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Abstract. Our research focuses on the difficulties students encounter with the learning of 

calculus, considering that they have to cope with many more mathematical objects but also 

with new ways of reasoning – not only algebraic calculation, but also the practice of 

approximation, and a scaffolding way of using functions, limits, derivative, integrals, etc. to 

justify their answers. The semiotic facet of new objects, and the way to manage it, is also a 

source of great difficulties. In this article we establish that the model we built (Bloch & Gibel, 

2011) is adequate to describe the work of University students who have to deal with the 

resolution of exercises about parametric curves and differential equations, even if this context 

is not an adidactical situation. In 2018, L2 students of Pau University were asked to solve 

little problems about limits, integral calculations or recurrence questions. They revealed 

difficulties to organize their knowledge and conclude about a limit, for instance. We give 

some examples of these troubles. We conclude for the necessity to implement adequate 

devices to help students better understand these 'new mathematics'.  

Keywords. Calculus, students' understanding of mathematical signs and objects, reasoning 

processes, parametric curves, differential equations. 

 

Résumé. Un modèle pour analyser la complexité de la connaissance du calcul au début 

de l’Université. Présentation et exemples. Notre recherche concerne les difficultés que 

rencontrent les étudiants dans l'apprentissage de l'analyse, en constatant qu'ils ont à faire face 

à de nouveaux objets mais aussi à de nouveaux modes de raisonnements : non seulement des 

calculs algébriques, mais aussi des approximations, et une articulation de l'usage des concepts 

comme les fonctions, limites, intégrales afin d'établir des preuves. Le statut sémiotique des 

objets est également une source de grandes difficultés. Nous montrons dans cet article que le 

modèle que nous avons décrit dans un article paru en 2011 est adéquat pour décrire les 

procédures et les erreurs d'étudiants de première année d'université dans la résolution de 

problèmes sur les courbes paramétriques et les équations différentielles. Nous concluons sur 

la nécessité d'introduire des dispositifs adaptés afin d'aider les étudiants à comprendre cette 

'nouvelle' façon de faire des mathématiques. 

Mots-clés. Analyse, signes et objets mathématiques et compréhension des étudiants, 

processus de raisonnement, courbes paramétriques, équations différentielles. 

Contenu condensé de l’article 

A l'université de Pau et des pays de l’Adour, une unité d’enseignement appelée 

‘Mathématiques du mouvement’ a été proposée en première année de licence ; elle 

tente d’articuler mathématiques et physique. Comment se passe cette articulation ? 

Permet-elle aux étudiants de mieux saisir les outils mathématiques en jeu ? Tenter 
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de contextualiser les connaissances mathématiques dans des situations relatives à la 

cinématique permet-il aux étudiants de mieux comprendre les savoirs sous-jacents ?  

En effet, à ce niveau certains concepts mathématiques subissent une transformation 

telle que leur statut et leur mode de fonctionnement s’en trouvent complètement 

bouleversés. Dans la transition secondaire/supérieur, ce décalage épistémologique 

est accentué par la configuration actuelle des contenus des programmes du 

secondaire : nous avons montré (Bloch, 2018) que les objets y sont étudiés de façon 

descriptive et non relativement à leur nécessité et leur rôle d’outil dans la 

construction de situations mathématiques ; c’est aussi le cas pour la fonction 

exponentielle par exemple, ou les équations différentielles. De plus, les procédures 

de résolution visées au supérieur sont beaucoup plus complexes et peuvent faire 

appel à des techniques de divers champs mathématiques ; les étudiants doivent 

identifier ces changements de cadres de façon autonome et savoir s’extraire du 

champ initial, ainsi que nous l’avions exposé dans Bloch & Gibel (2016). 

Nous rappelons que le modèle décrit dans Bloch & Gibel (2011) prend en compte 

trois axes d'analyse des productions étudiantes dans les situations : le niveau de 

milieu où se situe l'étudiant, la nature et les fonctions du raisonnement, et les signes 

mathématiques associés à ces productions, avec leur niveau d'abstraction, lequel est 

étroitement corrélé au niveau de milieu. Nous analysons les productions des 

étudiants relativement au modèle, et montrons que l'évocation du cadre cinématique 

ne suffit pas à aiguiller les étudiants sur une étude consistante des courbes 

paramétrées. 

__________________________________________________________________ 

1. The learning of calculus: objects, signs and reasoning processes  

Every researcher knows that mathematical work in the field of Calculus is usually 

very difficult for even good students when they are entering the University. The 

amount of research about this issue is now considerable and it goes on expanding 

and disseminating among communities, which is very good news (see for instance 

Tall, 1996, 2002; Reinholz, 2015; Bressoud, 2011; González-Martín, Bloch, Durand-

Guerrier & Maschietto, 2014...). Studying this transition between the mathematical 

organisation in secondary school and University, in the teaching of (pre)calculus, we 

aim at classifying the different 'things' students have to cope with when they practise 

Calculus and move to Analysis. Our research focuses first on difficulties students 

encounter, considering that they have to manage many more mathematical objects 

and new ways of reasoning – not only algebraic calculation, but also approximation, 

and a scaffolding way of using functions, limits, derivative, integrals, etc... to justify 

their answers. Then we aim at building situations for a better learning of Calculus 

and Analysis.   
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1.1. The way to manage previous knowledge 

The organisation in Secondary school takes into account some mathematical objects, 

such as functions, derivatives, integrals: but a number of researchers underline the 

fact that the way these objects are introduced leads to algebraic calculation and not 

to analytic work. For instance, students are supposed to calculate an integral but not 

to justify why it exists; to study the variations of functions with derivative, but not 

to have a knowledge about which functions get derivatives at which points, or not. 

So we can see that the raison d'être of a mathematical concept is not highlighted.  

We notice that, even if teachers think of the structural level, in most cases they 

confront students only with the operational one. For instance, Ghedamsi (2015, p. 

2109) analyses a first-year regular course at University and she concludes that:  

He (the teacher) does not intervene to enrich this work (the students' work) by 

emphasizing relationships among notions, by changing the setting of semiotic 

representations, by allowing openings to organize knowledge, by making assessments 

of knowledge, etc. (...) During the whole lesson, the students use methods from 

secondary school and do not succeed to shift to the use of methods expected at 

university level. 

On the other hand, the old-style way of teaching (declaring mathematical knowledge 

in front of students) does not lead to success, so Artigue (2001) notices:  

...an evidence of the limitations both of traditional teaching practices and of teaching 

practices which, reflecting the Bourbaki style, favoured formal and theoretical 

approaches. (Artigue, 2001, p. 208) 

In this outlook, she agrees with Bressoud (2011) who identifies this traditional 

practice as “the worst way to teach”.  

One effect at least is problematic: it leads students to ignore what mathematical 

concepts mean and aim at, and what we try to define and prove when we do 

mathematics (Bloch, 2015; Godino, 1996). We can observe that very often students 

are trying to calculate in a rather hazardous way, aiming to apply ‘in the dark’ rules 

they learned but in no way mastering concepts involved in the problem. Let us quote 

how Hubbard & West (1995) react about students' solutions of differential equations; 

it highlights how students can refer (or not) to (un)usual objects: 

The origin of this book was the comment made by a student: ‘This equation has no 

solution’. The equation in question did indeed have solutions, as an immediate 

consequence of the existence and uniqueness theorem, which the class had been 

studying the previous month. […] In fact, only very exceptional equations can be 

explicitly integrated. For instance, none of the following rather innocent differential 

equations can be solved by the standard methods: x’ = x2 – t ; x’ = sin(tx); x’ = etx. 

[…] A proper attitude is the following: differential equations define functions, and the 

objects of the theory is to develop methods for understanding (describing and 

computing) these functions. (Preface, p. viii) 
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In the evaluation cases we study below, the problem seems not to be the way the 

notions have been taught: we got an access to the students' course notes, and they 

show relevant justifications and explanations. The didactical repertoire of the class 

has been elaborated by suitable exercises and situations, leading to highlight the 

operating mode of these concepts. But mathematical signs – and objects - are not 

always 'grasped' by students in the right way, a way that has suffered very important 

adjustments since secondary school. We can observe this complexification also in 

the answers students give to little problems we asked them (see 3.).  

1.2. Mathematical objects and signs: complexification 

At the beginning of University studies, students have to cope with functions, as in 

Secondary school, like rational ones such as polynomials, or sinus or cosine; they 

have to solve problems with exponentials, logarithms, but the derivatives can also 

generate new functions, and integrals too, or series: so objects may have a different 

status, and signs become polysemic. With respect to these signs, we notice that in 

Secondary school students operate frequently by implementing isolated techniques: 

in secondary mathematical context they can calculate in a rather straightforward 

way. But at University, they face complex signs and they have to associate different 

kinds of symbols, sometimes through a long proving process, for example to 

calculate a rather complex integral or to prove that a theorem is valid, which is not 

their responsibility in Secondary school. At University too, signs are multiform: for 

instance a derivative can be written f' but also df/dx; or x can be the function, so it 

will appear as dx/dt; a letter can nominate a variable, a function, or a parameter, 

which status is sometimes difficult to decode.  

Moreover, the rules about the use of signs are imbricated, so if you try to calculate 

cos2x dx you have to linearize cos2x because you cannot apply the rule of the 

primitive of x2, just 'mixed' with the primitive of cos x, to cos2x… and find 1/3.sin3x, 

as we saw once a student. This evolution of signs is even more evident considering 

the proving procedures within the calculus work: students have to understand and 

use new analytic methods, as it is well known, for limits with  and α, and to master 

quantifiers, which reveals to be rather hard (see Gueudet, 2008; Chellougui & Kouki, 

2013).  

1.3. Reasoning processes 

This new complexity requires that students adapt themselves to improve and perfect 

their reasoning processes: they must learn to use all the facets of knowledge and to 

adapt their "way of doing", taking into account all the aspects of a question and the 

requirements of the proofs. This implies that they become able to choose which 

knowledge is adequate to the problem, how to use it in a relevant way, and how to 

develop reasoning processes. This contrasts with the practices they get at Secondary 
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school, where they usually just have to answer to punctual questions and are not 

accustomed to master the whole reasoning process.  

They also have to deal with formal proofs and reasoning they have not been 

accustomed to understanding and managing. In Bloch & Ghedamsi (2004) we insist 

on the transition from an algorithmic work to complex techniques and technologies. 

Activities at tertiary level are centered on mathematical generalities, and their 

resolution requires the use of heuristic techniques: proving or conjecturing, or 

reasoning by reductio ad absurdum, or a research of counter-examples. These 

activities require a formalization work that is not usual at secondary level. 

We can say that throughout these reasoning processes, signs (and then objects) work 

in a strong interaction, as seen in the example above: integrals with the primitive of 

sine and squares, but also techniques and technologies to prove. Among these 

technologies it is very important that students learn how to manage the new tools, 

such as quantifiers and the way to perform a valid reasoning up to its end.  

This first approach leads us to some questions:  

 How can we classify the objects, signs and reasoning processes students have to 

cope with during resolution of calculus problems?  

 Which theoretical frame permits us to identify the different shapes and functions 

of students' reasoning activity? How (with which tools) is this activity likely to 

be observed?  

 How is it possible to improve the way students can achieve an access to relevant 

concepts and methods for proving in Calculus, and which situations can be 

implemented at the transition between secondary and tertiary level? 

2. Theoretical tools to analyze situations and students' productions: a model 

Our main theoretical frame is TDS at University level (Theory of Didactical 

Situations, see González-Martín et al., 2014) but let us mention that the way we 

investigate is also correlated, in a way, to APOS theory, as we are concerned with 

existing processes in the way students do mathematics, and objects in the situations 

we try to organize, these objects being, at closing stages, expressed in schemas, that 

is, composite signs with various embodied rules.  

Trigueros & Planell (2010) actually define the application of their theory within three 

stages: at the general intra-stage actions are possible, without identifying properties: 

it corresponds with M-2 in TDS (see below); the inter-stage is the one where students 

can identify relations between objects and processes, it is M-1 in TDS; and the 

construction of the knowledge occurs in the trans-stage, which can correspond to 

M0.  
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Trigueros & Planell (2010) insist on the importance of different theoretical frames 

to analyse phenomena from complementary perspectives. We also associate a 

semiotic analysis to TDS viewpoint (see Table 2 below): this allows us to consider 

the nature of the problems we ask students to solve, and evaluate which mathematical 

objects and representations they were able to apply in a right process and which ones 

they did not master.  

Mathematics aims at the definition of ‘useful’ properties that can help to solve a 

problem and to better understand the nature of concepts. A strong characteristic of 

these properties is their invariance: they apply to wide fields of objects – numbers, 

functions, geometrical objects, and so on. This implies the necessity of flexibility of 

mathematical signs and significations. To grasp the generality and invariance of 

properties, students have to do many comparisons – and mathematical actions – 

between different objects in different notational systems. While the choice of 

pertinent symbols and different classes of mathematical objects is necessary to reach 

this aim, it is not sufficient: as we said, the situation in which students are immersed 

is essential. The Theory of Didactical Situations (Brousseau, 1997) claims that to 

make mathematical signs meaningful – which means that signs have a chance to be 

related to conceptual mathematics objects – it is necessary to organise situations that 

allow the students to engage with validation, that is, to work with mathematical 

formulation and statements.  

As we said in González-Martín et al. (2014): 

In TDS, the fundamental object is the notion of Situation, which is defined as the ideal 

model of the system of relationships between students, a teacher, and a milieu. 

Students’ learning is seen as the result of interactions taking place within such systems 

and is highly dependent on characteristics of these systems. […] Different phases of 

a Situation include: action (knowing appears as a means for action through models 

that can remain implicit), formulation (knowing develops through the building of an 

appropriate language), validation (knowing becomes part of a fully coherent body of 

knowledge). (p. 118) 

The model of structuration of the didactical milieu used in our device is that of Bloch 

(2005). The chart below (Table 1) sums up the levels of milieu – from M1 to M-3.  
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M1 Didactical milieu E1: reflexive student-

subject 

P1: Professor planner 

M0 Learning milieu: 

institutionalization 

E0: generic student-

subject  

P0: professor teaching 

M-1 Reference milieu  

Formulation and validation 

E-1: The student-

subject as a learner 

P-1: Professor 

Regulator  

M-2 Heuristic milieu: action, 

research 

E-2: The student-

subject as an actor 

P-2: Professor 

devolves and observes 

M-3  

Material milieu  

E-3: epistemological 

student-subject 

 

Table 1. Structuration of the didactical milieu  

The negative levels are of particular interest in the sequences we frequently study 

since they allow us to describe the emergence of a proof process in the setting up of 

an adidactical situation. The place where we hope to see the expected reasoning 

processes appear and develop is located at the articulation between the heuristic 

milieu and the reference milieu.  

Let us specify however that, especially at the tertiary level, situations are not always 

entirely adidactical, but they can include an adidactical dimension, which allows 

letting students have a research activity and question the statements, even if they do 

not attain the final formal knowledge. The teacher must take this last stage in charge 

in M0. As said by Hersant & Perrin-Glorian (2005) and developed in Gravesen, 

Grønbaeck & Winsløw (2017), the milieu of situations - especially at the tertiary 

level - can show evidence of:  

a number of generic potentials for student learning, developed from and within the 

theory of didactic situations: adidactic potential, linkage potential, deepening potential 

and research potential. (p. 5) 

It means that the milieu of such situations has been built in order to anticipate that 

students have a responsibility on knowledge: they are supposed to undertake 

reasoning, conjectures, calculations, decisions on a statement. A situation is:  

A system of relationships between students, a teacher, and a milieu (…) [where the 

milieu is] the set of material objects, knowledge available, and interactions with 

others, if any, that the learner has in the course of said activity. (González-Martín et 

al., 2014, p.119). 

A link with previous knowledge, or related other knowledge, can also be shared in 

the situation; the knowledge can be deepened, and this deepening potential occurs 

mainly at the M0 level, that is, when the teacher institutionalizes the aimed 

knowledge; or the deepening can be organized later, in a further situation.  



ISABELLE BLOCH, PATRICK GIBEL  190 

2.1. Identifying signs in situations 

Considering the difficulties about how mathematical signs work and are likely to be 

understood, we thought it is necessary to introduce a semiotic dimension in our 

model. Our theorical reference is Peirce's semiotics. According to Saenz-Ludlow 

(2006):  

For Peirce, thought, sign, communication, and meaning-making are inherently 

connected. (…) Private meanings will be continuously modified and refined 

eventually to converge towards those conventional meanings already established in 

the community. (p. 187) 

In Peirce’s semiotics a whole sign is triadic and constituted by an object to which 

the interpretation refers, a 'material sign' (representamen), and an interpretant, the 

latter being an identity that can put the sign in relation with something – the object. 

A very important dimension in Peirce's semiotics is that interpretation is a process: 

it evolves through/by new signs, in a chain of interpretation and signs 

(representamen). The interpretant – the sign agent, utterer, mediator – modifies the 

sign according to his/her own interpretation. This dynamics of signs' production and 

interpretation plays a fundamental role in mathematics where a first signification has 

always to be re-arranged, re-thought, to fit with new and more complex objects – 

such as an integral for an example.  

Peirce – who was himself a mathematician – organised signs in different categories; 

briefly said, signs are triadic, but they are also of three different kinds. We briefly 

sum up the complex system of Peirce's classification (ten categories, depending on 

the nature of each component of the sign, representamen, object, interpretant: see 

Everaert-Desmedt, 1990; Saenz-Ludlow, 2006) by saying that we will call an icon a 

sign referring to the object as itself – like a red object refers to a feeling of red. An 

index is a sign that refers to an object, as a proposition like: 'this apple is red'. A 

symbol is a sign that contains a rule. In mathematics all signs are symbols to be 

interpreted as arguments (see below), though they are not exactly of the same 

complexity; and so are the language arguments we use in mathematics for 

communication, reasoning, teaching and learning. Let us notice that signs can be 

either formal or linguistic: both will be taken into account. Are significant the 

arguments embodied in those signs.  

About these different kinds of signs, Peirce wrote: 

First, an analysis of the essence of a sign, (stretching that word to its widest limits, as 

anything which, being determined by an object, determines an interpretation to 

determination, through it, by the same object), leads to a proof that every sign is 

determined by its object, either first, by partaking in the characters of the object, when 

I call the sign an Icon; secondly, by being really and in its individual existence 

connected with the individual object, when I call the sign an Index; thirdly, by more 

or less approximate certainty that it will be interpreted as denoting the object, in 
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consequence of a habit (which term I use as including a natural disposition), when I 

call the sign a Symbol. (Peirce 1906, p. 495). 

Let us specify that a sign as an Icon, for instance, could never give an argument, 

while an argument can very well be interpreted only as an Icon by somebody who 

would not get the right interpretant. This feature of Peirce's theory we find of course 

very relevant for mathematical signs interpretation. His theory is applicable to 

analyse the interpretation of mathematical signs, because all mathematical signs are 

arguments, even if of different levels, and because there will be some problems of 

misunderstanding if students do not interpret them in their suitable value.  

Mathematical signs are symbols that give rise to arguments ('in consequence of a 

habit', here a mathematical habit of course) but of different levels: then '3' is the 

representamen of an argument because it always signifies that there are three 

elements somewhere (in a mathematics problem for instance; the relation between 

'3' and the number is a rule); but '123' (one hundred and twenty three) will be a more 

complex argument because the rule must include the decimal numeration, which is 

not the case in '3'. This complexity is what authorizes various interpretation of the 

same symbols, according to the mathematical competence of the interpretant.  

This particularity of semiotic tools in mathematics will be in agreement with the 

relevant elements of the construction of a situation, because in a partially adidactical 

situation we must foresee the 'wrong' expression of mathematical properties, or the 

misunderstanding of some ostensives. 

So Peirce’s semiotics seems particularly appropriate for our research and will enable 

us to study more precisely the evolution and the transformations of the signs used by 

the different actors within the situation. In our application of this semiotics we use 

the three usual designations: icon, indexical sign and symbol-argument. Yet we do 

not consider the whole intricacy of Peirce’s theory: it would be too complex to take 

into account and not necessary to interpret correctly students’ actions in the situation. 

We just correlate icons with students’ intuitions, drawings, examples, resolution 

attempts; indexical signs with local proofs, first tools for validation, more accurate 

reasoning, formulations of mathematical objects; and symbols-arguments with the 

concluding validation and formulation of the rules, and of the aimed knowledge – 

mostly under the teacher’s responsibility. This categorization fits with the TDS 

model of milieu, which helps us to analyse students' productions within the two 

theories. We can also consider Peirce's idea of a 'hypoicon', which is a kind of 

schema involving a whole reasoning (see in Table 4 below).  

We also want to take into account the semantic dimension – the meaning of the aimed 

knowledge – to analyse reasoning processes: this contributes to justify our choice of 

the TDS as a basis of our model. As we said, TDS organizes adidactical situations 

with three phases (corresponding to levels of the milieu): a heuristic one (students' 
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action, oriented to the meaning of the aimed concept) grounded with a question; a 

formulation and validation phase; and a last one, institutionalization by the teacher. 

In this configuration the reasoning processes we take into account are as well valid 

or erroneous ones. This theoretical frame allows us also to develop an analysis of the 

functions of the reasoning processes within the situation (Gibel, 2015, 2018).  

2.2. The didactical repertoire and the repertoire of representation  

The work in the students' group leans first on the existing repertoire: all the semiotic 

means used by a teacher, and those he expects from his/her pupils through teaching, 

establish the didactical repertoire of the class – as defined by Gibel (2013). The 

didactical repertoire of the class can be identified as being part of the mathematical 

knowledge the teacher has chosen to explain, namely during validation and 

institutionalization phases of previous situations or previous lessons. The repertoire 

of representation is a constituent part of the didactical repertoire. It is made up of 

signs, diagrams, symbols and shapes and also linguistic elements (oral and/or written 

sentences), which make it possible to name the objects encountered and to formulate 

properties and results.  

To sum up, in our model we consider signs, functions of reasoning, and levels of 

argumentation, while noticing that the reasoning processes elaborated by students 

and teacher during a lesson can occur in various ways: linguistic, calculative, 

scriptural, and graphic elements (see Bloch 2003). This leads to retain three main 

axes to study the reasoning processes.  

 The first axis is linked to the nature of the situation: in a situation involving a 

research dimension, students produce reasoning processes which depend to a 

great extent on the involved phase of the situation, that is, the level of milieu 

(heuristic milieu, milieu of formulation or validation) (Table 1). 

 The second axis is the analysis of the functions of reasoning. We aim at linking 

these two axes, showing how the reasoning functions are connected specifically 

to the levels of milieu and how these functions also manifest these levels of 

milieu.  

 The third axis concerns noticeable signs and representations. These elements can 

be observed through different forms which affect the way the situation unfolds.    

The schema below (Table 2) summarizes the construction of our model: 
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Table 2. Articulate TDS and Semiotic  

Besides, we will observe if reasoning takes place on a semantic (SEM) or syntactic 

(SYNT) way. Durand-Guerrier (2010) defines precisely the semantic, syntactic and 

pragmatic dimensions by quoting Morris: 

semantics concerns the relation between signs and objects they refer to; syntax 

concerns the rules of integration of signs in a given system, and pragmatics the 

relationship between subjects and signs. (Morris, 1938) 

The application of the model to a situation will then include an analysis of the milieu 

and semiotic analysis of the students and teacher’s productions. We will interpret the 

conjectures, intuitions, signs and reasoning processes as an evolution of the 

didactical repertoire of the class, knowing that the situation aims at developing a 

mathematical knowledge in the field of calculus. It is necessary to see the signs 

students engage in the situation and which level of reasoning and rationality is 

involved in their work. The heuristic phase (students' action) must be grounded in a 

consistent mathematical question; then follows the formulation and validation phase; 

and institutionalization by the teacher. So for each level of milieu, we should be able 

to define the kind of reasoning (Table 3). 
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 M-2: research milieu M-1: formulation M0: 

institutionalization 

 

Nature 

and 

functions 

of 

reasoning  

SEM R1.1 

- Intuitions on a 

drawing 

- Decision of a 

calculation 

- Exhibition of an 

example or counter 

example  

SYNT/SEM R1.2 

- Generic 

calculations and 

conjectures (right 

or wrong) 

- Decision on a 

math. objet  

SYNT R1.3 

- Formalization of 

proofs within the 

math. involved 

theory (mainly by the 

teacher) 

Table 3. Functions of reasoning with regards to levels of milieu 

This configuration provides tools to observe reasoning processes. The matrix 

notation R1.1, etc. is a tool to locate the level of attainment of the students’ results. 

Then the second line of our model (Table 4) helps identifying the signs students use 

in the resolution of problems at stake in the situations, and the formal final signs. 

This leads us to:  

 M-2 research milieu  M-1 formulation M0 

institutionalization 

 

Level of 

use of 

signs and 

symbols  

SYNT/SEM R2.1 

Icons or indices 

depending on the 

context (first schemas, 

intuitions…) 

SYNT/SEM R2.2 

Local or more 

generic arguments: 

indices, 

calculations 

SYNT R2.3 

Formal and specific 

arguments: symbols  

Hypoicons: schemas 

Table 4. Semiotic analysis of reasoning forms 

We can see that the reasoning repertoire evolves within the situation: it leads us to 

provide a third line in the model (Table 5), with the aim of helping a teacher or a 

researcher to anticipate this evolution.  

 M-2 research milieu M-1 formulation M0 

institutionalization 

Actualisation 

of the 

repertoire 

SYNT/SEM R3.1 

- Old knowledge  

- Enrichment at 

heuristic level: 

calculations, 

conjectures 

SYNT/SEM R3.2 

Enrichment at the 

argumental level:  

- statements, 

reasoning 

SYNT R3.3 

- Formalized proofs 

- Signs within the 

relevant theory 

- theoretical elements  

Table 5. Evolution of the didactic repertoire and reasoning regarding the milieu 
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We could observe that within the problem resolution, different kinds of 

argumentation were proposed by students: so according to Lalaude-Labayle's work 

(2016), himself inspired by Peirce's categories, we add a dimension to our study; it 

concerns the nature of the proof students are able to propose, depending in which 

level of milieu they are located. This facet comforts the other tools we use to analyse 

students' productions. 

Kind of 

argumentation 

Abduction, 

induction, 

deduction 

Induction, 

deduction 

Deduction  

Table 6. Argumentation 

Let us give an example of each level of argumentation:  

- Abduction: this situation is similar to another one I previously encountered, 

so I will choose this exponential function…  

- Induction: this example involves these properties so I think it is an 

exponential function… 

- Deduction: I could identify a derivative with all suitable properties, so it is 

necessarily an exponential function.  

We want to underline the fact that an a priori analysis is necessary for each situation 

we choose to study: the model we built is efficient to perform this a priori analysis, 

as it allows us to anticipate resolution processes and difficulties. In this perspective, 

we aim at classifying reasoning, calculations, formulas, the nature of signs produced, 

and knowledge(s) likely to be expressed by students in the different phases, 

reflecting the situation in which students will be located.  

The model can also be used to analyse 'ordinary' secondary or university teaching, 

as it allows detecting students' reasoning processes, use of symbols, and 

understanding of mathematical objects involved. We can analyse the students' 

templates while they try to solve a problem: they are first in a heuristic milieu M-2, 

trying to find a resolution process. Then they decide to undertake calculations, use 

of theorems, and their final action leads them to take position in a milieu M-1. In a 

different way, this can also be seen in the context of an evaluation, which we present 

in the next part.  

3. Two situations of problem solving: how students cope with new knowledge 

and unusual signs  

We made our model operate in classical adidactical situations (Bloch & Gibel, 2011), 

but we wanted to use it in quite 'ordinary' problem solving situations. Let us notice 
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that these situations are partially adidactic because problems sent to students do not 

make use of trivialized knowledge.  

In the model, we consider that the learning milieu M0 would be identified as the 

production of a standard solution expected by the teacher in terms of formulas and 

mathematical symbols. M-1 is a level of calculations that students undertake with 

their own formulas and conjectures. M-2, the heuristic milieu, contains students' 

attempts that highlight how they see the mathematical objects at stake. As said in 

Gravesen, Grønbaeck & Winsløw (2017), it is the place where students do A6 (in 

the authors’ list): 

A6. Employ a non-formal “heuristic” representation of a mathematical object, to 

investigate it (p.5) 

We then consider the productions of fourteen (14) students in this context – problem 

solving – at the University of Pau, in May 2014. The teaching unit involved is 

named: "Mathematics of the movement", which is interesting because a link is made 

between mathematical knowledge and physics problems; moreover, students can 

have access to the idea that a variable is not always denoted by x, it can be t as well, 

which refers to the time in a movement.  

The milieu includes three exercises, the first one on polar and parametric functions, 

the second and the third ones on differential equations. Parametric curves and 

differential equations are especially interesting to study as they involve complex new 

signs, unusual processes for secondary students, and new kinds of reasoning. These 

reasoning encompass also mathematical objects, such as functions, limits, 

derivatives, but in a new way of thinking. As a number of authors, we can insist on: 

the importance of representations and mathematical visualization in the understanding 

of concepts. (Trigueros & Planell, 2010, p. 7)   

3.1. Parametric curves 

3.1.1. Proposed task 

A parametric curve is of the type: x = f(t), y = g(t). There are two functions x and y 

to study; students must understand that what is required finally is to describe the 

variations of y with respect to x, in the case of a movement for instance; so the study 

of the two functions f and g (including the calculation of their derivatives) is just a 

step (of R1.2 type) to interpret what happens with the curve of y while x being the 

final variable. Sketching the graph needs to give values to t, being sure that we got 

the ‘whole’ curve; or eliminating the parameter t, which may reveal to be complex, 

because in this case you cannot 'see' this number t varying. According to Trigueros 

and Planell (2010), we insist on the importance of the role of visualization in 

resolution of functions problems.  
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So, Weber and Thompson (2014) notice that understanding parametric functions 

suppose that one: 

… supports an image of scanning through values of one variable and tracking the 

value of another variable, (…so) imagine the quantities as coupled. (p. 77) 

They also note that: 

It is nearly impossible for a novice student to conceive simultaneously a relationship 

between three quantities. (ibid., p.74) 

Another difficulty comes from the existence of tangents. In contrast to what happens 

with algebraic curves, parametric ones can have two tangents at the same point: this 

is a singular point that students did not meet before. They are expected to identify 

the nature of this singular point, for instance a cusp. They must first apply a formula 

(x’(t)=0, y’(t)=0) and then try to find the tangents at this point to be able to identify 

the nature of the singular point. Students have to engage a calculation and reasoning 

of successive derivatives that takes place at R2.3 or R3.2 level at least and involves 

specific interpretation about the objects at stake.  

We classified the students' outcomes from S1 to S14. In May 2014 students were 

confronted to the following question:  

Let us study the parametric curve defined by x(t) = a t2/(1+t2), y = a t3/(1+t2) with 

tIR. Show that it is sufficient to study for t≥0. Determine the variations and confirm 

that the curve gets symmetry, an asymptote and a singularity.  

Students have to calculate x(-t) and y(-t) and conclude about the kind of symmetry; 

calculate the derivatives, build the variation table and do not forget the limits; and 

they must undertake pertinent interpretations of these results. The curve has a 

singularity, a cusp: they must find its coordinates and its nature. We expect that a 

difficulty can occur in the interpretation of derivatives: students are accustomed to 

calculating such derivatives but for algebraic functions one derivative is enough to 

find the variation of f. The asymptote can be a problem too, as t +∞ when x a 

and y+∞. So the asymptote is vertical, but nevertheless when t+∞, which can 

be a source of misunderstanding: for algebraic curves a limit where the variable tends 

to infinite corresponds to a horizontal asymptote.  

Let us insist on the fact that these (little) problems involve a part of no trivial 

knowledge for students; this is why we say they are partially adidactical situations.  

3.1.2. Analysis of the students' results 

The first third writings show a global success (the notes are 19 or 20). Seven students 

are over 10, and the last seven productions are inadequate, the notes beeing from 8 

to 2/20. So S11 is confused with the sign of t and x, y; half of the students have a 
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problem with the symmetry and do not succeed with its identification; students make 

a lot of mistakes in signs, and in derivative calculation, though it has been studied in 

secondary school. The fourteen writings give the final result shown in Table 7, which 

confirms that the global success is not very high, and which shows a real contrast 

between the best students, who succeed in almost all the problem, and the last ones 

who do not master concepts and techniques.  

 

Derivatives Exact 

Symmetry  

Asymptote 

x = a 

Singular 

point  

Curve  

Correct 

calculation 

12 (on 14) 

7 Limites : 6 

x = a : 4 

Nul 

derivatives: 6 

Nature of the 

point : 4 

7 - 

according 

with the 

symmetry 

Table 7. Students’ difficulties 

Student S1 does perfectly all that is expected: she calculates the derivatives, the 

behaviour of the function, draws the graph with the asymptote, and determines the 

cusp with its tangent, which needed to calculate x(3)(t) and y(3)(t) for t=0. S1 reaches 

the level R1.3, she makes a formalization of proofs within the required theory. 

Student S14 cannot do anything; five other students encounter difficulties to 

calculate derivatives, to interpret the symmetry, and to find the singular point. One 

student says that a should be the parameter. Another writes that the equation of the 

curve is x(t)+y(t)... : this student does not master the target concept of parametric 

curve, so he stays at level M-2 and tries heuristic (non-relevant) calculation. 

So, we can see that even in M-2, some students do not appear to be able to undertake 

local adequate calculations, as they do not understand that they are no more in the 

case of a Cartesian function. There are errors about the nature of the asymptote, for 

instance: only six students calculate the limits and conclude about the asymptote, 

reaching the R2.2 level, but among these six, two of them write a wrong equation: 

y=a instead of x=a. The students’ productions also show calculation mistakes, 

especially in derivatives and primitives. The handling of singular points is not 

properly integrated: students are unsettled by the conditions for being a singularity, 

by the ways of finding the tangent... For instance, S6 tries to find the point by 

calculating x=0 and y=0 instead of their derivatives; S2, who succeeds in the exam, 

writes that: "every non collinear vector to the curve is tangent to the curve"…  

Some students who calculate without mistakes encounter problems with the 

interpretation of their calculations: according to our model, we conclude that their 

use and interpretation of signs do not exceed the R2.1 or R2.2 level. To strengthen 

our approach, let us say that these students reveal to be able to calculate x’(t) and 

y’(t) using a well-known algorithm. However, they are unable to interpret the results 
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because in the particular case of a singular point it is necessary to make 

complementary decisions on a mathematical object (R1.2 Table 3) such as calculate 

x’’(t) and y’’(t) and interpret them. Moreover, there is a need of explaining because 

you do that: the raison d’être of the calculation, that is, an “enrichment at the 

argumental level” as said in Table 5. 

Those who succeed very well (four from the twelve) write sentences to explain that 

a singular point is given by x’(t)=0, y’(t)=0, applying a R2.2 or even R2.3 

knowledge: they are producing statements with relevant signs that come under level 

R3.2 in Table 5. 

One student says that it means that the speed is equal to zero; but only the first one 

S1 is able to calculate the tangent and identify the nature of the singularity, being 

clearly in the position R2.3 for all needed symbols: this seems to confirm that she is 

also located at level R3.3 with regard to Table 5. 

3.2. Differential equations 

In the second problem students had to cope with the solving of these two differential 

equations: 

Exercise 3: Given the first order differential equation: exyy' – x2(y2-9) = 0  

After separating the variable, solve the equation. Then solve the Bernoulli 

differential equation:  

𝑦′ −
4

𝑥
𝑦 − 𝑥√𝑦 = 0 

3.2.1. A priori analysis 

First, we consider the first order differential equation. Separating the variables 

implies preserving the initial shape, that is, not to develop the term )9( 22 yx , to 

obtain the following shape: 
xe

x

y

yy 2

2 9

'



. This requires analysing preliminarily the 

features, the characteristics of the different mathematical signs appearing in the 

equation to anticipate the expected form. To solve this equation, students have then 

to transform y’ as 
dx

dy
y ' ; then they can produce an algebraic form allowing them 

to integrate the terms.  

Dealing with the term dx
e

x
x
2

 requires necessarily applying twice integration by 

parts. Considering the second part of the exercise, solving the Bernoulli equation 

gives rise to a number of difficulties: the first one consists in being able to make the 
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substitution leading to the equation xzz
x

zz  24
'2 . After simplification it can then 

be written: xz
x

z 
4

'2  . 

Students must solve first the homogeneous differential equation associated, and then 

they have to solve the inhomogeneous differential equation by variation of the 

constant, which can be a source of new difficulties. The technique of variation of the 

constant is a part of the new technical and technological tools of first year University 

course, so it is of Level R3.3 in our model.  

3.2.2. Analysis of students’ outcomes 

First we analyze main difficulties encountered by students to solve the differential 

equation exyy' – x2(y2-9) = 0. The first one is to separate the variable to obtain 

xe

x

y

yy 2

2 9

'



 : among fourteen students only eight of them accomplished this task; 

for two of them this task was difficult and required several attempts as we expected. 

The next step of the resolution needs to compute  
dy

y

y

92
. Seven students out of 

eight were able to fulfil this task, but two of them represented the quotient as a sum 

of rational functions, because they did not acknowledge the derivative of the function 

)9( 2 yLn . Recognize this primitive is of Level R2.2 because students have to 

identify a schema – a hypoicon according to Peirce – of different 'models' of 

derivatives/primitives, which variable is not always 'x'. It supposes that the students' 

repertoire encompasses a lot of 'forms' that at this level they did not meet often 

enough. This informs us and is a good example of the lack of availability of 

mathematical tools to solve this problem. According to Table 5, these students are 

stuck at level R3.1. They try to operate with their previous repertoire and do not 

succeed in adapting this repertoire with the new tools studied. 

We notice that only five students were able to deal with the term dx
e

x
x
2

applying 

twice integration by parts. Then, only four students resolved this equation and 

obtained the whole solution.  

As regards the Bernoulli equation, half of the students recognized an equation such 

as 
nyxbyxay )()('  , with 

2

1
n  and 

x
xa

4
)(   , xxb )(  . They were able 

to make the substitution 2

1

yz  . But only five of them succeeded in obtaining 
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xz
x

z 
4

'2 ; two students did not dare to reduce the equation; they could not admit 

the possibility of dividing each term by z. Among these five students, the three other 

students implemented successful methods of solving. 

We consider that this solution is not only procedural: students have to interpret that 

this integral includes well-known functions as x2  and ex, so they are supposed to 

know how to integrate and to derive them. Students must decide by induction that 

integration by parts would be an appropriate solution. We can presume that those 

who fail in this calculation are in an abduction process, trying to guess which tool 

would be likely to lead to blind success.  

As a conclusion of this study, the model proves to be efficient to detect students’ 

difficulties about signs, a new interpretation of functions and their derivatives in the 

case of parametric curves; troubles in the transformation of differential equations to 

obtain and be able to recognize interpretable ‘shapes’ as y’/y, for instance. Our model 

also allows– and this can be an important help for teachers and researchers – to 

become more precisely aware of the level students attain in their attempts to solve 

the problems: the fact that students made attempts to answer allows to investigate 

their knowing, their ability to choose mathematical tools and to make these tools 

work in a proper way in the problem. The elements of our model also allow a good 

analysis of the way students master the mathematical signs, considering that, as 

Trigueros and Planell (2010) notice, signs, visualization and understanding are 

strongly linked. We could add that a level for mastering calculation is essential too.  

Conclusion  

We can conclude that it is really difficult for students to get access to Level 3 of our 

model, although this level is the 'expert' one required: they frequently keep stuck at 

Level 1 with old non-adapted knowledge or false calculations (intra-stage according 

to Trigueros & Planell, 2010), or they try to work at Level 2 (inter-stage according 

to the same authors) but do not succeed in more complex calculations, especially 

when schemas (in Peirce's sense) are involved; or they make the expected calculation 

but are no more able to interpret it within the problem.  

We notice that the involved activities, at this level, imply a very rich assortment of 

techniques, procedures, and a variety of occasions to apply formulas, which is not 

obvious even if students have understood the previous course. Yet the familiarity 

with this new field of knowledge is not easily established for a majority of students, 

and they are deficient in algebraic skills. Then the students' outcomes illustrate their 

numerous attempts to try to calculate and recognize well-known shapes within the 

heuristic milieu. We think that the difficulties highlighted in this study are not linked 

with the teacher's didactical choices, but they are common within the population of 
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mathematical students, due to the reasons we evoked in the first part of this paper. 

Let us notice that the name of the course “Mathematics of the movement” is 

somewhere a fiction: these problems do not refer to a physics problematics, and even 

if it had been, we doubt it would have helped students to solve them, since difficulties 

reveal to come under understanding and calculating in mathematics. Maybe a strong 

reference to a physics phenomenon would have been more a source of additional 

difficulties. 

We also want to point out the missing knowledge in the (French) secondary 

curriculum: students study no more the composition of functions. Yet they must 

recognize the kind of schemas we see in a differential equation as above, and this 

implies to detect which functions are at stake and how they appear in the formula. 

As students have no familiarity with 'the whole formula' they try to interpret each 

element separately, which has no meaning. So, most of them do not achieve the level 

R3.  

We could also formulate these obstacles by saying that students fail in doing a 

pertinent association between syntactic and semantic methods: they are stressed with 

calculations and cannot control the meaning of the operations they have done.  

These results show that it would be necessary to introduce relevant situations with 

an adidactical dimension aiming at the introduction of the Calculus concepts. Notice 

that building such situations for complex mathematical knowledge is not always 

easy. Moreover, the implementation supposes that the teacher masters the course of 

the situation and the students' progress: this implies specific professional skills, the 

lesser being to be open minded to students' productions, even if 'false', and able to 

provide some help but not the whole solution.  

The next step of our work should be to find relevant situations for the teaching of 

Calculus, both in an introductory way in Secondary school, and at University.  
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