 PRINT “ENTS ARE
CATCUBRICT g g g

860 IF C = 0 THEN 710 '

570 FOR U = 0 TO 273

580 X = EN X(U)

590 Bl =B X 4 E

600 D1 = 81 Bl ~daCoAoXaX+Do

X+ Fy
g;g IF D1 < 0 THEN 690
V1= (= B1~SOR DN}/ (20}
830 Y2 = (— B1 + SQR (D1)) /(2 O
840 V1 = FNICFN VY1) V2 = FN i{ FN viYa)y
650 IF V1 < Qar V1> 159 THEN 670
g@o HPLOT U.V1
70 IF V2 < 0 OR V2 > 159 THEN &
680 HPLOT U,v2 HEN 690
890 NEXT y
700 GOTO 1080
5;8 ;:F A = 0 THEN B8O
OR V = 158 TO 0 STEP -
730 Y = EN Y(V) TER -1
740 B1 =BaY + 0
750 01 =B1aB1 —daAa(Esy
;_?a IF D1 < 0 THEN 840 TEeYER
0 Xim(—B1-SQR (D) /(2. A
;gg i? = (_;‘ 81 + SQR (D1} /(2 » A)}
= FNICEN UCD)UR = BN I PN LX)
800 IF Ul < 0 OR Ut > 279 THEN { )‘
géc HPLOT U1V E 820
0 IFUZ < 0ORUZ > 279 TH
830 HPLOT U2V FN 840
840 NEXTV
850 GOTO 1090
880 IF B = 0 THEN 980
870 FOR U = 0 TO 279
880 X = FN X(Uh)
890 IFX = —E /8 THEN 940
800 Y = (D x X ~F)/(BwX + )
Zi‘g Vo BN FN V(YY)
920 IFV < 0ORV > 191 TH
930 HPLOT UV BN S0
940 NEXT U
9850 GOTO 1080
980 IF E = 0 THEN 1050
970 FOR U = 0T0 279
980 X = BN X(U)
990 Y = ~DaX/E~F/E
;goo Vo= BN (BN YY)
10 KV < 0ORV > 158 1
1020 HPLOT UV 198 THEN 1030
1030 NEXT U
1040 GOTO 1080
1050 IF D = 0 THEN 1090
1080 FORV = 159 TO 0 STEP — 1
1070 HPLOT FNU(~F/D)v
1080 NEXT V o
’ggg HOME © VTAB 21
100 PRINT "READY TO GRAPH YOL
T TREAC OUR NEXT

1130 GOTO 280

CONIC
AXT2 + BXY + Y g DX+ EY + Faw

" Mathematics Tens

TABLE | —Continued

EXAMPLES:
GRAPH

>
O
]
m
"

0 —~25 CIRCLE

0 ~25 ELLIPSE, VERT.

0 -25 ELLIPSE, HORIZ.

0 —25 HYPERBOQLA, VERT.

0 25 HYPERBOLA, HORIZ.

0 —25 HYPERBOLA, 45 DEG.
-9 0 PARABOLA, UP

0 0 PARABOLA, LEFT
>0 <0 LINEDX+8Y+C=0

0 0 TWOLINES

i
D s D ok B

v
OOODODOGS

D D b ED ek D
DOOO-000OO | M
i

i

YOU REALLY SHOULD TRY MANY OTHERS,
TOO.

1.0,1.0,0, - 25

PLEASE WAIT {F NO GRAPH APPEARS, IT IS
"OFF THE SCREEN." CURRENT CQEF-
FICIENTS ARE 10,100 -25

READY TO GRAPH YOUR NEXT EQUATION.

INPUT AB.C.D.EF:
1.0.2.0,0, 25

PLEASE WAIT. IF NO GRAPH APPEARS, IT IS
‘OFF THE SCREEN. CURRENT COEF-
FICIENTS ARE 1,0,2,0.0, - 25

READY TO GRAPH YOUR NEXT EQUATION.

INPUT AB.CDEF:

ola, and hyperbola-——can serve as subjects
of many discovery-oriented programs for
microcomputers. This article offers two
such programs, “Graph Many Conies”
(table 1} and “Conic through Five Points”
(table 2). Both programs enable students to
simulate the "explosion’ of ellipses into pa-
rabolas and then into hyperbolas.

These Applesoft BASIC programs con-
tain PRINT statements that explain how stu
dents can enter their own ideas into the

programs.
“ Graph Many Conics ™
Every conic section has an equation of the
form
AX? + BXY + CY? + DX + EY + F = 0.

The program " Graph Many Conics” (table
1) allows the user to input the conatants A,
B. C. D, E, and F; then it graphs the conic
section and invites another choice of cone
stants. Thus, many different conics can be
seen on the screen,

Unfortunately, in many algebra text
books, the so-called mixed term BXY i3 not
discussed, so that the only conics that are
discussed there are those having axes paral-
lel to the x- and ¥- axes, The reason for this,
1 suppose, is that the formula for the "angle
of rotation,” in case B # 0, uses the tangent
or cotangent function, which are not usu-
ally discussed in algebra courses. However,
microcomputer graphics enables students to
discover on their own the effect of the

mixed term.

To keep the program in table | to a mini-
mal length and running time, REM state-
ments have been omitted. However, the fol-
lowing could be inserted:

25  REM TRANSFORMATION FORMULAS
BETWEEN (UV) APPLE
COORDINATES AND
TRADITIONAL (X.Y)

CARTESIAN COORDINATES

135 REM THANSFORM CONIC SECTION
BY ROTATING

465 REM PLOT XY AXES AND
CALIBRATE THEM

565 REM IF C< »0 THEN FOR EACH X,
SOLVE FOR LOWER AND
UPPER Y, AND PLOT THE
CORRESPONDING
POINTS (U V)

715 REM IF C =0 AND A< >0 THEN FOR
EACH Y, SOLVE FOR LEFT AND
RIGHT X, AND PLOT THE
CORRESPONDING
POINTS (U.V)

865 REM IF A=0 AND C =0 AND B< >0
THEN FOR EACH X, SOLVE FOR
Y, AND PLOT THE ROTATED

HYPERBOLA

965 REM IF A=0, C=0 B=0 AND
E< >0 THEN FOR EACH X,
SOLVE FOR Y, AND PLOT THE
LINE

1045 REM (F AB.CE ALL =0 AND 0< >0
THEN PLOT THE VERTICAL
LINE

Here 1s a list of experiments my students
have conducted using the program in table

1
i
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ROUGH 5 POTNTS
4 UG 3 20NTS RN HE NI -
i S 510 Ff'ﬂéf‘;') SOER. of X POKE 3847 PRINT
S0 PRINT “COEF OF v poxg 55 17 prinT
208 R
530 PRINT  CONSTANT TERM - poys 3817,
it e Tt g d INT f2 TRy W“éTi N »
TOAND (i bee INTRL AND  ghg PRINT - PRINT “prEss ety - I
B X AB: HOME b
THIS prasye RAM GRAPNS P f K,
[t pRog SRABHS 50 A = T8 22).6 m 2y o ZUAYE -

ZBVE w
HGR  POKE 49234 5 HEOLOR w 3
FOR { w170 ’
EOR Y w gy VYT~ 3 To N VIYOY + 3
f r,,z;oav)mmfsmm |
FNUDXIDY - 302 « FN YR w3
DR U2 > 275 THERN ag
Y

AT PASSES THROUGH

AY INBUT ™ prigt
SEE YOUR 3

AS WELL AS THE COMIC. KEER-
PRINT —13 < X « 11

ST BUN NeyT THE

PO - aTes

= 3

1 2= ENYIVE YD w I3 YV + 7y

Bl e DBl =8avrLp
-kdw‘ch’:avuvif.gi

R SR

@9*“4*&*{@\(2”2*%

< U OR 02 < 0 THEN 559

(=Bt s 2y
1 4 11/ {2 s A}
U2 = BN g

- SUR D2}/ (2 A '

- SOR(02)) /(20 A)

FN U W2 w o1 Eiy e

QR UT > 279 ThEN 800 o

2O W1 5 270 Tien g0

b

> 278 THEN 830

WD S 27 THEN 856

R

[

i

g

SHGUL AR

LYOUR CHOIKGES

N7 BLIGETLY RANDOMIZED e ey 50 1E o o o0 THEN U1 279
VALUES . prinT TeRE O NEw :
O N PRINTY
L X v e

<8

CORUT + L > 278 THEN 920

§ FU2~ L <o0R U2~ L 5 279 THEN 920
B0 MPLOT Uy FLVIOUZ Ly

920 WUl gay :tQCQUiLEmL>27‘9mEN

9350
FOR = TTONIF |« 0 e aag 50 Wég}f el <OORUZ - 24 L5 27 THEN
by ;,f"[jm:{‘fé f&;fjf; NEXT Sa0 HPLOT U1 220y s RO s — g, LY 4R
BT ) ( 850 Ngxgﬁm FORJ = 170 2000, NEXT J- Prmet
PR TTONWO - owip T 60 TEXT - g
FOR 1 2 70 N Fol 7 W = 1 wexr S0 TEXT L HOME  vTAB 9 painT “TO SEE

203 ~ Wil NEXT 4 970 prne GRAPH AGAIN, TYPE 'y -

479 mv;ir : FRINT “THE CONIC THROUGH pﬂ?;é *F;?';W O START ANOTHER RUN,

OUR 5 BOINTS HAG - 850 GET o
T A O oo 950 GETCS 1M 08 w v 1w GOTO 560

98,17 PRINT 2{1; o Toke 0 RON
430 m;r;r LCOEF. OF XY ok 26, 17- JRUN
INT 2(2) . THIS PROGRAM GRAPHS ThE
7202 0 ¥ 3 £ UNIO il

500 pg{;g:{NTwQ&; OF Y*2.":: poks 36,17, SECTION THAT BASSES THF{%gUg?!’gC

INT 2(3) POINTS WHICH vOu mAY INPUT.

ORDER TO SEE YOUR & POINTS,
AS WELL AS THE CONIC, KEEP
~1 < X 2 13
~F Y <9

FOR BT BUN, INEUT THE & POINTS IN
ONE OF THESE COLUMNG -

50 5.0 5.4 4.5
0.5 0.5 0.5 5.4
-850 ~ 50 =50 2.4
3-5 G, -5 4, -5 4.2
4.4 22 2,~% 87

INBPUT BOINT w1 X113 v
INPUT POINT #2: X{2yY

INPUT POINT @30 X(3),Yy
INPUT BGINT #4 X A
INPUT BOINT @5 %

TOAVOID A SINGULAR MATRDUIN THE METHOD
QE BOLUTION. YOUR CHOWES OF X v

Lo Plot X2 2 0Y?2 oy w 0 for C=132 1,
V201700, 18, -1, ~1and ~2, corre
sponding to & plane SICING & COne 80 as o
produce ellipses (€ 0 that suddenly
become a parabola (¢ » a1

2Pt X' -Ylais oyl _yragg

Y =16, and Xy pomts give
the same hyperbola wn flerent posi-
tions. What other equations give this same
hyperbola in still other positions ?

3. Plot various pairs for A%? & BY? w 36
ard  AX® - BY? . 38 L compare  each
pair. Then  compare these with Bx?
+ AY? w38 and 8x7 .

4. Plot families of concentric cireles, el
ipses, and wo on, that are not necessarily
centered at (0, 0).

5. Plot a hyperbola and its ERYTIIPLOLes.
(They are a conic ssction, too.)

&, Insert the line

485 GOTO 580

and then plot the Olympics emblem shown
in figure 3.

Fig 3 Olympe curcles SN0 {or contnents

HROUGH YOUS § BOINTS HAS

HIG GRAPH AGAIN, TYEE v

TOETAAT ANOT)

ILPOSE 2 Compt
in 2 plane and wi :
conie Rection passing throug
For man o1

5 to se

&

1ot at all
at sort of conie will work-—an
ellipse, parabols, hyperbola, or one of the
degenerate cases, such as & line or point
> paraboias and the degenerare cases
are "borderline” cases, one could
plify programming, very slightly randomize
the five chosen ints, thereby assu ing
that the conic see through them could
be only an ellipss or & hyperbola. Also, the
randomizing would assure that £ = G the
equation AX° & BXY & CY? 4 ' 4 By
+ F 0 Then, after dividing both sides by
F', the resulting equation has the form AX?
+OBXY 4 CYT o DX 4 EY 4 1 =0 this
equaton has only five constants, to be de-
termined by the choice of Gve points. The
program can solve the system of five squa-
tions 1 five unknowns using matrix inver
8ion, since because of the slight randomiza-
tion it is almost certain that the matrix can
be inverted. Table 2 is such & program.,
Ithough the graphics output is perhaps
the most striking festure of this program,
the printed equation of the conic also offers
students opportunities for making discover-
ies. One assignment | have used has five
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steps:

1. After running the examples provided
by the program in lines 180 to 220, write an
equation in the form

AXZ+BXY+CY2/r€)X+EY1»I:&0

using specific numbers for A, B, ¢, 0, and E,

2. Determine five different points that
satisfy your equation. (For varicus values
of X, such as 0, —1, +1. use the quadratic
formula to find ¥, or vice versa.)

3. Input the five points. The equation of
the conic through your points (after they
are slightly randomized) will be printed. If
its coefficients are nearly equal to the input
coefficients, then step 2 was successful.

4. If the graph is an ellipse, can you
maove just one of the five points for another
run to get a hyperbola, or vice versa? Ex.
periment to find the least change in the five
nput points needed to change from one

kind of conic to the other. lh

5. Select five points whose conic is anf
ellipse, and call them P.Q R 8 and T,
Move P to a new location £* such that the.
conic through P, Q, R, S, and T is a hyper- |
bola. Note that if P, Q. R, S, T, and P* all 1
have integral coordinates, then the conics’ |
equations will have only integrai coef. |
fictents, Now, imagine P moving along a
line to P”. The associated conic begins as an |
ellipse but eventually becomes a hyperbola. |
At some special point P between P and P7,
the conic is a parabola. Use the "Graph
Many Conics™ program to find its equation. &

Students should be encouraged to use 4
the two programs wsterchangeably, For ex-
ample, after step 3 in the previous assign.
ment, students can input the equation into
"Graph Many Conics” and check that the °
graph matches that given by “Conic

through Five Points.” w
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1. Enrichir la démarche mathématique classique

EXPERTENCES sur les APPORTS de |/ INFORMATIQUE
Parallélisme entre le processus de résolution d yun
& | "ENSEIGNEMENT DES MATHEMATIQUES probleme mathematique et la construction d'un alaorithme

.R.E.M. DE STRASBOURG :

Les méthodes de construction d’algorithmes et de raisonnement
Avant-propos mathématique ont en commun :

- la définition d'un nombre restreint d'outifs (svmboles
. . . . n . . . R wmamsaate s S
actiaons élémentaires et procédures soiqneusement formalisées).

:

le présent document relate les réflexions et les expéri -
mentations sur le terrain, menées par un groupe de travai!l de
PPE. R €. M.® de Strasbourg entre 1982 et 1984,

=~ une méthode de conduite du raisonnement et de décompo-
sition du probléme en sous-problémes plus simpies jusqu’3 aboutir

Ce groupe, comprenant des enseignants-chercheurs et aux outils évoqués précédemment .
des professeurs de lycée, s'est constitué en vue de partager .
les expériences de formateurs en informatique acquises dans
les sctions de recyclage des professeurs de mathématiques. L‘apport complémentaire de |’ informatique nous paralt résider

. dans les points suivants
Au  cours de ces formations sont en effet apparues

de nombreuses pistes de réflexions sur les apports possibles ~ tla liste de ces outila est plus facile & érablir en infor-
de |’ informatique & | enseignement des mathemat i ques . matique qu’en mathématiques,

'l ne s'agit pas ici de proposer ou d’analvser des - la nécessité d aboutir 3 un programme traité automar -
didacticiels daccompagnemant d'une lecon de mathématiques, quement par une machine, oblige de pousser le raisannement jusau’ 3
mais plutdt d'examiner son extréme détail, excluant les “on woit que” et autraes C. Q. |

visant un interlocuteur intelligent et initig,

- dans quelle mesure le traitement informatique d‘un
probléme mathématique peut enrichir la démarche de raisonnemant ~ {'exécution du programme prolonge en aval |'activite
class: que, de raisonnement, pser une vérification plus compléte aqu’ il nlest

’ souvent possible en mathématique.
- en quoi 'activité informatique, et plus spécialement
) . ; . S ) . . ;
aé§cr:thquuenr 5 "apparente El Practivigé *mathematyque qu'alle La résolution d'un probléme reste. an  mathémst.qus
permet alors d aborder sous un angle nouveau permettant, LT ; . ‘
. une activite un  peu brouillonne, tdtonnante et foisonnante

entre autres, de contourner les blocages paychologiques que Faite d'aller-retour B . . ; - :

i . R . i 4 4 3 QL t n appara:essent g?us gansg ta R A Tl
provogque | enseignement des mathématiques chez cartains jeunes. finale rédigée.

Les pistes ainsi explorédes se devaient d'étre expérimen- Les méthodes de programmation actuelles tentent de
tées sur le terrain pour &tre validées. La deuxiéms partie de s'en affranchir en proposant une conduite rigoureuse et quast -
ce document relate les axpériences qui ant pu etre mendes par automatique du ratsonnement.
le groupe

*  auprés dadultes, ensaeignants, non nécessairement
initiés 3 1/ informatique, Peut—~on toujours y arriver 2

® aupres de jeunes : Si oui, que peut-on en tirer pour la conduite L oune

L démonstration mathématique 7 .
. de |"école dlémentaire, N
. des classes de terminale |ittéraire TAZ. 1,
2. "Faire des mathématiques sans en avetr L gir® e
) Les blocages psychalogiques face aux marvhémar o . aa,
* insvitur de Recherche sur |’'Enseignement des Mathématiques. rencontrés chez certains jeunes, tiennent, sembiinet- |

vocabulaire et & la naturme un peu abstraite des objets wd
ators que le but poursuivi sst de déveloopper la facults de ra:son
ner, l'esprit d'analyse et de syntheésa




La programmation d'une machine ooérant -sur des objets

aussi divers que nombres, caractdéres ou chaines de cargct§res,
si1gnaux  lumineux ou plume d'un traceur de cogrbe con@uxt 3 un
travail d'ordre logique, structurant les facultés de raisonnement
mals mis en oceuvre dans des domaines variés, plus proches de
fa sensibilité personnelle de el ou tel éléve.

En  outre, la réponse quasi=-instantanée, neutre et

spectaculaire de la machine constitue un stimulant que les‘ciubs
informatiques dans les lycées et colléges ont bien mis en édvidence.

L7activitsé algorithmiqgue et fa programm;tion dans
des langages structurés, tels PASCAL ou LOGO, constituent donc
une Fforme d’enseignement mathématique dans un contexte nouveauy,
de nature & contourner certains blocages.

La nécessité de conduire la construction du programme,

a partir d’une situation formulée en langage coursnt, jusqu’§u
dernier détail, est wun facteur de structuration de la pensée
et cultive |’intelligence, =i 1’on définit celle~ci comme la

préhension de situations complexes et la faculté de les analyser.

3. Les expdrimentations

3. 1. 17automate et les deux sesux (cf. fiche-support Annexe 1)

Expériences conduites en 82 et 83 avec des enseignants
dans différentes spécial ités.

Le but poursuivi était moins de résoudre le probléme,

que d’analyser la démarche utilisée et de noter, au fur et
3 mesure, les réactions et comportements engendrés .
3. 1. 1. Les démarches différent selon la Formation des iritéressés
* ceux qui ont une certaine pratique de la programmation
utilisent une methode .

~ 80it recherche des structures de contrdle (répétitives,
alternatives) puis écriture des conditions et des modules,

=~ soit déduction, & partir du résultat 3 obtenir des
modules successifs, en remontant aux données, puis écri-
ture des modules,

~ s0it recherche des instructions “centrales” de {’algo-
rithme, puis insertion dans les structures répétitives,
puis écriture des entrées et des sorties ;
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les enseignants de mathématiques utilisent leur maniére
habituelle de conduire une démonstration

~ analyse critique de |’énoncé sur le plan formel,

- étude d’'un ou deux exemples,

~ évacuation proviscire des évidences,

~ recherche sur les points cruciasux (par exemple : commen
repérer la suite de carsctires M! dans T 7)),

~ éventuel lement résolutian prealable d'un praobiame nlus
. e ! € Lonieme prus
simple (MI réduite & 1 seyl cagractére)

‘

* 17énoncé des deux seaux souléve ches les mathematiciensg
de nombreuses questions d’interprétation des mots
"vider”, “remplir”,...) qui appellent des définitions
plus formelles L'énoncé est Jugé & la fois trop direc-
tif (propose une méthode) et pas assex précis (cas qui ne
“marchent” pas !).
3. 1. 2. Quelques réflexions sur | Japport & l'enseignement des

mathematiques
——lifatigues

- la notion de structure répétitive nécessite, plus fréquem-

ment qu’en mathématiques, une globalisation de la démarche
]

tandis que |’alternative favorise esprit d’analyse.

- l'algorithmigque met | accent sur I"initialisation des
variables et la dépendance des conditions initirales,

~ comment exploiter |’algorithmique pour illustrer la notion
de condition nécessaire et suffisante ?

- la notion de case.mémoire éclaire |a notion de variable

(exemple : Ue—3 ¥ [ + | pour Una g 1)

3. 2. Expérience LOGO (classe de CM2)

L'ordinateur est-il un outil d’apprentissage efficace
4 1'école élémentaire ? Pour pouvoir répondre & cette question,
il Faut tout d'abord essayer... Nous avons donc placé un micro-
ordinateur dsns une classe de CM2 et exploré quelques possibilités
d’utilisation, en une année scolaire, de ce nouvel outil, L’ idée
de départ est d’offrir au systéme scolaire un espace d’exploration,
de créativite, d’apprentissage utiliser |’outil informatique,

c’est, pour nous, mettre & la disposition des enfants unm outil-
pour “apprendre miesux”.

En effet, si 1’&léve a réussi & apprendre un certain
nombre de concepts géométrigues, il doit 8tre capable de les
réinvestir dans des situations concrétes. LOGO crée, sans nul
doute, un contexte Favorable d’exploration. Face au micro-ordinateur
nous souhaitons un enfant actif et non consommateur. Cependant,
nous n’avons pas retenu la démarche préconisée par
Seymour Papert - |’enfant invente les problémes et les résoud -
laissant & | "enseignant le choix des $1tuations-problémes et
son réle de guide des enfants.

L'intérét principal d’une programmation active réside dans la
démarche algorithmique qu’elle nécessite. L’idée qui nous intéresse es
celle de |’aide que peut apporter & |’enfant cette démarche dansla ré-

solution de probléme. Amener |’éléve 3 avoir une démarche structurée e
3 décomposer les difficultés qu’il rencontre est le but que doit perme
tre d’'atteindre |’utilisation des procédures. En cela LOGO est un lang

ge particuliérement adapté.



3. 2. 1. Approche graphique

Lle traitement du projet MAISON

servi de support
pour Fformaliser une opération déjad plusieurs fois effectuée :

analyser le probléme, décomposer le projet en une succession

ardonnée de petites difficultés pouvant 8tre traitédes indépendamment

| "une de !’ autre.

Les enfants se familiarisent rapidement avec cette

rouveile variété darbres:

MA?SON{ )
i i i // \
V.

FACADE PLACE TOIT T e —
T I

L * "7

TRAIT PENTE |

Munis d’une méthode, les élaves
ont choisi librement leurs projets. Notre
démarche pédagogique consiste a partir
des problémes particuliers que les enfants
rencontrent pour les amener 3 réfléchir
sur des problémes plus généraux. Voici
gquelques exemples : polygones régul iers,
symétrie, rotation, théoréme de Pytha-
gore, récursivitée (cf., brochure).

Yoici juste um exemple de projet
qui a permis d introduire le théoréme
de Pythagore et la notion de racine carrée.
il nous para’t intéressant dans le fait

qu’tl révéle comment le micro-ordinateur
peut motiver un travail mathematique
clazsique.

B MALISON

pour TRALY

Fix

POUR PLACE
CTTRVTEUTUR 45 8¢
Fln

POUR 1011

REPETE 2 [PEHTE
FIN ( ]
SOUR PENTE

AV 56 (1) DR 90

FL1H

La résolution d'un probléeme

[
i
H

Comme pour la partie graphique, nous avons dirigé |'activité

des enfants ain d'essayvyer de leur donner une méthode de re-

cherche pour la résolution de probleémes. !l s'agit d'ecrire
le programme fil permettant de réscudre le probléme auivant
un paysan veut entourer un pré d'une rangeée de fil de fer.

Le pré est rectangulaire. On connait la longueur, la !argeur

et le prix du métre de fil de fer. Quelle sera la dépense

A} La premiére étape consiste 3 établir un lexique ol |’éléve doit

mettre en évidence, d’'une part les données (i]l fixe déja le nom

des variables utilisées) et d’autre part le résultat recherche.

Je vais t'atder d résoudre ton probléme

en te posant des questionsg
Lexique

~ Combign y a-t~-1l de donndes numériques dans le
texte du probléme 7

3.

Nom du tiroir Contenu  Uni

-
5 P P . N N . Lo ol B SR
~ Tape une donnde numérique du tezts du problime.

[

. Lane e
e
Larg..

.
L

-~ Comment veux~tu appeler lg tiroir dans lequel
tu ranges ce nombre 7

Proz.
- Veuz~tu chotrstr une untité pour cette donnde ? (0- §)
a.
~ Donne L'unité de priz
F.
B} La recherche emprunte des éléments a la méthode de programmac ion

descendante. Un part de la question demandée : i1ci OEPENSE.

Comment |’ abtient-on 7

DEPENSE =:PRIX = . PER!

PRIX est une donnée, comment obtenir PER!I 7 etec... jusqu’'d ce qu’an
remonte aux données du probliéme.

A chaque opération correspond une procédure. On utilise largement les
couleurs pour différencier dans le tableay RECHERCHE

- données ................ l(exemple : PRIX), Bl
- variables intermédiaires {(exemple : DPERIJ, S
~ procédures ............. (exemple ; MULTIPLICATION . A

Le probléme des unités est & ce niveau primordial. Snuvent

la premiére question d'un enfant face & un énancé de probléme est

o

Quetie est |‘unité Pour aider |’enfant, nous avons mis 3 sa 7 =po-

sition une procédure UNITE gqui lut permet de traiter le prablée-e iss
unités “3 part” : la procédure UNITE crée pour chague -ar. abie - a
exemple 1ot LONGUEUR) un tiroir de nom UNI {nom du tiroir o Heon 1
ou est placée ['unité tapée par ['enfant (ici M). Norezr que ies .- ras
se retrouvent dans le lexique et qu elles permettenz 3+ | ' enfant

visual iser le probléme.
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3. 3. Uoption algorithmique des classes de terminale TAD
3. 3. 1. Situation de | expérience
La classe de rerminale est la derniare classe du cvele
d’enseignement secondaire et prépare au bacvalauréat des éleéves ages
R
normalement de 17 & 135 ans.
n littéraire 3 dominante phito

La section AZ est une sectic
sophie et langues vivantes ou mortes,
de sexe féminin,

L’horaire hebdomadaire de mathématiques est de deux heures
7 h dans la classe précédente de lére A2

fréquentee surtout psr des ele

(i1 est également de
Le programme de mathémat iques de la classe se compose dun
partie commune rres classique, d analvse et de statistiques et d’un
partie optionnelle & choisir dans {’arithmétique, les probabiliteés, |
géométrie, 17astronomie, |’algorithmigue.
liste

Le programme de cette derniere option, propose une
de thémes qui nous & semblé trop longue et les derniers trop ambitie
surtout pour des éleéves qui n’ont pas encore été initiés & ce type
d'activité. {’objectif recherché semble &tre une information sur le
différents types d’algorithmes existants, mais pas un savoir-faire.

Nous avons préféré une démarche favorisant
sldves et leur permettant d‘écrire eux-mémes des algorithmes simples
En contre-partie, il faltait, naturellement, limiter le nombre des

thémes abordés.
Nous nous sommes beaucoup interrogés sur la place de la

machine dans notre enseignement. Il nous semblait que | "algorithmiqu

est une discipline qui peut exister indépendamment de son utilisat:

en informatique.

{factivité des

la motivation du passage sur machine est essen-

En effet, la transposition quasi-
immédiate des algorithmes éerits en un langage de programmation, et
|’"exécution des programmes obtenus par les ordinateurs donnent un
intérét concret aux algorithmes et justifiedméme | "activité.

Cependant,
tielle dans cet apprentissage.

En méme temps, le test par ordinateur est un contrdle bie
plus efficace que le contrdle du professeur qui

semble toujours avc
des références arbitraires. i

la réussite devient objective et la vol
de dépasser |’échec par {a résolution des difficultés est treés fort
ment motivée.

L'utilisation des ordinateurs ermet aussi de deémyst¥ier
P )

|’ informatique aupreés d’éléves qui, parce gue classés “"littéraires
ont souvent plus d’ appréhensions et moins d’occasions de faire des

essails dans ce domaine que les “scientifiques”.

3. 3. 2. Les étapes prévues sont les suivantes {cf. fiches en anne

- notion de séquences d’opérations

. piloter un robot,
. consulter le QUID,
consulter un dictionnaire.

- notion de variable et d’affectation de valeurs
échange de contenus de bols,

notion de cases-mémoires,
recherche mentale de la somme de 10 nombres, ¢

minimum de ces nombres.




-~ contréle n® 1,

~ rangement et classement de 3 puis de 4 nombres par
recherche des minimas successifs,
- généralisation & N nombres,

- vérification sur ordinateur,

- contrdle n? 2

.

- algorithme d'un jeu.

Nous ne pourrons, faute de place, présenter les Fiches
éléves et professeur complétes dans cet article, nous nous conten-~

’ P
terons d’en extraire quelques éléments, pour montrer [ "esprit de

i
démarche ?

#

disposez d'un bol BLANC contenant duy
dun bol ROUGE contenant

il s’agit d'échanger
siéeme bol VERT,

fFiche é¢léve vOous fatt
k,

du café.
les contenus, & |'aide d'un troi-

fiche professeur

signifie “"transvaser
le contenu de”

A ; VERT ¥ BLANC b
BLANCAR ROUGE
l ROUGE X VERT

A . R .
Un o pourra suggérer de donner un nom & |'algorithme, et | utiliser

par la suite, Par exemple ECHANGE (BLANC, ROUGE) pour C:)
T Extrait du test 1 (exercice 2)
On dispose de 4 mémoires Ty, ?2, T}, Td‘ contenant chacune
unn nombre entier T - T 7 -
1 ‘2 3 4
X W z 2l
Les nombres x, vy et z vérifient la relation XLy €.

ALGORITTHME

Q - oA p
S ?4 < Ty ALORS T} ¢ 1o
T2 o T
T e 14
-~
SINON ST T ) -
SINON IS1 T4« 72 ALORS Tawgz
TEQWWTg
h ‘cﬁ e T
’ ‘ SINON Lgi Ty g T3 ALORS {xggmn
Question | on donne les contenus suivants
Efi To b Ty Ty % et on exécute |'algorithme ci~dessus,
{ T i .
- 2 | tndiaquez, dans un tableau, les contenus de Ty, 1o,
~ Ty et T4 & chaque étape de | exécution.

fiches éléeve

o T——————

fiches profes

* rangement et classement de 3 nombres

- on désigne par x, v les contenus

inconnus de deux

mémoires ML, M2. Fcrivez un algorithme permettant de

classer ces deux nombres, dans

| “ordre croissant,

dans

Tes memoires M1, M2,

- Ecrivez
M1, M2 et M1 contenant trois nombres

seur

~ les exercices qui

inconnus  x,

suivent ont pour but de préparer

(on Utili1Sera ¢m @t Si...38/0r%,..).

l"algorithme correspondant pour trois mémoires

Ye Z.

| fécr:

ture d'un algorithme de classement des contenus de n

cases mémoires.

no= 2 ¢ St M2 < Ml alors ECHANGE (M1, M2)
sinon RIEN
n o= 3 plusieurs solutions seront sans doute proposées par les
éléves, une fois vaincues les difficultés des contenus
inconnus. Ces algorithmes seront le plus souvent diffi-
ciles & généraliser & dlou plus cases) (cf. Ffiche 4).
Proposer alors la méthode suivante
19} rechercher le plus peti® des trois contenus et le mettre
dans M1, T
2°) recommencer avec les deux cases restantes MZ et Y3.
d’ou ! "algorithme
51 M2 £ M1 alors ECHANGE (ML, MI)
3} M3 < ML alors ECHANGE (M1, M3)
{* Ml contient alors le plus peti” nombre)
S{ M2 &€ M3 alors ECHANGE (M2, M3)
(% M2 contient le plus petit des deux restants)
* Test n? 2 N
-
Soit | arbre suivant 4%
AL
i 1 { {2 i ! 1
si M1y M2 1 ML2 M3 P A
Qul NON Qut NON QU NN
échangs échange échange P
ML M2 ML M3 M2 M3 -
a) ML, M2, M1 contiennent respectivement -2, 4, ~5. Indiquez pour chagque tesi s on

parcourt

ta branche Oli KON

o

au

-]

T
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b) donner un  exemple de contenu de M1, M2, M3 tel que !’on ait

A I NN 3 N N 1
oUu l NCN ‘ out

«) Quels sont tous les dérouiements possibles ? Pour chacun de ces

déroulements, donner des contenus initiaux de ML, M2, M3.
fiche professeur : on pourra utiliser une présentation du type suivant
. i 5‘-'-'% h
M1 M2 M3 | 1] 2] 13
2 1 4 oui non non
i
1
!
|
Remarcue : trois contenus placés dans le méme ordre, au départ,
donneront une exécution du méme type.
3.3, 3. Remarques faites sur le terrain et conclusions
- vif intérét des éléves pour ce type d'activité qui éveille

leur curiosité,

~ le theéme du classement deviendra monotone 3 partir de la
fiche 4 (Se heure),

~ la manipulation de bols fait bien comprendre la notion
d’échange de contenus mais introduit mal |’ affectation
("A ¢ B entraine B vide” restera une idée tenace),

- la construction d'aigorithmes 3 partir de données numér iques
concrétes crée un obstacle lorsqu’il s’agit d’écrire un algorithme
valable quelles que soient les valeurs mises dans les cases-mémoires.

Il apparait difficile 3 certains éléves de dissocier I ’algorithme des
données et des résultats,

- utilisation & un moment donné d’une machine, si elle n’eat
pas indispemsable, constitue un regain d’intérét des éldves et valide
en quelque sorte le travail effectué sur Feuille,

-~ le passage de N=4 3 N guelconque pour le classement cons-
titue une deuxiéme étape d’abstraction difficile 3 franchir par certains

éléves. Elle coincide avec !’ introduction de la répétitive et souléve
la difficulté de globalisation, dé ja évoguée plus haut,

~ I’exercice du ROBOT et le probléme de |’octogone dans la
fiche de contrdle révélent des lacunes en géométrie, d'ol |’idée d’ une
option géométrie algorithmique avec utilisation d’un outil tel que
LOGO.

ANNEXTES



PROGRAMMATION DUN AUTOMATE

.
H

11 s‘agit de fabriquer une marhine fonctionnant de la fagon suivante

Lors de 3a ®mise en route, ony wet surressivement trois billets

- le pmmier contient un texte (zuite de caractéres) T

- le second contient um mot ( " Y
-~ le troisiéme contient un wot M2

A 1'iasue du traitement, la machine fournit le texte T' obtenu 3 partir

de T de 1a facon suivante : chaque fois que la suite de caractéres M1 est

sontrée dans T, elle y est remplacée par la sulte M2,

On peut faire éxfcuter 3 la machine unme succe ssion d'actions simples ,ordonn

sur une liste placée déCinitivement dans la machine avant usage .,

On demande d'établir cette liste 3 partir des actions simples suivantes :

~ lire un hillet aprés introduction dans la machine

- ranger sous un nom donné (tiroir)
-un nombre og une suite de caractéres (éventuellement vide)
=1z résultat dume apération
-le contenu d'un billet

effectuer les opérations arithmétiques classiques sur les nomhres
-~ &crire un hillet et le sortir de la machine

- extraire umne =pus-suile Si d'une suitec § , Formée des | maractéres

{i3+1) rencontrés A partir du i-dme .
- déterminer la longueur 1(5) d'une telle suite ,

ajouter une suite 5° de caractéres 3 droite d'une suite § {opération

notée sls*)

31 elles sont vraiesn ou fausses .,

donner un nom & une liste bien déterminée d'actions simples .

On pourra
On pourra en demander 1’exécution selon qu'une condition est vraie ou fausse.:
41 mordition Alors exfouter listey 1 -
!sinan extouter liste?d

Liexbcution d'une liste pourra #tre répétée tant qu'une condition reste vraie

tant que condition Gexécutcr iiste

établir des conditions portant sur les objets précédents et détermin

exemples :

® SOMM

peshaudhing

{ calcule la somme de N éléments introduits sur des billets }

ranger O dans §

lire le nombre de termes 3 additionner
ranger ce nomhre dans N

ranger 1 dans §

tant que i <= N exécuter CUMUL

écrire le nombre N

écrire la somme §

~ lire un nombre 3 additionner
- ranger ce nombre dans A

- calculer 5+4

~ ranger le résultat dans §

- calculer i+1

~ ranger le résultar dans i

* OCCUR

( compte le nombre de lettres "E™ dans un lexte introduit préalablement

lire un texte

ranger ce texte dans T

ranger (0 dans N

ranger 1 dans i

tant que i< = 1{T) exécuter TEST

- &crire N
® TEST
- 81 ?{ ] ="E" galors calculer N+i,ranger dans N
L]
sinon rien
- calculer i+1 , ranger dans i

LIS e =N ij

H
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Informatique 2t anselgnemen: des mathdmariques

Consigqnes

# faire le travail l= plus tard possible avant la réunion
* notesr toutss les phases de la recherche, les imprassions st réactions
{compréhension de 1'énoncé-approche de la recharche~-points de blocage
~maniéres de débloquer -exemples urilisés - scémas - Ffin du travail
* aprés résolution, reprendre lesg notes ci-dessus et relever les
points qui semblent importants,
# pour chacun de ces points, rédiger une QUESTION permettant de

comparsr les démarches des participants
. ;o .
La réunion du 25 consistera d collecter ces questions {critéres) puis a
y répondre en faisant un tour de table pour chaque question , ce qui per-

mettra l'analyse compards des démarches

On dispose de deux seaux A a2t B , de capacité maximale AMAX et BMAX en litres

(AMAX > BMAX). Il s'agit d'obtenir toutes les capacités intermédiaires entidres en

litres, les seules opérations possibles étant

- remplir un seau (robinet)
- vider un seau {(vidange)
- verser le contenu d'un seau dans 1'autre

- remplir un seau avec 1l'autre

On écrira un algorithme permettant la simulation sur ordinateur des opérabions pré-

cédentes , en utilisant les ordres habituels ( lire, écrire, <= , s$i,.sinon, tant

que .,,les opérateurs arithmétiques sur les entiers etc...) .

Par exemple , A4-AMAX correspond A "remplir le seau A",

Les capacités intermédiaires seront obtenues dans le seau A dont on affichera régu-

lidrement le contenu . On cherchera A écrire un minimum d'instructions .

- R L L ey

Anne xe

Extraits du programme de Terminale TA2

ACTIVITES ALGORITHMIQUES

~
Classements

Algorithmes de rangement de nombres par ordre croissant, de mors
dans |’ordre lexicographique.

Tris

Ranger des objets par sous-ensembles selon certaines caractérig-
tigues.
Par exemple
diviseurs,

te nombre de leur
fes nombres premier

ranger des entiers selon
crible d'Eratosthéne pour

Accés & un fichier

Recherche d’un nombre, d’un mot dans une liste,

Algorithmes arithmétiques :

Division euclidienne, algorithme d'fuclide.
Bases de numération et probléme des opérations sur les

P
grands
” , -

nombres” au moyen d’une calculatrice

Commentaires
[

ACTIVITES ALGORITHMIQUES

Nous entendons ici par "algorithme”
ordonnée d’ instructions de calculs,

une suite finie et
ou d’opérations logiques.
gi1q

L’ importance des procédures algorithmiques en maythémat iq
et surtout dans des activités para-mathématiques {gestion de doni
de stocks, constitution et utilisation de fichiers, codages, .. )
liées & la banalisation de Iinformatique, justifie amplement une
initiation 3 ce type d’activités, Les objectifs d’'une telle initi
tion sont

- analyse d’un probléme et de son traitement algoritt
mique,

- description d’un algorithme,

- comparaison de différents algorithmes permettant de
résoudre un méme probléme.

On se servira d’exemples variés (voir programme) pour

réaliser les objectifs ci-dessus.

On notera que certains algorithmes simples peuvent s ex
cuter "3 la main” ; d’autres ne nécessitent que des moyens trés
limités (calculatrice de poche, programmable ou non).

Enfin, on observera que, malgré |’apparente trivialite
des problémes declassement, une grande partie de | activité infor
matique est consacrée 3 ce type de guestions.
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