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Abstract. A reflection is made about Abstract Algebra Learning, motivated by the reading 

of an article published previously in this journal. The reflection involves elements of APOS 

(Action – Process – Object – Schema) Theory and related published works as well as results 

from other studies involving definitions, examples, proofs and structure sense. 
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Résumé. Apprentissage de l’Algèbre Abstraite : Structures mentales, définitions, 

exemples, démonstrations et sens de la structure. Une réflexion est présentée autour de 

l’apprentissage de l’Algèbre Abstraite, motivée par la lecture d’un article publié dans cette 

revue. La réflexion inclut des éléments de la théorie APOS (Action – Processus – Objet – 

Schème) et des travaux publiés en relation avec cette théorie, ainsi que les résultats d’autres 

recherches incluant définitions, exemples, démonstrations et sens de la structure. 

Mots-clés. Algèbre Abstraite, théorie de groupes, structure mentale, définition, exemple, 

preuve, sens de structure 
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1. Introduction 

The writing of this paper came about after reading the article of Durand-Guerrier, 

Hausberger & Spitalas (2015) about the prerequisite knowledge for the learning of 

Modern Algebra (or Abstract Algebra). Rather than being a reply to that article, it 

can be thought of as a complement, and perhaps the latter view would allow us to 

understand better some results that the authors present in their study. 

The intention of this paper is mainly two-fold: On the one hand to offer a non-

exhaustive review of studies in order to outline what research has found out about 

Abstract Algebra learning, and on the other, to discuss some aspects that interact 

with this learning and that are mentioned in the Durand-Guerrier et al. article, such 

as the generation and use of examples; the role that definitions play; production of 

proofs; and structural thinking. In relation with this focus, some results from research 

in Linear Algebra learning are also mentioned. 

Other aspects raised by Durand-Guerrier, Hausberger & Spitalas (2015) are not less 

important, such as the use of quantification, the relationship between Linear Algebra 

and Abstract Algebra, and the role of logic in understanding mathematical structures, 

also motivate reflections, but are left to a possible future article. 
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2. Research on Abstract Algebra Learning and Teaching 

In 2001 Findell wrote that a literature search using specific criteria revealed 15 

articles on the learning of Abstract Algebra; 11 of these were published since 1994, 

of which 9 originated from the work of Dubinsky, Leron and their collaborators. 

Since 2001 there have been an increase in this kind of studies, although it can still 

be claimed that the number of published studies in this area is slim compared to 

others at the undergraduate level, such as calculus and analysis, as noted by Durand-

Guerrier et al. (2015) as well. On the other hand APOS-related work constitutes a 

major part of the growing body of research (Arnon et al., 2014) on Abstract and 

Linear Algebra learning and teaching. These studies offer insight into different 

aspects of the learning process; given the situation, studies carried out using this 

theoretical framework deserve some credit in an article about the learning of Abstract 

(Modern) and Linear Algebra. 

Concepts such as binary operation, group, subgroup, center of a group, isomorphism, 

coset, normality, quotient group, permutations and symmetries have been researched 

and discussed in several publications (Asiala et al., 1997; Asiala et al., 1998; Brown 

et al., 1997; Dubinsky et al., 1994; Leron and Dubinsky, 1995). In these studies, 

usually through the design of a preliminary genetic decomposition that indicates a 

possible way to learn a certain mathematical concept, researchers explicitly state the 

proposed mental stages involved in constructing it. This is the first step of the 

research cycle, known as the theoretical analysis. After this is done, instructional 

strategies developed specifically with the purpose of motivating the proposed mental 

constructions in the genetic decomposition are implemented, constituting the second 

step of the research cycle. One common strategy in this phase has been the use of 

computer programming to help with the interiorization of Actions into Processes and 

encapsulation of Processes into Objects. Finally, data is collected mainly through 

interviews in order to observe whether the mental path sketched by the genetic 

decomposition is in line with how students seem to be learning the concept in 

question. The cycle is iterated until a satisfactory explanation is reached in terms of 

student understanding; this happens when the theoretical analysis and empirical 

findings converge.  

The mental structure known as Action is constructed when an individual responds to 

an external cue such as a formula or an algorithm and is applied to previously 

constructed objects. When they are repeated and reflected upon, they are converted 

into Processes via the mechanism of interiorization. When there is need to apply 

Actions on Processes, they are encapsulated into Objects to which actions can be 

applied (for more information about APOS Theory and its components, the reader 

can consult Trigueros & Oktaç, 2005; and Arnon et al., 2014). In this theory, if 

supported by empirical evidence, student failure is attributed to the lack of required 
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mental structures, construction of Objects through the mechanism of encapsulation 

being the most difficult stage to achieve (Arnon et al., 2014). 

According to Dubinsky et al. (1994) “An individual's knowledge of the concept of 

group should include an understanding of various mathematical properties and 

constructions independent of particular examples, indeed including groups 

consisting of undefined elements and a binary operation satisfying the axioms. Even 

if one begins with a very concrete group, the transition from the group to one of its 

quotients changes the nature of the elements and forces a student to deal with 

elements (e.g., cosets) that are, for her or him, undefined.” (p. 268)  

In Brown et al. (1997) a genetic decomposition of the group concept is given in terms 

of the coordination of three schemas: set, binary operation and axiom; in fact, the 

first two are coordinated through the third one. The need for this coordination is 

pretty obvious since literature reports that there are students who think about a group 

as a set without being aware of the role that the binary operation plays and this has 

consequences on their subsequent understanding of Group Theory concepts 

(Dubinsky et al., 1994; Iannone & Nardi, 2002). As Findell (2001) notes, “The 

operation gives the group its structure. In other words, a group without its operation 

is merely a formless collection of elements” (p. 131). The failed coordination is 

typically evident in affirmative answers to questions of the type “Is 𝑍3 is a subgroup 

of 𝑍6?” (Hazzan & Leron, 1996) or when students claim “that the identity in Z3 is 

inherited from Z6” (Findell, 2001, p. 152) or even that associativity in 𝑍6 is inherited 

from 𝑍 (Findell, 2001), or still, that any subset of a group inherits closure (Fukawa-

Connelly, 2007). Furthermore, Iannone and Nardi (2002) observed that students 

interpreted the group axioms as being properties of the group’s elements rather than 

those of the binary operation. 

In order to illustrate the mental structures of Action, Process and Object, we can 

consider the example of the coset concept. A student with an Action conception can 

form cosets of familiar groups, such as 𝑍18 but would have difficulty of doing it for 

groups such as D3. As the following extract illustrates, in forming the cosets of 𝐻 =
 < 3 > the student needs to write down explicitly the steps in performing 

calculations in an algorithmic manner, and may be confused about whether in 

forming the cosets of the form 𝑎𝐻, 𝑎 runs through 𝐻 (subgroup) or 𝐺 (the group):  

Cal: Well, the number in front is what you add to each element inside the 

set. So zero added to these six elements would keep the same six. One [the 

number] added to each, which is in the first column, would give you the 1, 

4, 7, 10 and then you add 2 these first the H which is zero through 6, 9, 12, 

15. Then you add 2 to each and you get 2,5,8,11,14 and 17. (Dubinsky et al., 
1994, p. 283) 
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With a Process conception, the student can think about forming the cosets without 

having to actually write them down and may begin to observe patterns, in forming 

sets of the form, for example, 1+ < 3 > in 𝑍18, and can decide when to stop: 

Lon: Okay, yeah. I should have said that 3 + 𝐻, of course, which is a coset 

in its own right, is equal to the coset 0 + 𝐻 because you get the same 

members as if you had added 0. Same goes with 4, 5, 6 and so on. (Dubinsky 

et al., 1994, p. 284) 

When the Process of coset formation is encapsulated into an Object, actions can be 

performed on it such as multiplying them, forming sets using them as elements and 

preparing operation tables using labels for them. When necessary, the student can 

de-encapsulate the Object to go back to the underlying Process: 

Jocelyn: It’s uh, for subgroups you can pick representatives and just 

multiply them and then your answer will be the coset that contains the 

product. 

 … 

 Interviewer: Do you remember what the original definition is? 

Jocelyn: Uh, I think we had to go through and multiply every single element 

in the first coset by every single element in the second coset. (Asiala et al., 

1997, p. 256) 

In the teaching approach related to APOS theory (see Dubinsky & Leron, 1994) 

students are expected to produce computer code with the intention to help them 

construct the group concept as a generic object. Students are introduced to the group 

notion through a computer code called “name_group” that makes use of several 

functions that students themselves wrote. The following quote describes the general 

approach of the course:  

From early on in the course, even before the concept of group was 

mentioned, students were working with sets which were closed under binary 

operations, with closed subalgebraic structures, and with group theoretic 

concepts. By the time groups were formally introduced, the students had 

already worked with a variety of examples and group theoretic concepts. The 

preferred way of introducing a topic was to have students explore examples 

relating to the topic before any mention of the topic. In this way, we prepared 

very fertile ground in which to plant some mathematical seeds. (Smith, n.d., 

p.6). 

About defining concepts in an Abstract Algebra course, Leron and Dubinsky (1995) 

state the following: 

When the students eventually come to learn the "official", general, abstract, 

formal version, this is perceived by them not as totally strange and prohibitive 
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(as we believe is the case in standard lectures, where such abstractions are 

presented without any experiential basis), but as an elaboration of their 

previous experience. In popular terms we may say that the activities provide 

an initial intuitive familiarity with the topic to be learned. In more 

psychological terms (supported by an elaborate theoretical framework and 

research), we may say that the activities help the students to "construct" the 

mental processes, objects and relations necessary for a meaningful 

understanding of the topic. (p. 231) 

According to APOS theory, a Schema is considered to be thematized when it is 

thought of as a total entity on which actions can be applied. For example, students in 

the study by Brown et al. (1997) were asked to work with the following question:  

Let (𝐺,∗) be an abelian group, 𝑡 a fixed element of 𝐺, and define the binary 

operation ◊ by  

𝑥 ◊ 𝑦 = 𝑥 ∗ 𝑦 ∗ 𝑡-1, 𝑥, 𝑦𝐺 

 Prove or disprove that (𝐺,◊) is a group. (p. 237) 

The ability of students being able to “think about a generic group situation and 

distinguish among several instantiations-especially when these instantiations have 

something in common, such as the underlying set- and coordinate the application of 

these instantiations in order to compare them” (p. 226) was interpreted as the 

construction of their group Schema as an Object. 

Findell’s (2001) research also shows the difficulty that students have with defining 

properties as opposed to defining sets. For example, a student, when asked to give 

the definition of an identity element, wrote the following response:  

There is an identity element for the group so that every element in G, when 

multiplied by this identity element, e, will give you back the original 

element: {x ∈ G | xe = x}. (p. 170) 

Although she uses quantifiers essentially in a correct manner, this student ends up 

defining the set of those elements that operated on the right with e, stay the same. 

Findell also reports that students seem to have more difficulty with the definition of 

the identity element than that of the inverse element. 

3. Definitions and examples 

Fundamental definitions do not arise at the start but at the end of the 

exploration, because in order to define a thing you must know what it is and 

what it is good for (Freudenthal, 1973, p. 107). 

Unfortunately, neither Freudenthal, nor anyone else, has shown us how this 

transition - from exploration to formal presentation - can be achieved 

(Gardiner, 1995, p. 254). 
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Durand-Guerrier et al. (2015) mention that they would like to answer the question of 

in what ways definitions and examples of algebraic structures such as groups, rings, 

fields and vector spaces as well as of algebraic objects and notions such as neutral 

element, invertibility, irreducibility, equivalence relation and Euclidian division 

form a pre-requisite for further study of abstract structures, with the aim of 

developing an abstract theory. Definitions are seen as “labels put on bottles to be 

filled with classes of concrete examples that are come across over the course of 

mathematical activities”; identifying the common structure of these examples in each 

category would help the realization of an abstract theory (p. 103).  

What is meant by “definition” consequently affects the way it is employed in 

research. It can refer to citing definitions, creating definitions, reinventing 

definitions, using definitions or consulting definitions, among other activities. This 

in turn influences the way with which it forms a prerequisite for Modern Algebra 

learning. If conceptual understanding of the underlying notions is the focus, then the 

nature and role of the definitions in mathematical activity enter into play. 

If the concern in a study is about observing the way students make use of a definition 

when they search for examples of the concept being defined, one can for example 

provide the students with a definition that they have never seen before, which might 

be of an invented concept, and ask them to give examples of it. This way, 

methodologically speaking, the problem with some students not recalling a 

definition could be avoided. Also, and not less important from a methodological 

point of view, the risk of students relying on their memories both in case of trying to 

remember a definition and familiar examples seen in class or in the textbook, would 

be reduced. This way we could get a sense of the elements that they work with in 

generating examples. However, there are other considerations as the following 

research works illustrate. 

Work done by Barbara Edwards (1997; Edwards & Ward, 2004, 2008) about the 

status, role and use of definitions by students of analysis and Abstract Algebra shows 

that students may fail to conceive the definitions as being stipulated, as opposed to 

lexical or extracted. This contrasts completely with mathematicians’ viewpoint on 

definitions and can be the cause of serious difficulties when it comes to 

understanding concepts that are being studied. Extracted definitions are established 

based on observations while in mathematics, definitions are created by attributing a 

list of properties to the concept to be defined and are “imposed on the reader by 

decree” (Wells, 2016). This also has to do with the statement made by Durand-

Guerrier et al. (2015) about definitions not having a truth value; although logically 

true, it seems that for some students this is not so. In fact extracted definitions do 

have truth values since they report usage; mathematical definitions, on the other 

hand, being stipulated, create or improve usage (Edwards & Ward, 2004; 2008).  
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Research shows that reciting a definition correctly does not imply an understanding 

of the concept being defined nor its application in proofs or usage in problem solving 

(e.g. Rasslan & Vinner, 1988). In some studies, like in Durand-Guerrier et al. (2015), 

students were asked to recall the definitions and afterwards solve problems using 

them. In this approach if a student could not remember a particular definition, he or 

she could not tackle the problems. In other studies the focus was on the ability to 

apply definitions, and therefore students were provided with the necessary 

formulations so that they could start working on the problems; this way their success 

in solving them would not be limited with the availability of those definitions 

(Edwards, 1997). In this spirit, Edwards and Ward (2004) worked with students in 

an Abstract Algebra course who had not studied the definitions that were provided 

to them during the interviews; they were forced to pay attention to how the concepts 

were formulated and could not rely on their memory.  

Edwards and Ward (2008) claim that there may be two reasons why students do not 

apply a given definition correctly. One reason might be that the student’s 
understanding of the content of a particular definition may be incorrect. The second 

reason is that the student’s understanding of the characteristics of a mathematical 

definition in general may be incorrect. The results of these studies suggested that 

some students do not use the definitions appropriately in solving tasks, even when 

they are available to them. For example one student, working on a problem involving 

cosets, avoided referring to the definition and instead tried to remember how she had 

solved similar tasks before and at times manifested a belief that mathematical 

definitions are extracted as opposed to being stipulated. This might be 

understandable, from the point of view of the students’ experiences; to them, a body 

of mathematical knowledge is presented as ready-made, and they perceive it as 

extracted (Edwards & Ward, 2004). In other words, the way mathematics is taught, 

does not allow them to live a mathematician’s experience from the beginning to the 

end. 

Edwards and Ward (2004) discovered that even in situations for which they 

conjectured there would be no other way but to rely on the mathematical definition 

to complete a task, for some students this was not the case. Participants in this study 

had worked with the coset formation previously; during the interview they were 

provided with the definition of coset multiplication and asked to perform some. To 

the authors’ surprise, instead of using the definition that was available to them, some 

students recalled their FOIL (First-Outer-Inner-Last) method that is used for 

multiplying expressions such as (𝑎 + 𝑏)(𝑐 + 𝑑), or suggested the union of two sets 

as possible answers. 

Edwards and Ward (2008) discuss the role of defining activity as a possibility to 

engage students in thinking about the role that definitions play in mathematics, in 
the sense that students create their own definitions so that they participate in 
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authentic mathematical experiences. However they warn against this kind of 

activities, especially if they are being employed in the case of existing mathematical 

concepts, since they might convert into “games that are won if the student can guess 

what the teacher is thinking” (p. 230), hence reinforcing the idea that mathematical 

definitions are extracted. In order for this kind of activity to work, students should 

be allowed to work their way through, until they discover the logical consequences 

of the definitions that they formulated, including the “unintended consequences” (p. 

230). Only after this phase has been concluded should the students compare their 

definitions to the ones actually in use (Edwards and Ward, 2008). 

Although different in approach, we also mention the work of Zandieh and 

Rasmussen (2010) for whom defining involves activities such as proposing 

conjectured definitions, testing them through examples created for this purpose and 

negotiating them as well as trying to demonstrate whether the definitions do the job 

that they are supposed to do. In doing this, both aspects of formulating the definition 

and the generation of meaning are given importance (Larsen & Zandieh, 2005). 
Larsen (2009) reports on a project in which students were involved in intensive 

defining activity as part of a developmental research project (Gravemeijer, 1998). In 

this approach focus was placed on the guided reinvention of the formal concepts of 

Abstract Algebra by students, starting with what the students already bring with 

them, in terms of informal knowledge and strategies, based on Freudenthal’s (1973) 

ideas about avoiding a teaching approach for teaching group theory where first a 

definition is given and then examples and other results will follow.  

In Larsen’s (2013) teaching design students worked in pairs on the symmetries of an 

equilateral triangle in order to formulate a definition for the group concept, by first 

identifying the rules, then reducing them to a minimum, and then working on other 

examples with a group structure and identifying the invariant characteristics across 

these examples. Some axioms needed more prompting to be considered explicitly, 

such as the ones involving the inverse and associativity. Students then worked on 

proving theorems and went on to reinventing related concepts such as isomorphism 

and quotient group, with the guidance of the instructor. “[T]he notion of an abstract 

group emerges with the reinvention of the isomorphism concept in that isomorphism 

makes it possible for different groups (e.g., the symmetries of an equilateral triangle 

and the permutations of a set of three elements) to be seen as instances of the same 

abstract group” (p. 721). Students also worked on inventing their own notation 

systems. This approach may not be too practical to be applied in a whole Abstract 

Algebra course and research is necessary to determine what kind of structure sense 

students might develop as a result of it, however it might provide the students with 

worthwhile experiences about the defining process. Larsen (2013) notes that 

Dubinsky et al.’s (1997) warning about the difficulty of abstracting the properties of 
the general group concept from specific examples was held true in this experiment. 
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Fusaro Pinto and Tall (1999) present two ways definitions are employed in 

mathematics. The first one, giving meaning (to a definition), occurs when one uses 

previously built concept images in order to understand a definition, including 

examples and visualization. Extracting meaning (from a definition), on the other 

hand, refers to working with the definition by means of deductive reasoning. One 

might think that these two modes of usage would be required in different kinds of 

mathematical tasks, however, interestingly, Fusaro Pinto and Tall identified students 

who preferred one or the other approach when working on one task.  

Bills and Tall (1998) state that “A (mathematical) definition or theorem is said to be 

formally operable for a given individual if that individual is able to use it in creating 

or (meaningfully) reproducing a formal argument” (p. 104). About the relationship 

between a definition and examples, they argue the following: 

If a student is focusing mainly on the essential properties in the definition 

then, in meeting new examples, there is the possibility of focusing only on 

these essentials, thus greatly reducing the cognitive strain. A more diffuse 

view of the possibilities means that successive examples may have a variety 

of extra detail that can cloud the issue. The former approach has prior focus 

on the "intersection" of the properties of the examples, the latter must sort 

out the important essentials from the "union" of the examples with their 

subtle irrelevancies that can lead to cognitive overload. (p. 111) 

They add that “the struggle to make definitions operable can mean that some students 

meet concepts at a stage when the cognitive demands are too great for them to 

succeed” (p. 104). Once again, adopting the viewpoint of APOS Theory, we can say 

that without the mental structures that prepare students to understand the concept 

appearing in a definition, the pure statement of it will be of very little use to students, 

even if they can cite it correctly. 

According to Zazkis and Leikin (2007)  

examples generated by participants – if solicited in a certain way – mirror 

their conceptions of mathematical objects involved in an example generation 

task, their pedagogical repertoire, their difficulties and possible inadequacies 

in their perceptions. However, there is a need for explicit criteria for 

evaluating examples generated by participants. (p. 15) 

Starting from the assumption that “to understand mathematics means, among other 

things, to be familiar with conventional example spaces” (Watson and Mason, 2005, 

cited in Zazkis & Leikin, 2007, p. 21), they offer a framework in which emphasis is 

placed on three characteristics of examples generated by students: accessibility and 

correctness; richness; and generality. Conventional examples refer to the ones that 

mathematicians and the mathematical community accept; they usually form part of 

the curriculum and are privileged by instructors in their intent to enculture students. 
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Zazkis and Leikin suggest that studying the relationship between the personal and 

conventional example spaces of students through their framework might lead to an 

understanding of participants’ mathematical knowledge and its characteristics. Later 

Zazkis and Leikin (2008) distinguish between two kinds of conventional example 

spaces: expert example spaces as revealed by mathematicians through their variety 

and richness, and instructional ones as promoted by textbooks and instructors. 

Dahlberg and Housman (1997) in trying to get a sense of how undergraduates 

initially understand a notion, provided the students with written definitions of 

concepts new for them and interviewed them about their comprehension by means 

of questions and requests for explanations, examples or solution of tasks. The 

definition that was provided was that of a fine function, defined as a function that 

has a root at every integer point. Initially students were given the opportunity to 

generate their own strategies to try to understand the given definition, and after some 

time, depending on what the students chose to do, it was complemented by the 

interviewer’s requests. There were four learning strategies observed: example 
generation, reformulation, decomposition and synthesis, and memorization. The 

authors found that the initial level of sophistication of understanding among the 

participants was highest for example generators and decreased in that order. 

Although the definition involved in this study was not that of an abstract algebraic 

structure and research can show whether the same conclusion can be reached in this 

case as well, user-generated examples and reflection on them as a didactical strategy 

might be a promising approach in helping students comprehend a new concept. 

However the authors warn that question design and instructor’s pedagogical 

strategies play an important role in reaching this outcome. Iannone et al. (2011) on 

the other hand signal that there are not clear indications that example generation 

helps students in their understanding of mathematical concepts in general and with 

proof strategies in particular. They suggest that the quality of the way with which 

students engage in example generation tasks can play a significant role on what they 

gain from it. 

There are several studies on different types and uses of examples in mathematics 

education literature, including at the university level. Antonini (2006) identified 

three types of strategies that graduate students used when generating examples: trial 

and error, transformation, and analysis. In this study all the tasks involved concepts 

already known to participants, with uncommon properties imposed on them.   

Weber et al. (2008) consider three strategies that might help students use examples 

in furthering their understanding of mathematical concepts: “(1) by presenting 

examples, (2) by helping students generate examples, and (3) by asking students 

reason about given examples” (p. 247). They further suggest a type of task in which 

students are asked to provide examples of a concept that is being restricted more 

each time by imposing other constraints on it, in which they demand the students to 
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make sure that no example generated for one item should satisfy the next one. After 

being introduced to the notion of convergent sequence and producing an example of 

it, students try to generate examples for a convergent non-monotonic sequence, a 

convergent sequence that does not approach its limit more with each term, a 

convergent sequence that reaches its limit and a convergent sequence whose formula, 

when thought of as a function, would not be continuous. If we try to employ this type 

of task in group theory, we might ask the students to give examples of a subgroup, a 

normal subgroup and an abelian subgroup of a group, for example. Or, to the tasks 

suggested by Durand Guerrier et al. (2015) in relation with the definition of a 

spanning set in Linear Algebra, we can add an item adding the condition that the 

spanning set be independent, hence working with the idea of a basis. Furthermore, if 

the students are asked first to give a spanning set that should not satisfy the 

conditions of the second item, i.e. linear independence, one can have the opportunity 

to distinguish between these two concepts, spanning set and basis, a confusion 

reported in the literature (Nardi, 1997).  

It is also reported that for students it is easier to check whether a given object satisfies 

a definition or not, than to provide examples of a concept (Kú et al., 2008). This 

might be explained in terms of the mental constructions involved in each kind of 

activity. Checking properties could be done in an algorithmic fashion using Actions, 

whereas providing examples would require at least a Process conception. However, 

even when checking properties, there might be some conditions that are 

systematically overlooked by students. Kú et al. (2008) observe that when checking 

whether a given set is a spanning set for a vector space, students tend to ignore the 

condition that the elements of the set should belong to the space and they focus only 

on the generating part. This phenomenon is also reported in Durand-Guerrier et al. 

(2015). 

Bogomolny (2006) reports about some students whose first reaction, when asked to 

give an example of a linear transformation, was to recall and cite the definition of 

this concept, and only based on that definition, search for an example. Even when 

their definitions mentioned the two linearity properties, these students did not seem 

to have a clear understanding of what the properties meant and this prevented them 

from giving correct or complete examples. This indicates, from the viewpoint of 

APOS Theory, that without having developed the necessary mental structures, it will 

be of little use for the student recalling the definition of a concept.  

Roa-Fuentes and Oktaç (2010) describe two possible ways to construct the linear 

transformation concept, both of which involve coordination of the processes of the 

linearity properties. They (Roa-Fuentes & Oktaç, 2012) report about a student who, 

although correctly stated the definition of a linear transformation, insistently used 

only one property when trying to decide whether a given transformation was linear 

or not. A similar phenomenon was observed by Bogomolny (2006), as well. This 
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kind of results is a clear indication of the gap between a mathematical statement and 

a cognitive understanding of it. 

4. Definitions and proofs 

The use of definitions in proofs merits some discussion as well. The type of 

definition and the way with which it is employed in proof-making are important 

factors in determining student success and understanding. 

Fusaro Pinto and Tall (1999) consider that the interplay between definitions and 

deductions is a two-way interaction since “[t]o truly understand the nature of a 

definition requires the use of deductions to construct its implications” (p. 66). Weber 

(2002) classifies proofs into four categories: proofs that convince, proofs that explain 

(these two as reported in Hanna, 1990 and Hersh, 1993, cited in Weber, 2002), proofs 

that justify the use of a definition or axiomatic structure, and proofs that illustrate 

technique. Each kind serves a related didactic purpose in the classroom and in 

students’ mathematical preparation. Proofs that justify the use of a definition or 

axiomatic structure are usually employed after a new axiomatic structure is presented 

to students. And as opposed to proofs that convince or explain, they place the doubt 

on the logical progression of the proof whereas the result or theorem to be proved is 

generally obvious and not questioned by students. In a way the proposed axiomatic 

structure is being tested on results that are already known in order to show that it 

works. He gives the example of proving why two plus two equals four using Peano’s 

system of arithmetic. He adds that this type of proofs tend to be very rigorous. Using 

them in teaching can provide the students with a meta-level experience in terms of 

the usefulness and purpose of axiomatic systems. 

Weber (2004) also talks about different strategies that students use in trying to prove 

statements. One of these, namely syntactic proof productions, involve “manipulating 

correctly stated definitions and other relevant facts in a logically permissible way” 

(p. 428) and may be driven by an algorithm. In this kind of proof semantic meaning 

does not play an important role and rather than being a source for understanding, 

definitions serve as a first statement to be used in a chain of deduction and may not 

contribute much to comprehension of the meaning of the fact that is being proved. 

The decision of whether to use definitions or other properties in order to prove a 

certain statement is also a relevant feature of student understanding of mathematical 

structure. Weber and Alcock (2004) observed several students who, in trying to 

establish whether different pairs of groups are isomorphic, tried to use the definition 

of isomorphic groups without success. For example, when comparing 𝒁 and 𝑸, they 

did not think about using the fact that 𝒁 is cyclic and 𝑸 is not.  
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5. Structure sense in Abstract Algebra 

As Simpson and Stehlíková (2006) note, Abstract Algebra textbooks and courses 

usually follow one of two approaches: either the definitions of concepts are provided 

first, with the intention that students would see examples as different instantiations 

of these general definitions, or through the study of examples they aim to arrive at 

generalizations. The first route implies working at a higher abstraction level from the 

beginning, while the second one is seen as more pedagogical in terms of facilitating 

student understanding (Skemp, 1971). In terms of APOS Theory, understanding an 

example as a mathematical structure requires constructing it as an Object, around 

which a Schema can be built. For example a group of permutations constructed as 

Object opens the way to examining its properties and understanding the underlying 

structure as a group (Simpson and Stehlíková, 2006). These authors suggest that 

when this approach is chosen, care should be taken so that not only the particular 

example is investigated, but this exploration should lead to the identification of 

relationships between objects and operations such as associativity and inverses. 

Simpson and Stehlíková (2006) identify the following steps as shifts that students go 

through when passing from working with examples to thinking abstractly about the 

mathematical structure: 

1. Seeing the elements in the set as objects upon which the operations act 

(which may involve a process-object shift). 

2. Attending to the interrelationships between elements in the set which are 

consequences of the operations. 

3. Seeing the signs used by the teacher in defining the abstract structure as 

abstractions of the objects and operations, and seeing the names of the 

relationships amongst signs as the names for the relationships amongst 

the objects and operations. 

4. Seeing other sets and operations as examples of the general structure and 

as prototypical of the general structure. 

5. Using the formal system of symbols and definitional properties to derive 

consequences and seeing that the properties inherent in the theorems are 

properties of all examples. (p. 352) 

The first stage implies understanding what the objects are and how the operations 

work, which is far from being trivial (Simpson and Stehlíková, 2006). According to 

the authors this sequence of steps is reminiscent of the schema development that 

passes through the intra-, inter- and trans- levels (Piaget & Garcia, 1989). They add 

that it is difficult for these shifts to occur spontaneously, hence the need for 

instructional strategies to help students advance through the steps required for 
structural understanding in Abstract Algebra. 
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What seems important in the development of an examples-to-generality 

pedagogy is not the free-for-all of unguided discovery, but an emphasis on 

the guidance of joint attention: on teacher and learner making sense of 

structures together, with the teacher able to explicitly guide attention to, first, 

those aspects of the structure which will be the basis of later abstraction and, 

then, to the links between the formal and general with the specific example. 

(Simpson and Stehlíková, 2006, p. 368) 

Structure sense can be described depending on the level of studies involved. For 

example it is not the same thing studying operations at the high school level or at the 

university. At the university level, for the case of binary operations in Abstract 

Algebra, Novotná et al. (2006) established two main stages for the development of 

structure sense, that correspond to the first two steps that Simpson and Sthelíková 

(2006) identified as mentioned before; the stages are further divided into substages: 

SSE: Structure sense as applied to elements of sets and the notion of binary 

operation 

A student is said to display structure sense if he/she can: 

(SSE-1) Recognise a binary operation in familiar structures.  

(SSE-2) See elements of the set as objects to be manipulated / understand 

the closure property. 

(SSE-3) Recognize a binary operation in “non-familiar” structures. 

(SSE-4) See similarities and differences of the forms of defining the 

operations (formula, table, other). 

SSP: Structure sense as applied to properties of binary operations 

A student is said to display structure sense if he/she can: 

(SSP-1) Understand ID in terms of its definition (abstractly). 

(SSP-2) See the relationship between ID and IN: ID → IN. 

(SSP-3) Use one property for another: C → ID, C → IN, C → A. 

(SSP-4) Keep the quality and order of quantifiers. 

(SSP-5) Apply the knowledge of ID and IN spontaneously. 

Abbreviations ID, IN, C, A stand for identity, inverse, commutative 

property, associative property. (pp. 250-251) 

Even these first two stages in the path to constructing mathematical structures is 
complicated for students. About the recognition of the elements of a set and a binary 

operation defined on them, Parraguez and Oktaç (2010) observed that some students, 
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although given explicitly the operations on a vector space, when trying to decide 

whether a set of vectors are linearly independent, set up the equations with the usual 

operations of addition and multiplication. Aguilar and Oktaç (2004) report about a 

group of teachers who, working on a cryptography problem in the context of modular 

arithmetic, use the usual operations of addition and multiplication and behave as if 

the elements of a set Zn are rational numbers. 

The identity element for many students is identified as being the zero-element, 

without paying attention to its properties in terms of the operation involved. So, some 

students will declare that a structure does not have an identity element if there is no 

zero in the set (Stehlíková, 2004, cited in Novotná et al., 2006). However the authors 

also note that “[t]he image of 0 as the additive identity does not always have to 

function as an obstacle. For some students, it serves as a generic model of additive 

identity and they can reconstruct its properties in ordinary arithmetic and use them 

as a tool for finding out the identity in another structure” (Stehlíková, 2004, cited in 

Novotná et al., 2006, pp. 255-256). 

Novotná et al. (2006) identify at least three paths in coming to understand a structure 

(V stands for a property or an object, index A for a familiar structure, index B for an 

unfamiliar structure and D for a definition): 

𝑉𝐴  
𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
→         𝐷 

𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
→          𝑉𝐵 

𝑉𝐴  
𝑎𝑛𝑎𝑙𝑜𝑔𝑦
→       𝑉𝐵  

𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
→         𝐷 

𝐷 
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
→          𝑉𝐴, 𝑉𝐵  

In the first path properties are extracted from a familiar structure to form the basis of 

a definition, from which the abstract concept is constructed in a general context. In 

the second path extracted properties from a familiar structure lead to its 

generalization and then to a definition. The third one corresponds to the construction 

of a concept through logical deduction from its definition (Harel and Tall, 1989, cited 

in Novotná et al., 2006). As the authors note, this model serves only for the 

construction of the concept of binary operation; a model for a group, which involves 

a binary operation, a set and their coordination through axioms (Dubinsky et al., 

1994) would have to be much more complex. 

6. Conclusion 

The learning of Abstract Algebra is a complex process, hence pedagogical strategies 

should take into account research results in trying to address the identified 

difficulties. Research design on the other hand plays an important role on the kinds 

of information that we can gather. Asking students to recall facts or definitions may 
provide access into their repertoire whereas resolving novel situations can give 
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information about their mental structures. For example given a set asking for an 

operation to create a group structure would necessarily invoke students’ conceptions 

of Process and Object. Given a set and a binary operation, defining the other 

operation to give rise to a vector space structure would shed light on the coordination 

of the two operations or its absence in the mind of the student (Parraguez and Oktaç, 

2010); this kind of information would be difficult to obtain by asking to verify 

whether a given set and two operations satisfy the vector space axioms.  

There is no doubt for the need to perform more studies on Abstract Algebra learning, 

with the hope that they in turn would help give rise to pedagogical suggestions in 

facilitating the transition to upper level courses where abstract structures are studied. 
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