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A MODEL OF MATHEMATICS TEACHER KNOWLEDGE 
AND A COMPARATIVE STUDY IN DENMARK, FRANCE AND JAPAN 

Abstract. A model for mathematics teacher knowledge based on the anthropological theory 
of didactics is presented together with a methodological discussion of how to assess such 
knowledge in practice. To this end we propose a concrete method involving “hypothetical 
teacher tasks” and individual as well as collaborative work of the teachers to be assessed. 
This discussion is illustrated by a small scale comparative study of how future lower 
secondary mathematics teachers (just about to graduate) from Denmark, France and Japan 
approach two hypothetical teacher tasks (related to teaching geometry and arithmetics). 

Résumé. Un modèle des connaissances de l’enseignant des mathématiques et une étude 
comparative du Danemark, de la France et du Japon. Nous présentons un modèle pour 
décrire les connaissances des enseignants des mathématiques, avec une discussion 
méthodologique de son application pour évaluer les connaissances en pratique. Nous 
proposons une méthode concrète impliquant un travail individuel et collectif des 
enseignants évalués sur des « tâches hypothétiques d’enseignant ». Cette discussion est 
illustrée par une étude à petite échelle, où nous comparons le travail de futurs enseignants 
de collège (à la fin leur formation) sur deux tâches hypothétiques d’enseignant relevant de 
l’enseignement de la géométrie et de l’arithmétique). 

Mots-clés. Connaissances professorales, comparaison internationale, similarité, Thalès, 
formation des enseignants, Danemark, France, Japon, théorie anthropologique du 
didactique. 
 

And, upon the whole, a proof of a person’s having 
knowledge is (…) the ability to teach; and for this reason we 
consider art, rather than experience, to be a science; for the 
artist can, wehereas the handicraftsmen cannot, convey 
instruction. (Aristotle, 1991, 13). 

1. Introduction 

What does a mathematics teacher need to know, and how should preservice 
education prepare future teachers? These two questions are closely related, as 
preservice education remains the main form of teacher education in most countries 
in the world. Indeed, the two questions are increasingly raised in an international 
perspective, as a consequence of the increasing interest in international comparison 
of school mathematics performance. And in fact the two questions are within the 
core of a domain where many of the unresolved issues that were prevalent 25 years 
ago remain unresolved (Alter and Pradl, 2006, 42). A recent American report on 
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teacher education research asserts the “relative thinness” of existing research, and 
suggests in particular that research on teacher preparation defines more precisely 
the questions that need to be addressed and the data that need to be gathered 
(ECS, 2003, 7).  

We believe that a central part of this “black hole” (Altar and Pradl, 2006) of 
teacher education research is a lack of dependable models and methods to describe 
and assess teacher knowledge. This study is made to contribute, for the case of 
mathematics teacher education, to fill this gap. We deliberately use the term 
“knowledge”, rather than e.g. competencies or skills, because we focus here on 
possible contributions of pre-service education – not on what could be gained by 
experience, in service training and so on. This does not mean that our interest is 
limited to knowledge in the academic, official sense. Even pre-service education 
may develop experience-based knowledge of teaching through various forms of 
practice integrated in the educational program, and of course students have beliefs 
about teaching which come from their own experience as pupils. But in this study 
we do not envisage the full complexity of the link between initial education and 
teaching. Our primary focus is on explicit knowledge that newly formed teachers 
can mobilise in front of a “hypothetical” teaching situation. In fact, we did this 
study in three rather different settings (Denmark, France, Japan) in an attempt to 
eliminate the idiosyncracies of local educational systems and cultures. Local 
conditions can, of course, not be ignored in general and in practice; but in this 
study we deliberately attempt to go beyond them. 

The paper presents three distinct but interrelated parts: 

− a theoretical model for mathematics teacher knowledge based on the 
anthropological theory of didactics initiated by Y. Chevallard; 

− a methodology for assessing mathematics teacher knowledge based on 
what we call hypothetical teachers tasks, exemplified by two tasks related 
to two particular domains of mathematics teacher knowledge; 

− results from a comparative study using these tasks, involving 30 graduating 
teacher students in Denmark, France and Japan (the countries of the 
authors, representing quite different systems of training lower secondary 
teachers). 

Regarding the last point, the data for Denmark and France were briefly discussed 
by Winsløw and Durand-Guerrier (2007), in connection to a broader comparison of 
their teacher education systems. In this paper we provide a detailed analysis of the 
data for three countries based on a more precise model for teacher knowledge that 
we now proceed to explain.  
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2.  Mathematics teacher knowledge: the anthropological approach 

It is widely acknowledged that teachers need to know the contents they are 
teaching, and that they need to know more than this. The folklore wisdom is that 
teachers need to know some more of the related contents – usually, more of the 
relevant scholarly disciplines – than the students (although how much is often 
debated). It is also usually admitted that one may and should know something 
about teaching, at least from experience; this kind of knowledge is sometimes 
called pedagogy. Indeed, a number of teacher education programmes have the 
relevant academic discipline(s) as the main course, and “pedagogy” (sometimes 
labelled education, educational psychology or the like) for dessert. 

This state of affairs subsists despite rather well established tendencies in research 
that seem to suggest a different approach. In a much quoted paper, Shulmann 
(1986) advocates that in addition to content knowledge in the regular form, the 
teacher needs two supplementary forms of it: pedagogical content knowledge about 
how to teach the contents, and curricular knowledge concerning the educational 
programmes and materials for teaching a given set of contents. The most important 
insight here is not, perhaps, the categorisation, but the stipulation that the essential 
of teacher knowledge is a teaching-oriented extension, or deepening, of plain 
content knowledge. In the last 20 years, this idea has been quite influential in the 
anglophone research literature on mathematics education and in particular on 
mathematics teacher knowledge (for two prominent examples, see Ball, 1991, Ma, 
1999). Another important emerging idea is that general theories and concepts 
related to teaching methods become more useful, and take on (new) meaning, when 
they are used in the context of specific subject matter contexts (see e.g. Ball and 
Bass, 2000).  

These ideas seem close to a relatively well-established tradition in continental-
European didactics, namely the didactical study of particular contents (what the 
Germans call Stoffdidaktik). Here, the structure and uses of school mathematics are 
studied in great detail in view of improving the corresponding teaching (textbooks, 
classroom activities, problems etc.). Besides such an “a priori analysis” of the 
mathematical contents, studies in this tradition are often supported and driven by 
extensive experimental interventions (cf. e.g. Brousseau, 1997). It is interesting to 
note that a similar emphasis on didactically driven study of the contents to be 
taught, as a crucial step in so-called lesson studies, is found in Japan (cf. eg. 
Shimizu, 1999, 112). 

However, in order to assess mathematics teacher knowledge in a systematic and 
controlled way – even if this will necessarily be in partial and “local” ways – we 
need a more precise model of what is assessed, i.e. an operational epistemological 
model for what mathematics teachers need to be able to do. As the above 
discussion suggests, this will include – or even start with – an activity oriented 
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model of mathematical knowledge, and it will also have to include other aspects of 
the conditions for the teachers’ work. To make it useful in a comparative setting, 
we must also be able to take institutional and cultural constraints into account, if 
not for other reasons, then in order to assess parts of teacher knowledge which can 
said to be relatively independent of such constraints. 

To answer this need, we are convinced that the recent developments in 
anthropological theory of didactics (hereafter abbreviated ATD) furnish a 
promising basis. While the ATD literature (e.g. Chevallard, 1999; Bosch and 
Gascòn, 2002) should of course be consulted for a fuller account, we now explain 
the notions from ATD as we use them in this paper. 

The central idea of ATD is to model human activity as responses to types of tasks, 
such as found in daily life (e.g. cook an egg) or scholarly subjects (e.g. find the 
product of two given integers). An important companion to a type of task is a 
technique or method to carry out the task. The technique is often enforced by a tacit 
routinisation of a frequently encountered task, but it could also be an object of 
explicit instruction. More generally, it is an important characteristic of human 
activity to allow for coherent discourse about tasks and techniques (called 
technology), and in some cases to organise these discourses in theories that make 
explicit the understandings and justifications underlying technology and 
techniques. For instance, an instruction on how to perform a multiplication integers 
belongs to a technology, while the systematic discussion of why the multiplication 
methods works is within the domain of theoretical discourse. A punctual 
mathematical organisation or praxeology consists of these four elements: a type of 
task, a technique, a technology and a theory, where each element corresponds to 
the previous one.  

Notice that any description of a praxeology will by definition be situated at the 
technological or theoretical level; indeed, task types and techniques belong as 
phenonema to the level of practice and they are often based on tacit knowledge. A 
technique for multiplication that involves “pencil and paper” may look more 
explicit than one which is based on the operation of an abacus or a handheld 
calculator, but a priori they are both observable activities which can be described 
and justified in different ways, but need not be. Thus the practice block (task type, 
technique) may exist independently of the techno-theoretical block (technology, 
theory). Also, in many instances, a person enacting a praxeology, such as cooking 
eggs or multiplying integers, may enact some technology, such as simple 
instructions, while having no wider theory to explain the practice.  

Human practices are interrelated and organised. Isolated practices, called punctual 
organisations, contain just one type of task, but they very often team up in local 
organisations which are characterised by employing a common technology (such 
as a system of language and symbolism related to a set of practices in arithmetics). 
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In the presence of a theory, local organisations may be further unified in regional 
organisations which are collections of praxeologies sharing a common theory (e.g., 
a theory of arithmetics). In fact, mathematical organisations (abbreviated MO) are 
often highly structured and stratified in principle, while it is still possible and 
common for users to enact them only at the punctual or local level. To the analyst, 
a reference model – i.e. a description of a regional mathematical organisation – 
may then be useful to describe and analyse the practices observed. A good example 
of this, in the context of mathematical organisations enacted in Spanish highschool, 
is given by Barbé et al. (2005). 

While we have many good examples of how to analyse mathematical organisations 
using the above theory, its use in the context of teaching practices remains less 
developed. Bosch and Gascòn (2002) suggests that teaching practices should be 
considered as didactical organisations (abbreviated DO), where the task types refer 
to tasks of the teacher. Such a task type could be, for instance, plan a lesson on 
multiplication of two-digit integers. As the example suggests, a DO may be closely 
and explicitly related to a MO, and such a DO can be viewed essentially as an 
answer to the question “How does one establish a MO [for students]” (Bosch and 
Gascòn, 2002, 35). In general, mathematics teacher knowledge is then enacted in 
DOs, with the knowledge being articulated in their techno-theoretical blocks. 

As a matter of fact, the literature does not provide us with extensive examples of 
descriptions of DOs, and even less examples of their use in analysing or developing 
teaching practice. Moreover, if the concept of DO is to include all aspects of the 
mathematics teachers’ practice, not all punctual DOs can be related directly to a 
MO. Evidently, organising and managing a classroom imply, at least to some 
extent, techniques and perhaps also technology and theories which are transversal 
to the MOs enacted. And even if we restrict ourselves to didactical task types 
directly related to a MO, a local DO could be structured in quite different ways, 
above all with respect to the place of the tasks in a sequence of teaching activities, 
such as lesson planning, teachers’ tasks related to different phases of classroom 
teaching (sometimes called didactical moments), homework grading, and so on. 
Notice that these categories are in themselves particular to DOs and “transversal” 
to MOs. 

With this, we are thus back to the discussion at the beginning of the section, in the 
following sense: how do MOs and DOs interact? Here is our model, in short: a 
local DO consists of a family of punctual DOs, which in a teaching activity will be 
enacted consecutively in time. We can think, for instance, of a local DO as a model 
of the teachers’ activity in relation to a sequence of lessons which he considers as a 
“whole”; the common technology relates to the aims of such a teaching unit. Some 
of the task types (defining the punctual DOs) relate directly to a MO, for instance a 
DO task type may be to construct a question for students that will enable them to 
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work on the MO. The teacher employs, to solve the task of a given punctual DO, a 
technique which is at least potentially explained by the overarching technology; the 
latter will then also refer to the MO in case the task type is related to it. 

The students’ work on a particular MO may in practice co-exist with several other 
activities which they are supposed to enact (including organisations transposed 
from other scientific disciplines, but also “behavioral organisations” such as 
manners of interaction among students and teachers). The idealisation – and 
reduction of complexity – which we want to make in this study, is to assess 
mathematics teacher knowledge while minimising the impact of other aims and 
constraints of teaching than those pertaining to the learners enaction of certain 
MOs. That is, we want to describe and assess primarily those parts of DOs which 
are related directly to certain MOs. This suggests that the “concrete setting of 
teaching” for the DO has to be replaced with a simplified, “hypothetical” local DO. 

 
Fig. 1: A teaching sequence of punctual DOs, some of which relate directly to a 
MO. The analysis of the punctual DO employs a reference model of the local MO. 

In a sense, one can observe DOs directly, through their plain enaction, in teaching 
activity. We have already explained why this is not suitable in this study, where we 
want a clear picture of teacher students’ reactions to identical and simplified 
teacher tasks. It is important to note that what we can then record is just the 
respondents’ technology and perhaps theory as probed by a description of these 
tasks. On the other hand, the interaction among teachers is an important real-life 
channel for the development and exchange of didactical technology (and to some 
extent, theory). This kind of interaction can be enabled by arranging teacher 
students’ discussion of the tasks, rather than getting their “answers” in writing or in 
individual interviews. And from this complex discourse, we can then try to extract 
the key techniques which they are likely to use in an interaction with students or 
other forms of actual teaching activity.  

We pause here to emphasise the current impossibility to build reference models for 
empirical research on DOs which are precise regarding the techno-theoretical 
block. This is true even for work within a single country, and a forteriori in a 
comparative study. By contrast, constructing operational reference models may be 
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an almost trivial task for a MO (cf. above). This illustrates the current lack, for the 
teaching profession, of a common professional language and of widely known and 
acknowledged theoretical models; in short, for shared, dependable teacher 
knowledge. 

To assess mathematics teacher knowledge outside of the classroom, we will then 
present pairs of respondents with certain tasks coming from a punctual DO that is 
situated in a hypothetical context, which is however susceptible of being 
recognised as meaningful by the respondents (and, in a wider sense, actually be so). 
The analysis of responses to such tasks will necessitate the construction of 
reference models of both MO and DO (the latter being mainly focused on 
didactical techniques). We present two examples of this procedure in the next 
section, and results from use of them in the following section. 

3. Hypothetical teacher tasks: two cases 

The two tasks used in this study are the same as those published in (Winsløw & 
Durand-Guerrier, 2005, appendix; for the sake of completeness they are reprinted 
in this section). We now present a thorough analysis of them, using the theoretical 
model presented in the previous section. Notice that they are both in the context of 
lower secondary school, and relate to different major regional MOs which are 
taught in most countries at this level (geometry, algebra).  

3.1. Teaching similarity or proportions (HTT1) 

The hypothetical teacher task (HTT1, cf. below) centers around a mathematical 
task of the following type:  

T1: given a triangle Δ with sides a, b, c known, and a number a′>0, find b′ and 
c′ such that the triangle with side lengths a′, b′ and c′ is similar to Δ. 

In fact, the student task contained in HTT1 is a variant of T1, where the 
mathematical notions triangle and similar are concealed in a “real world” 
setting: what is given is the distances (3,3,4) between three points on an aereal 
photo, and the corresponding points on a magnification – which is implicitly a 
similar figure – to be constructed, in which the longest distance (corresponding 
to the side which is 4 on the photo) is also given. While the recognition that 
three distinct points corresponds to a triangle is probably rather 
straightforward, some students may not recognise the theoretical concept of 
similar triangles in this task, but rather a special case of T1:  

T11: given a triangle Δ with sides a, b, c known, and a number a′>a, find b′ and 
c′ such that the triangle with side lengths a′, b′ and c′ is a “magnification” of Δ. 
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HTT 1 (translated from the Danish/French/Japanese versions used in the 
study) 
You assign the following task to your 8th grade pupils: 

An aerial photo is used to draw a map. To begin with, three points are marked 
on the photo; the distances between these points are 4 cm, 3 cm, and 3 cm. The 
map must be slightly larger than the photo: the longest distance between the 
three points should be 6 cm on the map. What should the other two distances be 
on the map? 

 

Some pupils answer: “5 cm and 5 cm”; others say: “4.5 cm and 4.5 cm”. 
First task for the teacher (to be solved individually within 10 minutes) 
Analyse the solutions. What would you do as teacher in this situation? Please take 
notes. 
Second task for the teacher (to be solved in conversation with the other teacher 
student, 20 min.s) Please, discuss your ideas with respect to using this situation to 
further the pupils’ learning. 

In both cases the technique to solve this task is 

τ1 : first compute k = a′/a, then b′ can be found as kb, and c′ as kc. 

Notice that τ1 is just a implicit form of “action”, which – when described, as above 
– becomes already part of a technology. The technology could also be an 
explanation of the kind 

θ : in similar triangles, the ratios of corresponding sides are equal:  

a′/a = b′/b = c′/c. 
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This technology may relate a number of other practice blocks, corresponding to 
task types such as 

T12: given two different triangles, determine if they are similar. 

T13: as T1, but with a quadrilateral (τ3 involving subdivision into two triangles). 

Finally, the theory involved in justifying θ and developing its relations with other 
technologies, could be the 

Θ : theory of proportions in Euclidean geometry (including Thales’ theorem). 

but this is by no means uniquely determined by the previous elements; less 
“formal” arguments about similar figures might also form a theoretical background 
for θ. And, particular at more advanced levels, one could find technologies akin to 
θ within a geometrical theory of linear maps M: Rn→ Rn (in fact n = 1 sufficces, 
but n = 2 is also relevant). Indeed, the formulation of the task for the pupils leaves 
this quite open, but in working with HTT1, respondents will situate it within some 
kind of technology that also implicitly suggests a background theory of some kind. 

With such a choice of θ and Θ, the quadruple (T1, τ1, θ, Θ) forms a punctual MO 
corresponding to T1, and a local MO is then a family (Ti, τi, θ, Θ) where θ enables 
the articulation of all the practice blocks (Ti, τi). It is not given beforehand if the 
hypothetical DO aims just at the punctual MO determined by T1, or if it may have a 
larger scope with the local MO determined by θ, or even the regional MO 
determined by Θ. 

The didactical type of tasks, to which HTT1 belongs, leaves this open. We may 
describe this task type as follows: 

T1*: given different student responses to a task of type T1, determine what to do 
as a teacher to make students learn. 

The openness of HTT1 can be interpreted as the object of the verb “learn”: are we 
talking about a technique like τ1 (punctual MO, where the tasks could be varied 
within T1), about the technology θ (local MO, where the variation is over practice 
blocks), or even the regional MO where different technologies within the scope of 
a theory Θ could be involved? However, T1* has another kind of constraint, which 
is characteristic of “critical didactical decisions” in the classroom: that of 
didactical time (Chevallard, 1991). Respondents are likely to think of what can be 
done for the students learning within a lesson, in a broad sense; thus an 
uncontrolled variation within the scope of a theory Θ may not lead to a pertinent 
didactical technique to activate for T1*. Indeed, it seems necessary to address the 
fact that some students did not provide a correct answer to the given task of type 
T1; in particular, to identify a technique that could led to the false answer, such as 
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τ1
– : first compute k = a′ – a, then b′ can be found as b + k, and c′ as c + k,  

which, by explicitation and generalisation, corresponds to the mathematically 
incorrect technology 

θ–
 : in similar triangles, the differences of corresponding sides are equal:  

a′ – a = b′ – b = c′ – c. 

A possible aim of variying the tasks could then be to confirm if some students 
apply τ1

– , to have them formulate something like θ–, and finally convince them 
(through appropriate tasks) that θ– is errouneous in the sense that triangles 
constructed using τ1

– are in fact not similar. One might also think of ways to 
demonstrate that θ– is not compatible with Θ. 

This leads us to some of the didactical techniques that could be applied to solve 
tasks of the type T1*. To describe and motive these techniques, we first formulate 
some concrete elements of teachers’ reflection about the students’ answers to the 
task (of type T1); they relate in rather directly to the teachers’ command of (T1, τ1, 
θ, Θ): 

S1: Identify correct student answer, 4.5 cm, e.g. by using τ1 (no explicit 
technology). 

S2: Identify correct student answer, 4.5 cm, stating that it is consistent with θ 
(possibly without explicit link to theory justifying θ). 

S3: Identify correct student answer, 4.5 cm, stating that it is consistent with θ, 
and refer to appropriate theory (e.g. “Thales theorem”) to justify the principle 
of θ. 

S4: Identify wrong student answer, 5 cm, e.g. using τ1 (no explicit technology 
needed). 

S5: Identify wrong student answer, 5 cm, stating that it is consistent with a 
“technology” like θ–

 (possibly without giving an example or theoretical reason 
to reject θ–). 

S6: Identify wrong student answer, 5 cm, stating that it is consistent with θ–, 
and give an example or theoretical reason to reject θ–. 

These elements of solution come out of – and help to recognise – the following 
elements of didactical techniques (some of which can clearly be generalised 
beyond T1*): 

τ10*: find answer to pupils’ task (here, recognised in solution elements S1 and 
S4). 
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τ11*: identify appropriate technology for the students’ task (here, S2), 

τ12*: identify the techniques and technologies that could underlie the wrong 
answers (here, S5), 

τ13*: identify reasons to reject the technology leading to the wrong answers 
(here, S6), 

τ14*: identify reasons to accept the appropriate technology (here, S3). 

Notice that τ11* and τ12* both presuppose τ10* in the sense that identifying 
technology requires knowing a technique. Likewise, τ13* presuppose τ12*, and τ14* 
presuppose τ11*. 

To proceed in class, some of the following techniques may then be proposed. They 
are based on the teachers’ broader grasp of the MO, and aim to develop the 
students’ understanding of it at different levels: 

τ15*: present several explanations (technologies, examples, reasonings) to the 
pupils. 

τ16*: organise a class discussion about the two solutions, to have students 
realise what is the correct answer. 

τ17*: have pupils work on more instances of T1. 

τ18*: actively and explicitly base activities on students’ knowledge and 
previous experience with this or related local MOs. 

τ19*: actively and explicitly make use of different forms of representation 
(diagrams, tables, formulae etc.) in activities or presentation related to θ. 

τ19a*: organise some activity with technology (geometry software, to work on 
similarity – with the given or with other examples). 

These “techniques for action” depend heavily on τ10*,…, τ14*. For instance, τ17* 
could mean just to provide a number of exercises allowing pupils to train τ1; but in 
the presence of τ13* it could mean carefully selected examples that would allow the 
pupils to realise that θ– is false. 

A technique τ1* to solve a task of type T1* such as HTT1 could then be described a 
subset of {τ10*,.., τ19*, τ19a*}; it may of course involve other partial techniques, but 
the above are the elements we have found most crucial and which we use in our 
actual coding of solutions. A didactical technology θ* for describing such 
techniques has just been presented, even within the setting of a theoretical 
framework (ATD, cf. section 2). As we mentioned in Sec. 2, the technology found 
in teachers’ discussions about T1 is likely to be different and to exhibit considerable 
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variations, but it will still contain elements that can be meaningfully identified with 
the techniques above. For instance, a major technological component in explaining 
the above techniques is related to how the pupils’ understandings is addressed – 
does the technology enable to go beyond the recognition of right and wrong 
answers (and even methods)? How precisely can different approaches to T1* be 
described and assessed? And, of course, for the latter question, on what theoretical 
basis? Just to cite one possible source of techno-theoretical component 
corresponding to (T1*, τ1*), we mention Brousseau’s discussion of the “puzzle 
situation” (Brousseau, 1997, 177ff). 

3.2. Reviewing negative numbers: a tedious “gap” (HTT2) 

The question posed by the gifted pupil in HTT2 is one that could in principle come 
up as negative numbers and their arithmetics is introduced, in many countries 
several years before the hypothetical context (grade 9). The pupil perhaps asked it 
then, but did not understand or accept the explanation he got. This was the case of 
the French author Stendhal: 

Imagine how I felt when I realized that no one could explain to me why minus times 
minus yields plus… Mr. Chabert, whom I pressed hard, was embarrassed. He 
repeated the very lesson that I objected to and I read in his face what he thought: “It 
is but a ritual, everybody swallows this explanation. Euler and Lagrange, who 
certainly knew as much as you do, let it stand. We know you are a smart fellow… It 
is clear that you want to play the role of an awkward person… It took me a long 

HTT 2 (translated from the Danish/French/Japanese versions used in the 
study) 
Your pupils are working in class (grade 9). They encounter at some point the 
need to calculate the expression (– 2)(x – 3) to produce the expression – 2x + 6. 
A pupil, whom you know to be rather gifted, calls on you and says: “look, I 
have arrived at this” [he points the expression  
– 2x + (–2)·( –3) 
in his notes]. “I know the last term should be 6. But then I began to doubt – why 
is it so?” 
 
The lesson is about to end. You decide to postpone the question until the lesson 
tomorrow, and say: “Yes, that’s a good question. Let us come back to that 
tomorrow”.  
 
Teacher task (to be discussed in pairs of teacher students, in 20 minutes). 
Imagine you are in the teachers’ lounge, and discuss the problem with your 
colleague: how could you make this question an opportunity to learn? 
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time to conclude that my objections to the theorem: minus times minus is plus 
simply did not enter M. Chabert’s head, that M. Dupuy will always answer with a 
superior smile, and that mathematical luminaries that I approached with my question 
would always poke fun at me. (quoted in this translation by Hefendehl-Hebeker, 
1991, p. 27). 

The pupil of HTT2 is now in ninth grade; would he get a satisfactory answer to his 
question? If he does not, will he give up his interest in mathematics, like the hero 
of Stendhals autobiographic memories cited above? We don’t know; the 9th grader 
is fictive. But certainly the question arises in similar ways to many pupils, and 
continues to haunt even some adults, like Stendhal. What should the teacher know 
to go beyond repeating his lesson? 

As before, let us first analyse the MO to which the teacher task relate. At the basis 
we have the task type 

T2: Determine the product of two negative numbers which comes with the well 
known technique. 

τ2: just compute the product of the corresponding positive numbers, which in 
fact may be carried out rather automatically. 

An official technology is 

θ : For any real numbers a and b one has (–a)⋅(–b) = ab. 

A theoretical environment Θ for this statement could be any axiomatic theory of 
the arithmetic of the reals, the main ingredient in a formal proof being the 
distributive and commutative laws (see e.g. τ25* below). In particular, this is likely 
to be the essence of the “lesson” which Stendhal (cf. quote above) would not 
accept. Indeed, the if-then nature of a theorem in an axiomatic theory – where the 
truth of all statements is relative to some a priori “arbitrary” axioms – is not easily 
digested in grade 9. This is not only because mathematics is usually not presented 
that way at the level of 9th grade, but also because the “lesson” it likely to treat Θ in 
a partially implicit way – perhaps presenting the axioms as “evident rules”, or just 
use them implicitly. More crucially, there does not seem to exist convincing 
intuitive explanations for this rule, unlike what is the case for most common 
arithmetic principles like the distributive law (e.g. use areas of rectangles) or  
–(–a) = a (e.g. use “sign corresponds to reflection in 0 on the number line”). And 
finally, there does not seem to be simple applications in real life of products of two 
negative numbers, unlike products which have a positive factor (could be though of 
as repeated addition etc.) 

Considering the use of explanations and reasonings adapted to the pupil, we are 
therefore approaching the demanding didactical task type. 
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T2*: A pupil masters (T2, τ2) but asks you why that technique is correct. 
Determine how to make use of this question as an opportunity to learn. 

As in T1* it is open what is the object of the verb “learn”, in particular what 
technology and possibly theory related to (T2, τ2) the teacher should make use of. 
This should be determined from the hypothetical context. In this task the subject of 
“learn” is also open: who could or should learn from this, just the pupil asking the 
question, or the whole class? 

Despite the difficulties of exhibiting a convincing justification of θ at the given 
level, we can nevertheless think of the following didactical techniques, some of 
which make use of the fact that the pupil seems convinced that  

(–2)⋅(x–3) = –2x + (–2)⋅(–3); 

 but in other cases the same techniques could be used after checking that the pupils 
accept such uses of the distributive law. The first concern direct mathematical 
explanations of θ, aimed at the questioning pupil or the whole class: 

τ21*: explanation using “number patterns”, e.g. look at n⋅(–3) for n = 2,1,0,… 

τ22*: explanation by drawing lines, e.g. y = –2x, when the pupil is convinced 
this is the equation of a real line (then drawing first the halfline for x > 0 forces 
–2x to be positive for x < 0). 

τ23*: explanation based on “parenthesis magic”, such as  

(–2)⋅(–3) = –(2⋅(–3)) = –(–6) = 6 

τ24*: present a more or less complete proof based on the distributive law, e.g. 
as follows:  

0 = 2⋅(3–3) = 2⋅3 +2⋅(–3) = 6 + 2⋅(–3); so 2⋅(–3) = –6; 

and as  

0 = (2–2)⋅(–3) = 2⋅(–3) + (–2)⋅(–3),  

we conclude that 6 = (–2)⋅(–3). 

τ24a*: explanation based on the equation (–2)⋅(x–3) = –2x + (–2)⋅(–3), e.g. as 
follows:  

when x = 3 the left hand side is 0 and so  

6 = 2x = (–2)⋅(–3). 

τ25*: circular or otherwise inconvincing explanations, e.g. inappropriate real 
life explanations (such as “twice you remove a deficit of 3€ from my 
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account”), travelling forth and back on the number line with negative speed, 
etc. 

τ25a*: explanations appealing explicitly to external authority – of the teacher 
(“trust me”), of convention (“this rule is used by everyone”), of technology 
(“try out what your calculator says”) etc. 

τ25b*: after proposing τ25* and/or τ25a*, realising the insufficiency of the 
technique.  

Notice that the last three techniques are not really related to the MO described 
before, and could be used as a way to cover a poor understanding of it. But of 
course, a teacher may also honestly think that the pupil can not learn anything on 
this question, except that mathematics contains conventions which one just has to 
accept.  

To proceed in class, some of the following techniques may then be proposed. They 
are based on the teachers’ broader understanding of the MO, and aim to develop 
the students’ understanding of it at different levels: 

τ26*: present several explanations (technologies, examples, reasonings) to 
pupils. 

τ27*: organise a class discussion in order to have pupils find explanations or 
otherwise explore. 

τ27a*: have pupils work on more examples of T2, for example based on τ21*. 

τ27b*: organise some activity with technology (calculators, spreadsheet…) to 
explore the arithmetics of negative numbers, for example based on τ21*. 

τ28*: actively and explicitly base activities on students’ knowledge and 
previous experience with this or related local MOs. 

τ29*: actively and explicitly make use of different forms of representation 
(diagrams, tables, formulae etc.) for example based on τ22*. 

In practice, the techniques mentioned above may be just partial in the sense that 
they do not in themselves enable a reasonable solution to T2*. For instance, a 
teacher may express her intention to present several explanations (and even justify 
it e.g. with reference to different styles of learning), but be unable to do so in the 
concrete case. 

Besides discussing the different techniques for responding to T2*, some more 
specific features of HTT1 may be discussed by teacher students, e.g. whether the 
question should be taken up just with the inquiring pupil, or with the whole class. 
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3.3. A tentative quantitative measure based on the above 

A full presentation of the techniques developed by respondents (among those 
designated above) provides rather detailed information, but as some techniques are 
more appropriate than others – and some are decisively faulty – we may try to 
summarise the overall performance by designating points to techniques in the 
following manners: 

2 points: the technique is entirely appropriate and could contribute to pupil 
learning; 

1 point: the technique might be appropriate and could possibly contribute to 
pupil learning; 

0 point: the technique is not approproate and could not further pupil learning 
(attributing 0 points for such a technique is of course debatable, and amounts to 
counting only appropriate techniques, without “punishing” faulty ones). 

While the techniques proposed can be rather objectively identified in the students 
teachers’ discussion, any assignment of points is of course somewhat normative.  

In Fig.2-3 is our suggestion for such an assignment. Notice that we have assigned 0 
point to τ25* and τ25a*, which are potentially causing obstacles to pupils learning, 
but as τ25b* always comes with one of these and tend to neutralise this effect, the 
latter has been assigned 1 point (it may be that teachers who, in virtue of τ25b*, 
realise the defaults of τ25* and τ25a*, may finally avoid them and use other 
techniques). 

 τ10* τ11* τ12* τ13* τ14* τ15* τ16* τ17* τ18* τ19* τ19a* 

Points 1 2 2 2 2 1 1 1 2 1 1 

Fig. 2a: Tentative grading of techniques for T1*. 

 
 τ21* τ22* τ23* τ24* τ24a* τ25* τ25a* τ25b* τ26* τ27* τ27a* τ27b* τ28* τ29* 

Points 1 1 1 2 2 0 0 1 1 1 1 1 2 1 

Fig. 2b: Tentative grading of techniques for T2*. 

One objection which could be raised to such a grading is that teacher student pairs 
who develop a wide range of possibly mediocre techniques would get more points 
than ones who develop a single, appropriate plan for intervention in the situation. 
However, in the setting of the tasks, exploring a richer variety of (potentially 
appropriate) techniques would, indeed, seem an indicator for the quality of 
didactical interventions they might, eventually, be able to implement. 
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4. A small-scale comparative study  

We now present the results of a comparative study in Denmark, France and Japan, 
based on HTT1 and HTT2 and the coding and assessment schemes explained in 
Sec. 3. The two tasks are about mathematics teaching at the lower secondary level 
– more precisely, grade 7 and 9 respectively – and it is affirmed that the two tasks 
corresponds to programs and common teaching pratice in the involved countries 
and at the indicated grade level. In this study, respondents were students who were 
very close to obtaining, or had just obtained, the degree that enables them to take 
up a position as teacher in grade 7 through 9 at schools in the respective countries.  

We had 5 pairs of teacher students (a total of 10 respondents) do the two tasks in 
each country. With such a small sample, it did not make sense to aim for formal 
representativity across institutions in each country; and in fact, all 10 students in 
each country graduated, or were about to graduate, from the same institution. 
While they were all in larger cities, there is no reason to believe that these 
institutions are special or significantly different from other institutions responsible 
for teacher training in those countries – except on two points: (1) the Danish and 
Japanese institutions are “upper end” in the sense that they are sought by relatively 
well performing students; (2) while an equal number of male and female 
respondents participated in Denmark and France, only females participated in 
Japan. In all three countries, participation was voluntary, but the sample of 
volunteers within the institution was quite arbitrary and noone refused to 
participate. Indeed, it is our impression that the 10 teacher students in each country 
can be considered, together, a reasonably “average” sample for the total target 
population within their institution. However, we readily admit that some of the 
variables mentioned should be controlled better in a large scale sample, and that the 
somewhat loose control of them here (in part enforced by pratical circumstances) 
does imply some reservation as to the significance of our results. 

Tasks and oral introductions were translated from English or French into each of 
the two other languages involved (Danish and Japanese), and in general we made 
every effort to provide the same conditions for all 15 pairs: verbatim the same 
introduction, the same time slots allowed, paper and pencils available and a nice, 
quiet room, and of course, no further intervention on our part. The discussions were 
taperecorded, resumed and coded by one of the authors, and checked by at least 
one more author (only one author understands Danish, so here the checking for the 
Danish pairs was based on a translation). An example of coding for one pair is 
included in Appendix 1. The written materials produced by the teachers (during the 
first 10 minutes for HTT1, and possibly during discussions) were collected as 
supplementary evidence. 

The coding corresponds to the didactical techniques presented in Sec. 3. We may 
then summarise the results for each country as the number of pairs who, in their 
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discussion, explicitly proposed each of these techniques (without clearly rejecting 
them in the sequel). This is shown in Fig. 3a-b. These tables contain a significant 
amount of information about what techniques the teacher students develop during 
their discussions. Our stipulation that these techniques give a reasonable picture of 
the contents of these conversations can, of course, only be controlled by examining 
them in more detail; but we point out that while most of the techniques were 
identified a priori, we did carefully consider if something significant turned up 
unexpectedly, and in fact added one technique (namely τ24a*) to our original list, 
based on the data. 

HTT1 τ10* τ11* τ12* τ13* τ14* τ15* τ16* τ17* τ18* τ19* τ19a* 

DK 4 3 3 2 0 0 3 4 1 0 2 

F 5 5 5 5 1 5 3 3 3 1 3 

JP 5 5 5 3 0 4 3 4 1 0 2 

Fig. 3a: Number of teacher pairs proposing the didactical techniques  
while discussing HTT1. 

HTT2 τ21* τ22* τ23* τ24* τ24a* τ25* τ25a* τ25b
* 

τ26* τ27* τ27a* τ27b
* 

τ28* τ29* 

DK 0 0 0 1 0 5 5 3 3 1 0 0 2 1 

F 4 0 4 2 2 1 4 4 3 0 0 0 5 0 

JP 0 1 4 1 1 4 1 5 5 1 2 0 2 0 

Fig. 3b: Number of teacher pairs proposing the didactical techniques  
while discussing HTT2. 

Let us point out just a few things which can be read out of the two tables: 

(1) All pairs, except one Danish, identify correctly the right and wrong student 
answers in HTT1. 

(2) All French pairs identify principles behind those answers, and want to 
provide several explanations of them to pupils. One pair even provide a 
theoretical reference (Thales’ theorem). All Japanese pair explicitly state a 
principle behind the correct answer. 

(3) The Danish pairs all propose little else than inappropriate explanations of 
(–2)⋅( –3) = 6 (all propose both τ25* and τ25a*) and 3 recognise that they are 
inappropriate; also, most of the French and all of the Japanese pairs 
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propose such explanations, but these pairs recognise their insufficiency and 
they also develop alternative techniques. 

Activities based on information technology are not developed by any pairs for 
HTT2, while some pairs in all countries consider this for HTT 1 (τ19a*).  

In order to gain a more immediate overview of the data, we used the grading 
scheme from Sec. 3.3 to calculate for each country the total number of points 
obtained by the five pairs, on each task. The result is shown in Fig. 4a and 
visualised in Fig. 4b. 

 

Points HTT1 HTT2 

DK 31 13 

F 58 33 

JP 46 26 

Fig. 4a: Overall score in the two 
tasks, for the 10 students of each 
country. 

Fig. 4b: Graphical representation of 
scores as indicated in Fig. 5. 

As is particularly clear in Fig. 4b, there is a common pattern for HTT1 and HTT2, 
even if the task types are rather different, not only in mathematical contents but 
also in terms of the hypothetical context. We want in particular to point out two 
general tendencies:  

− with respect to developing more appropriate techniques, the French 
students do somewhat better than the Japanese students, and both groups 
are significantly ahead of the Danes; 

− in all three countries, the overall “performance” is more satisfactory for 
HTT1 than for HTT2 (notice that although the sum of points for the two 
tasks can clearly not be compared directly, it seems evident that more 
appropriate techniques are proposed for HTT1). 

While above-mentioned the reservations caused by methodology makes it 
inappropriate to consider the absolute scores as certain and representative measures 
for teacher students’ performance on the two tasks, we affirm that these two 
tendencies reflect very well our overall assessment of our data for the three 
countries. 
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5. Discussion of the results 

Teacher education is undergoing frequent reforms in many countries, often with 
little evidence to support change. This is not only true at the global, institutional 
level, but also more locally in the choice and organisation of courses in the teacher 
education programme. Thus, there are many reasons why it is interesting to 
investigate the impact of different forms of teacher education on teachers’ 
capacities for teaching. Here, we wish to briefly discuss possible causal relations 
between  

(1) the didactical organisations (particularly techniques) proposed for HTT1 
and HTT2 by student teachers (close to graduation), and  

(2) the context, contents and structure of their mathematics teacher education.  

In Sec. 4 we have presented some data for (1); we will now say a little about (2) – 
at a fairly global level – and then discuss to what extent it may be seen as a cause 
for (1). 

The formal assets of the education of lower secondary mathematics teachers are in 
several ways similar in Japan and France, when compared to Denmark. In 
Denmark, the whole training takes place in teacher training colleges, which are 
non-research institutions that are independent from universities. There, teachers are 
prepared to teach four different subjects, and the time allowed for the study of 
mathematics (integrated subject matter and didactics) is 0,7 years out of a total 
study time of 4 years (cf. Elle, 1996, 1999, for a more detailed description).  

In Japan teacher education programme is 4 years, which are followed by a year of 
induction with reduced teaching load; in France the teacher education programme 
takes 5 years, but the final year comprises considerable teaching practice at a 
school, along with courses at the teacher education institute (cf. Pimm et al., 2003, 
chap. 5-6 for more information on teacher induction in Japan and France). In Japan, 
the induction year takes place after the students has graduated (and left) the 
university; otherwise it does bear some similarity to the fifth in France. But we 
chose our respondents to be around the end of the official pre-service programme 
(of 4 years in Japan, and 5 years in France). In both Japan and France, the training 
takes place in universities (or, for parts of the two final years in France, at teacher 
education institutes affiliated to the university). In both countries the studies begins 
with an extensive course program in “academic” mathematics (about 2 years in 
Japan, more than 3 years in France), followed by courses on pedagogy and 
didactics in the final years; and in both countries, mathematics teachers are 
prepared to teach just this one subject. Thus, while teachers in Japan and France 
receive university courses on advanced mathematics together with students 
preparing for other professions, Danish teacher students have a program of their 
own; as far as mathematics is concerned, it aims specifically and almost 
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exclusively at a deepened knowledge of the subject as it is taught in school (in fact, 
primary as well as lower secondary level; there is no institutional distinction among 
these levels in Denmark, as a further contrast to the French and Japanese model).  

In all three countries, there is some practice built into the program. It is usually 
spread throughout the four years of study in Denmark, while it is placed at the end 
of the French and Japanese programs. An overview of the space each element has 
in the study programs of the three countries is given in Fig. 5. Notice that “other” 
refers to the three other disciplines chosen by students in the Danish programme, 
while in the Japanese programme it refers courses meant to develop the general 
culture of the students (e.g. courses in English, history of education, citizenship 
etc.). We also note that in Denmark, a new teacher training programme is expected 
to be launched in 2007, and what is described here is the programme which our 
respondents had (almost) completed.  

As mentioned in Sec.2, the techno-theoretical blocks of DOs – notably at the level 
of theory – differs considerably among countries and even institutions within a 
country. It seems to us that in all three countries, it is even difficult to recognise 
strong theoretical grounds among the students trained within a single institution. 
However, those tendencies we do see are quite likely to be caused from different 
contents in the element “didactics of mathematics” – such as occasional references 
to the theory of didactical situations (Brousseau, 1997) in France, to a recently 
developed system of mathematical competences in Denmark (Niss, 2002), and to 
the official curriculum and teaching aims in all three countries. The Japanese 
teacher students are particularly explicit in referring to national standards of 
mathematics instruction (cf. JSME, 2000) corresponding to the grade levels which 
are indicated in the tasks. 

 Mathe-
matics 

Didactics of 
mathematics 

General ed. 
(pedagogy) 

Teaching 
practice 

Other 

DENMARK 0,7 0,7 0,6 2,0 

FRANCE 3,7 0,4 0,3 0,6 - 

JAPAN 2,2 0,2 0,4 0,2 1,0 

Fig. 5: Study time (in years) for different subjects in the lower secondary teacher 
education programmes of the three countries. 

When it comes to the DO techniques proposed by students (cf. Fig. 3), the 
tendency of Japanese and French pairs to attack the MO task with more appropriate 
methods, and to do so with the attention of explaining things to students, could well 
be seen as an effect of their rather extensive experience from university 
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mathematics courses. The Danish pairs are fairly explicit about general principles 
they want to pursue: e.g. to make pupils work on more examples, for HTT1, or 
providing several explanations, as for HTT2. In the latter case, this explicitness 
occurs among 3 pairs in spite of a de facto lack of just one appropriate explanation. 
It could perhaps be linked to the relative extensive training in general pedagogy 
and to their broader subject matter horizon; indeed, their discussions involve more 
use of terms and ideas from general education. 

It is well known that the degree of “deep understanding of fundamental 
mathematics” among experienced teachers does not depend directly on the amount 
of academic mathematics courses in their pre-service education (cf. in particular 
Ma, 1999, for a striking study in this direction). However this could to a large 
extent be explained by factors that do not affect our respondents, such as the 
conditions at schools for teachers’ continued intellectual development (cf. e.g. 
Stiegler and Hiebert, 1999). It may therefore not be seem surprising that the Danish 
pairs – with their much shorter training in mathematics – exhibit fewer (if any) 
appropriate didactical techniques related directly to techno-theoretical blocks of the 
MOs. However, we checked that both the product rule for negative integers and 
similarity of plane figures had been addressed during the courses in mathematics 
and didactics of mathematics which the 10 Danish students had followed. 

In a sense, given the difference in terms of formal training in mathematics, it could 
look more surprising that all fifteen pairs seemed quite uncertain in dealing with 
the theoretical level of the MO related to HTT2; after all, the French students had 
almost 4 years of advanced mathematics courses, and both Japanese and French 
students have had courses on axiomatic algebra. But the punctual organisation of 
(negative) integer multiplication is not likely to be explicitly addressed in the last 
year of teacher training; and apparently, the students do not link it with the courses 
they had on algebra. Whether they will ever make such links would then depend on 
conditions that could help them do so after they start teaching, such as in-service 
training or collaboration with more experiences teachers. 

6. Conclusion 

The anthropological approach provided a theoretical framework to situate “teacher 
knowledge”, corresponding to teachers tasks, with respect to mathematical 
knowledge which are aimed at in mathematics teaching and the corresponding 
types of tasks that their pupils work with. In particular, teachers’ task types may 
refer to mathematical organisations which are to be worked on by the pupils, and 
rather precisely defined parts of the teachers’ techniques to solve these tasks may 
then be studied through “simplified” tasks within a hypothetical context. Here, 
reference models of the related mathematical organisation are important to describe 
the didactical techniques. 
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Our empirical study, using two hypothetical teachers’ tasks, show that certain 
systematic differences of the teacher education systems in France, Japan and 
Denmark can indeed explain some overall differences in the teacher students’ 
performance on the tasks. Our method is based on a small number of carefully 
analysed conversations among pairs of teacher students about the two teachers’ 
tasks; it presents itself as an alternative, even at larger scales, to questionnaire 
surveys which does not allow for spontaneous teacher interaction, and the present 
study could be merely seen as a first attempt to use and justify this method. 

We note that even if with more data, we cannot infer directly from teacher 
students’ performance on HTTs to the way students will eventually solve similar 
(or other) didactical tasks, and even less to the learning of their pupils. We can also 
not predict what results we would get with experienced mathematics teachers in the 
three countries as respondents; indeed, this would depend also on factors as 
induction and other in-service learning opportunities offered in each country. Our 
next step will be to extend our study to such respondents.  
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Appendix 1. Coding example 

Below is the outline of a session on HTT1 with the corresponding coding inserted. 
The students’ real names are replaced by A and B. 

A would like to ask the students how they found their results. B identifies first the 
additive (τ12*), and then the multiplicative principle (τ11*). A wants to have a 
discussion on these (τ16*). They both clearly agree that the “ratio” (multiplication) 
is the right principle (τ10*) and proceed to discuss how to get the students to 
understand that it is so. They want to find a “concrete activity” (with physical 
objects) but don’t find one. B then suggests that using triangles with very different 
sides, one could produce more tasks that clearly shows the additive principle 
wrong; B shows a 1, 10, 10 triangle (drawn during separate preparation) to 
illustrate this idea (τ13*, τ17*). They discuss rather vague ideas of how this example 
could be related to some reality the students are familiar with. B suggests using 
overheads and measuring on the screen, using different distances between slide and 
projector, but they abandon the idea as “it would be difficult in practice”. B then 
suggests using a computer to experiment with magnifications of the “map” [they 
mean the aerial photo of the task] “once it has been scanned in” (τ19a*). Finally 
they discuss other aspects of geometry and maps that are only not related to the 
task. 
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