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Abstract

Part 1 of this paper shows that mathematical learning, rarely con-
sidered in its full extension from early childhood to adulthood, is in
need of clear guidelines. Guidelines, the way we understand them here,
are outlines of what might be called genetic theories. One shows what
such genetic theories could look like. Part 2 develops a possible guide-
line, one whose title might be : from proportionality to linearity, or
the evolution of the concept of ratio. In the conclusion, we revisit the
notion of genetic theory to discuss further its nature and relevance.

In memory of H. Freudenthal,
to whom we owe so many lights

on mathematical learning.

PART 1

Guidelines: why and how?

1 Mathematics versus common experience

The road from common experience to mathematics becomes longer and
longer with the passing of centuries!. First of all, whereas Babylonians
and Egyptians dealt with rather isolated questions of arithmetic and geom-
etry, the Greeks — particularly Euclid — elaborated wide range theories, with
long chains of deductions. This kind of thought is far away from everyday

life. All the more so that, in this setting, even obvious propositions had to
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be proved, because everything — with the exception of axioms — had to be
proved.

The distance from common experience to mathematics became longer
also by the introduction of letters in algebra, the representation of figures
by equations in analytic geometry, the introduction of negative and complex
numbers, the arithmetization of the continuum (the real numbers) and, in
the course of XX Century, the constitution of mathematics as a single
edifice, entirely deduced from the set theory axioms.

Another highly significant step was the creation of non-Euclidean ge-
ometries, leading to the coexistence of several contradictory theories, each
one logically coherent. This major historical fact entailed a mutation of the
nature of mathematical truth. Namely, for the Greeks, an axiom was true if
obvious in some idealized (Platonic) world, whereas in contemporary math-
ematics, truth is identified with non-contradiction within some axiomatic
setting.

Finally, there is the existence of structures such as groups, rings, fields,
topological and vector spaces, categories, and their role in mathematical
thought. These structures are abstract, they seem to say nothing about
nothing, whereas they express the architecture and operation of a lot of
particular situations, whether inside or outside mathematics. And that is
why they have the double effect of illuminating these situations and of easing
the transfer of intuitions between them.

These observations depict today’s mathematics as they appear in the
treatises, namely as a highly abstract monument, an artificial science. How-
ever, by contrast, mathematical practice and problem solving at any level
are stimulating activities, not a priori deductive, relying on imagination,
conjectures, search for examples and counterexamples, and of course deduc-
tions. They are a source of intimate satisfaction.

A consequence of the fact that mathematics are far aside from common
thought is that most people have a wrong idea of that discipline. They see
it as an immutable monument they have no idea of its secular evolution
they reduce mathematical activity to the application of rote computations,
leading in every case to the unique solution through the unique good method.
Recalling this is a trivial statement, but one that is unfortunately true. Such
a wrong appreciation and ignorance of mathematics is by no means new,
but it is growing worse with the passing of centuries and the evolution of
mathematical knowledge.

An important proportion of teachers share this conception of mathemat-
ics, often inherited from their own teachers. Others, although aware of the
genuine nature of mathematics and able themselves to do mathematics cre-



atively, leave their students eventually convinced that this science is purely
deductive.

Due to all these misunderstandings, it is difficult to bring forth a clear
and efficient conception of mathematical teaching. Let us now outline the
history of the reforms through which, in the course of the last fifty years,
one has tried to improve this situation.

2 The coherence of the New Math

In the fifties and sixties of the XX Century, the initiators of the New
Math truly believed they had “the solution”. And maybe they were right
on some points, in spite of the difficulties they encountered. At any rate,
their options were extreme and extremely clear and, for that reason, lend
themselves to a clear evaluation. So let us recall the New Math movement
and its foundations.

First, these initiators took a central fact into account, namely that math-
ematical science existed as a unified discipline, developed deductively from
the axioms of set theory. Therefore, its presentation to students had to be
axiomatic, deductive and focused on structures. The matters to be taught
were — we mention the essentials only — sets, relations, and functions (in
a naive way, for it would be impossible otherwise), then natural numbers,
integers, rationals and reals, then vectors spaces and linear algebra, and
then limits, continuity, derivatives and integrals. Figures were considered as
misleading, the geometry of figures and solids almost disappeared, and with
it a notable source of intuitions.

Teaching had to be rigorous. It was focused on structures like groups,
rings, fields and vector spaces. To avoid confusion and a loss of time, con-
cepts had to be introduced, as far as possible, in their definitive form, which
automatically implied a high level of generality. Further, technical terms
and symbols were abundant, more than in traditional teaching.

The New Math reform was initially conceived by well known mathemati-
cians (Dieudonné, Choquet, Stone, Artin, ...) during two colloquiums, one
in Royaumont in 1959 and the other in Dubrovnik in 1960 (see H.O. Fehr
[1961] and O.E.C.E. [1961]). The Proceedings of Royaumont claimed that
the whole of mathematical teaching had to be revised. But, paradoxically,
Dubrovnik followed with a curriculum aimed at the end of high school only,
and even in the scientific orientation. However, within the following few
years, this program was extended, without substantial changes of principles,
to the K-12 curriculum (see for instance G. Papy [1963]).



In this way, very general subject matters were proposed to very young
students. But the more general a theory is, the wider its field of applications.
Young people could not realize the huge variety of referents, within math-
ematics or not, of notions like sets, relations, groups, etc. Therefore, they
had to content themselves with some examples, often artificial, deprived of
interest at their level. Some concepts were almost inoperative in their field
of experience. In such a context, stimulating student initiative in problem
solving was rarely possible. By exception, a small number of them enjoyed
this formal universe.

In spite of these shortcomings, the New Math reform followed a clear
and well structured global plan. Subject matters followed each other in an
orderly, understandable way. The teachers able to grasp the framework of
the program could determine their position and the position of their students
in the teaching project as a whole. Unfortunately, and by their very nature,
the guidelines of this program were rarely grasped, especially by elementary
school teachers.

Let us emphasize the following observation : the almost unique source of
mathematics teaching during that period was contemporary mathematical
science. And after all, starting from a science in view of teaching it seems
quite natural. The rationale of mathematical teaching was that of mathe-
matics themselves : axioms, rigorous proofs, definitive concepts, algebraic
structures.

3 After the New Math, which coherence ?

What happened after the fading of the New Math? Some contexts of the re-
form survived to some extent, mainly geometric transformations and vectors.
But there has been a revival of the traditional subdivisions of mathematics :
basic arithmetic at the elementary level, algebra centered on equations and
no longer on structures, geometry of figures and solids. New subject matters
appeared, mainly the use of calculators, algorithms (sometimes), elementary
statistics and data processing.

Another trend of the curriculums is the insistence on problem solving, a
precious heritage of G. Polya. Moreover, there is the emphasis laid on the
construction, or reconstruction, of knowledge, in all possible measure by the
student himself.

The following observation is important : whereas — as mentioned above —
the New Math followed a coherent global plan, the curriculums of today do
not generally show coherence to the same degree.lt is not clear how students



are gradually led to contemporary mathematics. The New Math was an
updating of the curriculum inspired by the progress of mathematical science
as observed around the middle of XX Century. The present curriculums
are more like gatherings of old and new subject matters. They are not
wnspired by a clearly identifiable scientific reflection.

Nevertheless, the need for coherence is still there. It is witnessed by
the very idea of the construction of knowledge, as mentioned above. But
this idea refers more to the efforts of the individual student to understand
and organize a piece of knowledge than to the elaboration of a recognized
scientific corpus. The need for coherence is also witnessed, for example,
by the NCTM'’s Standards, where three chapters are entitled Mathematical
Connections. However, these chapters do not develop a concatenation of
matters along the curriculum : they invite the students to multiply the var-
ious representations of concepts, to recognize connections between concepts
and to see the relations with other disciplines. By contrast, the Proceedings
of the Dubrovnik Colloquium (O.E.C.E. [1961]) proposed a firm sequence of
interrelated mathematical topics, to be taught in the given order.

Summarizing, today’s mathematical teaching seems to lack an explicit
and firm reference, it knows no more what are its sources, its guidelines.
This difficulty is understandable. Namely, if one recognizes that a globally
deductive curriculum, one that is directly inspired by contemporary mathe-
matical thought, does not suit a majority of students, then one has to look
for another road, starting from students thought and progressing stage af-
ter stage, through successive generalizations, towards today’s mathematics?.
But such a progression is difficult to elaborate. Apparently, one has been
seeking it gropingly for forty or fifty hears.

Hence the fundamental question : how to elaborate genetic theories® ?
Let us now consider that.

4 Starting from common experience

A genetic theory ought to show sensible ways leading from common thought
and language to a mathematical theory. Now, everyday experience implies
no distinction between separate disciplines : mathematics, physics, chem-
istry, geography, etc. In this experience, there are objects with physical

28till, one should distinguish which mathematics, to suit various categories of students.

3The idea of a genetic theory is strongly present, even if implicitly, in the work of
Freudenthal. It does not coincide, but it relates to what O. Tceplitz[1963] called a genetic
approach.



magnitudes (lengths, weights, volumes, ...), various motions, durations,
sets of objects, patterns, rhythms, relations between things and people, etc.
Some situations in the environment lead naturally to a mathematical expla-
nation, others to a physical explanation, etc. And even mathematics and
physics (and other couples of the same type) are not immediately disjoint.
Mathematics has to emerge gradually, and for good reasons, as a distinct
discipline.

This emergence does not follow an arbitrary order, even if some choices
remain possible. Namely, some natural filiations of experiences and ideas
impose themselves.

Let us consider, for example, geometrical thought near its birth. Most
lines and planes in our environment are vertical or horizontal. All vertical
lines are parallel, and so are all horizontal planes. Every vertical line is
perpendicular to every horizontal plane and orthogonal to every horizontal
line. It would be difficult to believe that these two physical directions (phys-
ical because they owe their existence to the field of gravity) do not play an
important role in the birth of notions like straight line, plane, parallelism
and orthogonality*. Of course, at some stage of geometry learning, every
reference to physics will be abandoned. Geometry will then appear as an
abstract theory, ready to be applied in various circumstances, including of
course physical contexts.

Here is another example of a natural filiation. The practical origin of dec-
imal numbers (numbers with a decimal point) is measuring lengths or other
magnitudes within a decimal system of units. This is also their historical
origin. Measuring magnitudes is a physical activity. Dropping the symbol
for the unit of measure results in constituting these numbers as abstract
entities, ready for a variety of applications. So the reasonable sequence is :
first measures (i.e. concrete decimals, with an obvious use), then abstract
decimals®.

A key principle on the road from common experience to mathematics is
that no concept should be introduced if it plays no role in some explanation.
Mathematical concepts as they appear in axiomatic theories are endowed
with technical characteristics, whose function is to allow the construction of
complete and rigorous proofs, neglecting no particular case, avoiding logical

4As counter-examples, notice the negligible role played by the vertical and horizontal
directions at the beginning of geometry in the N.C.T.M. Standards [1981] and in the
French primary school program (see B.O. [2002].

5Again as counter-examples : measuring magnitudes is often presented not as the
source of decimal numbers, but as one of their applications (see the two references in
footnote 4).



pitfalls. In mathematical treatises, the role of definitions is less to say what
things really are, than to serve as appropriate tools for proving theorems.

At the intermediate stages between common and mathematical thought,
there are levels of rigor® and types of notions appropriate to the field of phe-
nomena being studied. Such notions were called mental objects by Freuden-
thal”. If a concept appears prematurely in the construction of thought,
i.e. at a stage where it seems like a complicated machine to execute simple
actions, it lacks a raison d’étre.

Under such conditions, what do we mean here by a genetic theory ? 1t is
a rational construction progressing through stages from everyday contexts
towards a mathematical theory, from simple questions and notions, possibly
related to perceptions or manipulations, towards new more general, more
abstract questions. Each stage of this construction brings answers to new
questions and helps surmounting new obstacles. The mental objects and
later the mathematical concepts brought into play at each stage are ap-
propriate to the theoretical context that is reached. Examining a genetic
theory from beginning to end, one should grasp the raison d’étre of every
new theoretical development.

These general considerations deserve to be illustrated by a substantial
example. Let us now look at that.

PART 2

A tentative genetic theory: from proportionality to
linearity

Let us now outline, as an example, a tentative genetic theory covering math-
ematical learning from K to 12. We choose to trace the notion of linearity,
i.e. the successive generalizations of the concept of ratio, or the construc-
tion of what might be called the linear structure. This choice, which would
deserve to be discussed at length, can be roughly justified by the pregnancy
of this structure within mathematics in general. Further, it enhances the
concept of function, also central in mathematics®.

5Cf. H. Freudenthal [1973] : “There are levels of rigour, and for each subject matter
there is a level of rigour adapted to it; the learner should pass through the levels and
acquire their rigour.”

"See H. Freudenthal [1983], p. 31.

80n this respect, cf. F. Klein [1933] : “Wir, man nennt uns wohl die “Reformer”, wollen
in den Mittelpunkt des Unterrichts den Funktionsbegriff stellen, als denjenigen Begriff der
Mathematik des letzten 200 Jahren, der tiberall, wo man mathematisches Denken braucht,



A warning is appropriate: in mathematics, a structure is something
which exists and does not change. All history of mathematics resulted in
eliminating from this discipline any temporal connotation. Structures and
theorems are fixed. How then can we consider an evolution of the linear
structure?

As a metaphor, consider a seed becoming a sprout, then a small tree and
eventually a large tree. It produces buds, leaves, flowers and fruits. Season
after season, it is never exactly the same, and even it changes considerably.
Nevertheless, it remains the same living being, it retains its identity. It is
a being in evolution. Here we would like to consider linearity as a being in
evolution, born in the context of magnitudes (before any idea of measure)
and becoming eventually a large tree in the context of vector spaces. An
important difference however is that, by nature, this evolution consists of
successive mutations, each mutation being a generalization. At each stage,
some new fixed, still structure is generated. Such discontinuities are
probably the main obstacles on student’s way.

In the sequel, we avoided mathematical subtleties as often as possible.
Mathematicians will have no trouble sorting out the occasional short cuts
we have taken in this presentation.

5 Magnitudes and sets

Magnitudes. Lengths, areas, volumes, weights and durations are exam-
ples of magnitudes’. Magnitudes do exist before being measured. Some of
their principal properties are:

a) Given two magnitudes of the same type, either they are equal,
or one is larger than the other : magnitudes are ordered.

b) For each type of magnitude, there is an addition. For example,
disposing two sticks end by end along a line realizes the sum of
two lengths; putting together two heavy bodies realizes the sum

eine zentrale Rolle spielt.” (We, who are often named the “reformers”, want to place the
concept of function at the center of the instruction, for it is this mathematical concept
of the last 200 years which everywhere, when mathematical thought is needed, plays a
central role.).

The didactical principle witnessed by this quotation was known in Germany, at the
beginning of the XX'" Century, as “das funktionales Denken” (the functional thought).
For more details, see K. Kriiger [1999]. The notion of function would deserve consideration
as a clue for the elaboration of guidelines.

For a rigorous definition of magnitudes as equivalence classes, see N. Rouche [1992].



of two weights; pouring two quantities of water in a vessel realizes
the sum of two volumes.

¢) Adding 2 equal magnitudes together is the same as multiplying
a magnitude by 2. The same holds for 3, 4, ... So there exists
a multiplication of magnitudes by natural numbers.

d) Any magnitude can be divided into 2, or 3, ... equal parts.
So, there is a division of magnitudes by natural numbers.

Sets. Let us now consider sets (specifically finite sets). For the sake of
clarity, we retain only sets of identical objects. Sets share with magnitudes
properties a), b) and c¢) above. More precisely,

a’) Two sets being given, they are equal'” or one is larger than the

other (equality is the possibility of one-to-one correspondence).
b’) Two sets can always be added (put together to make a single
set).

¢’) Every set can be multiplied by 2, or 3, or 4, etc.
On the other hand, sets do not share property d) with magnitudes. Indeed:

d’) A set can be divided into n equal parts only if n divides its
number of elements.

Sets are discrete whereas magnitudes are continuous.

Physics or mathematics 7 The practical operations on magnitudes and
sets (of material objects) require physical manipulations. Further, these
manipulations suffer serious limitations. First and foremost, comparisons of
magnitudes are not entirely precise, mainly for lack of acuteness of our sense
organs. But also, for example,

too large or too small objects, as well as sets containing too many
objects, cannot be handled;

whereas plane surfaces made of cardboard can be superposed
for area comparison, solid objects cannot, because they do not
penetrate each other;

two durations cannot be compared directly if they do not begin
or end at the same instant.

10Here, we use the term equal in its everyday meaning : expressed more precisely, it
refers to the equality of the cardinals of the sets.



More examples could easily be produced. At the very outset, there is no
distinction between physical and mathematical properties. But as soon as
one reasons about them, one assumes — even if only implicitly — that they
exist and are exact. They are idealized. Otherwise, many propositions would
remain inconclusive.

6 Proportionality before measures

A first notion of ratio. In order to introduce some situations of pro-
portionality, we need first to know what a ratio is. Let a and b be two
magnitudes. It may happen although this is a rare event that there
exists a natural number n such that b = n x a. If this is the case, we will
call n the ratio of b to a. The ratio expresses how much b is larger than a.

Let m and n be two natural numbers. If there is a natural number p
such that m = p x n, then we will call p the ratio of m to n. Such a ratio
exists only if m is a multiple of n (one should remember that here and until
further notice, a ratio is, by definition, an integer.

Three examples of proportionality. Here are now three examples of
proportionality (proportionality is linearity at its birth).

I. First example : when water is poured into a cylindrical vessel, there
is a one-to-one correspondence between heights and volumes of water (see
figure 1, which shows drawings instead of real vessels). Observe that heights
and volumes are magnitudes of different types. By this correspondence,

the sum of two heights corresponds to the sum of the correspond-
ing volumes;

when there is a ratio between two heights, there is the same ratio
between the corresponding volumes.

We summarize this by saying that heights and volumes are proportional.
Figure 1 is a table of proportionality. These properties, stated above in
a scientific language, are understood and expressed in daily life in more
familiar ways. For instance, people say “two times the height, two times the
volume”, and this refers, but only implicitly, to the correspondence of the
ratios.

The arrows on figure 1 illustrate the correspondence of the sums and
the correspondence of the ratios. We will call the latter internal ratios,

10



Height Volume

times times 2

Figure 1:

because they are ratios between magnitudes inside a given column of the
table (internal ratios will be opposed later to external ratios).

II. Another example, dealing this time with sets, is given by a situation
of barter. I am willing to exchange 2 blue marbles against 3 red ones. So
there is a one-to-one correspondence between the even sets of blue marbles
and the sets of red marbles which are multiples of 3. Now, under this
correspondence,

the union of two sets of the first kind corresponds to the union
of the corresponding sets of the second;

when there is a ratio between two disjoint sets of the first kind,
there is the same ratio between the corresponding sets of the
second.

III. As a third example, consider a balance with unequal arms : for
instance one arm two times as long as the other, as shown in figure 2.
Let us establish a one-to-one correspondence between those weights which
equilibrate the balance, one on the right pan and the other on the left one
(both magnitudes of the same type). Again, by this correspondence,

11



Figure 2:

the sum of two weights of the first kind (those coming from the
right pan) corresponds to the sum of the corresponding weights
of the second kind (those coming from the left pan);

when there is a ratio between two weights of the first kind, there
is the same ratio between the corresponding weights of the sec-
ond.

Constitutive properties of proportionality. The above examples illus-
trate the notion of proportionality before measures, of which the constituent
elements may be stated as follows:

there are two sets of magnitudes (or sets of sets);
there is a one-to-one correspondence between these sets;

every sum of two elements in one set (either one) corresponds by
this correspondence to the sum of the corresponding elements in
the other;

when there is a ratio between two elements of one set (either
one), there is the same ratio between the corresponding elements
of the other (these ratios are called internal ratios).

The correspondence of the sums entails that of the ratios'!, via the definition
of the product by a natural number as a repeated addition.

Comments. 1) Magnitudes and sets behave in the same way in this con-
text.

2) They are first physical entities, but are idealized as they become
thought objects.

""Remember that, up to here, the ratios are integers.

12



3) They are not measured. Measures will appear later in our construction
of linearity.

4) Addition is probably the first, the simplest and the most fundamen-
tal binary operation encountered in the course of cognitive development:
what in fact could be simpler than putting things together? One-to-one
correspondences are probably the simplest one can imagine, for multiple
correspondences imply undefined choices (several images corresponding to a
single original). The conservation of sums and ratios via a one-to-one corre-
spondence is something orderly and reassuring. Hence, perhaps, the natural
character of proportionality.

7 Measure as proportionality

In this section, we consider magnitudes of any given type.

Measures in natural numbers. We know that there does not always
exist a ratio (in the sense proposed at section 6 : ratios up to here are
integers!) between two magnitudes. In particular, the ratio of b to a fails
to exist whenever b < a.

In spite of this limitation, let us try to introduce some notion of measure.
Let u be a magnitude, chosen as a unit of measure. Then, consider all
magnitudes a of the form

a=nxu,

where n is any natural number. In other words, we consider all magnitudes
having a ratio to the unit u.

There is a one-to-one correspondence between these magnitudes and the
natural numbers. We call the latter the measures of the former in the unit
u. Under this correspondence,

the sum of two magnitudes corresponds to the sum of their mea-
sures;

if there is a ratio between two magnitudes, there is the same
ratio between their measures.

Such a system of measures is interesting, because magnitudes and their
measures are proportional: measures faithfully represent magnitudes. This
means that the usual operations with magnitudes have a faithful translation
into measures. Further, the addition of magnitudes and their multiplication
by a natural number can now be performed on their measures. Mental — or
paper and pencil — operations replace physical ones.

13



But this system of measures suffers two shortcomings :

only magnitudes of the form a = n x u have a measure;

there is not always a ratio between two magnitudes of this form.

In all cases where a is of the form n x u for no n, one may look for an n
such that
nxu<a<(n+1)xu.

Such an n always exists, but expresses a measure only approximately.

A partial answer to this difficulty consists in changing the unit u, choos-
ing a new one, very small, in such a way that more magnitudes can be
measured, and be measured with greater precision. But it always remains
that by far not all magnitudes can be measured in whole numbers, which
stays true however small u is chosen.

Of course, this statement is theoretical. In fact, with u very very small,
the limitations of our sense organs are such that one does not perceive any
difference between n x u and (n + 1) x u. Under such circumstances, one
may always believe the measure to be a natural number.

Now the question is : how is it possible to improve this system of mea-
sures ?

Measures in (positive) fractions. One tries to generalize the notion of
ratio. Let two magnitudes a and b be given. Instead of looking for a single
natural number n such that

b=n xa,

one looks for two numbers m and n such that

b=mx (a:n),

where “” means divided by. This is usually written in short as
m
b=(—) xa,
)

and 7* is called a fraction?. By way of generalization, when such an equality
exists, we say that > is the ratio of b to a.

Fractions are considered as a new type of number, generalizing natural
numbers. They are endowed with an addition and a multiplication (we don’t
prove this here). The existence of these operations entails that the concept

121n the present context, fraction has to be interpreted as positive fraction.
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of ratio can be extended to fractions. Namely, if three fractions are such
that

m D m
V)= (Z) x (—
@)= &) x ()
then g is said to be the ratio of = to %,/

Observe that the notion of ratio went through a mutation. In fact, as long
as we used natural numbers only, we said that the ratio of a magnitude (or
a number) to another one expressed how much larger the former was than
the latter. Now a ratio between two magnitudes (or fractions) expresses
how much one is larger or smaller than the other : by this, we mean that,
henceforth, a ratio can be smaller or larger than one.

Two observations are appropriate here:

first, two magnitudes a and b being given, sometimes there is no
fraction % such that b = (%) x a or, in other words, no ratio of
b to a. A popular example is when b is the length of the diagonal
of a square and a the length of its side;

second, between two fractions, there is always a ratio.

We can now extend our system of measures. Let u be chosen as a unit
of measure and consider all magnitudes of the form

a=(—)xu,
n
where 7 is any fraction or, in other words, all magnitudes having a ratio to
u. There is a one-to-one correspondence between these magnitudes and the
fractions. We call the latter the measures of the former in the unit u.
Under this correspondence,

the sum of two magnitudes corresponds to the sum of their mea-
sures;

the ratio of two magnitudes equals the ratio of their measures.

In other words, in this new system of measures, magnitudes and their mea-
sures are still proportional. This is no surprise, for addition and multiplica-
tion of fractions are defined in the only way ensuring this proportionality.
The operations on fractions are the exact counterparts of the operations on
magnitudes’.

1370 the extent that, in elementary teaching, the operations on fractions are defined via
the corresponding manipulations of magnitudes, which is quite sensible.
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Measuring in fractions is much more effective than measuring in natural
numbers. In fact, a unit u being chosen, there are many more magnitudes
of the form (') x u than of the form n x u.

However, this system of measures suffers a shortcoming:
. —_ (m
namely, only magnitudes of the form a = (") xu have a measure.

When a magnitude a cannot be measured as a fraction, then one can look
for a fraction 7 such that

m-+1
— ) Xu.

m
(—)xu<a<(
n
Such a fraction always exists, and — even better —, n can be chosen arbitrarily
large, such that, u being chosen, the measure of a can be estimated with an
arbitrary precision.
Now, in spite of the improvements pointed out, the question remains:
what can be done to improve, to complete, this system of measures?

Measures in (positive) reals. One again tries to improve the notion of
ratio. We will not here enter into details. A new type of numbers, called
the reals, is created, of which naturals and fractions are particular cases'.
They are such that, a and b being two given magnitudes, there always exists
a real o such that

b=a xa.

By way of generalization, « is called the ratio of b to a.

The real numbers themselves are endowed with an addition and a mul-
tiplication. The concept of ratio can then be extended to real numbers
themselves: given two reals a and (3, there always exists a third one v such
that

B=7vxXa.
We call v the ratio of B to a. Let us now extend again our system of mea-
sures. Any magnitude u being chosen as a unit of measure, every magnitude
s of the form a = a x u for some real . There is a one-to-one correspon-
dence between magnitudes and reals. We call the latter the measures of the
former in the unit u. Under this correspondence,

the sum of two magnitudes corresponds to the sum of their mea-
sures;

the ratio of two magnitudes equals the ratio of their measures.

14Here real has to be interpreted as positive real

16



Volume Measured volume

0.11

0.2l

0.31l

0.3l
times 2.05 times 2.05

0.615

Figure 3:

Magnitudes and their measures are still proportional.

Figure 3 illustrates the proportionality of volumes and their measures in
liters. The correspondence of the sums and that of the internal ratios are
again illustrated by appropriate arrows.

Unlike the preceding ones, this system of measures suffers no more short-
comings. In fact, as already observed,

all magnitudes are measured in reals;

there is a ratio between any two magnitudes, as there is a ratio
between two reals.

So this is, at least from a theoretical point of view, a perfect system of
measures. Why from a theoretical point of view ? First because practical
measures fail as soon as too high a precision is required, and then only ap-
proximations are possible. Second because, whereas natural numbers are
rather easy to add, multiply and divide, these operations are more compli-
cated for fractions, and much more complicated for reals. The real numbers
yield a numerical characterization of the continuum, but at the expense of
a rather cumbersome theory, in several respects unnatural.
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8 Proportionality of measures

Magnitudes of the same type. As a first example, consider two cylin-
drical vessels with unequal bases, put side by side on a horizontal table. Let
us pour water up to the same level in both. There is a one-to-one corre-
spondence between such volumes, also when they are measured (using the
same unit). This is a correspondence between magnitudes, but also between
numbers, namely those measuring the volumes. This is illustrated by a table
showing only numbers (see table 1). This is a table of proportionality, with
the now well known properties : the correspondence of the sums and the
correspondence of the internal ratios.

first vessel : | second vessel :
volume volume
in liters in liters
0.2 0.4
0.4 0.8
0.6 1.2
0.8 1.6
1.2 2.4
Table 1:

But there is more. We have volumes on each side, and thus there is
a ratio between any two corresponding volumes, equal to the ratio of the
corresponding measures. In our example, the base area of the second vessel
is 2 times the base area of the first, which entails that any measure on the
right equals 2 times the corresponding measure on the left. This ratio —
the same for all couples of measures — is called the external ratio, external
because it organizes the passage from one column to the other. Of course,
the passage from the right column to the left one requires the inverse ratio,
% in our example. In table 1, we might have drawn arrows (on the model of
figures 1 and 2) to show the external ratio, as well as the correspondence of
the sums and that of the internal ratios.

Generalizing from this example of volumes, we may state the following :

in a table of proportionality between magnitudes of the same
type measured in the same unit, there is an external ratio, which
is the ratio between any two corresponding measures.

This ratio is also called the coefficient of proportionality.

18



An important property is that the existence of the external ratio entails

the correspondence of the internal ratios, and conversely.

prove here.

This we don’t

A second example will be of the utmost importance in the sequel. Con-
sider, as in figure 4, a horizontal line OP and an inclined one OQ).

Figure 4:

The horizontal segments Oag, Oaq, Oasg, etc. are in one-to-one correspon-
dence with the vertical ones agbg, a1b1, asbs, etc. The same is true of their
measures using any unit, e.g. the centimeter. This correspondence is a pro-
portionality. It is illustrated in table 2. Here, the external ratio is % The

horizontal vertical
segments : segments :
length in cm | length in cm
1.5 0.6
2.5 1
4.5 1.8
5.75 2.3
7.5 3
Table 2:

following is a fundamental property of this proportionality:

disregarding the line OQ), let us draw any number of proportional
segments like Oag, agbg, or Oay,a1b1, or Oas, asbs, etc. Then it
appears that all points by, b1, b, etc. are aligned.

As a third — and also fundamental — example, let us mention the repro-
duction of objects at a given scale. If an object A’ reproduces an object



A at scale 0.4, then the distance between any two points of A’ equals the
distance between the corresponding points of A multiplied by 0.4. Distances
in A’ are proportional to distances in A, and the external ratio is 0.4. In
this context, external ratio and scale are synonyms.

Magnitudes of different types. Table 3 shows on the left a certain
number of time intervals, and on the right the distances covered by a traveller
during these intervals. This is a table of proportionality.

durations distances
in hours | in kilometers
0.25 1
0.5 2
0.75 3
2 8
4 16
Table 3:

Let us now compare this table with tables 1 and 2. In table 1, we had
volumes in both columns, and in table 2 we had lengths in both. There
is no difficulty to define a ratio between two magnitudes of the same type.
Therefore, we were able to define an external ratio for tables 1 and 2. In
table 3, we have magnitudes of different types. There is no ratio between two
such magnitudes. Nobody will ever discover a number which, multiplying an
interval of time, would yield a distance. So far, so good, for pure magnitudes.
But in table 3, the intervals of time and the distances are measured, and
measures are numbers. And between two numbers (zero excluded), there
is always a ratio. In table 3, the external ratio between measures is 4.
But the numbers representing magnitudes depend on the units of measure
and therefore the ratio changes if one changes the latter. One takes this
dependence into account by saying that the ratio, also called the wvelocity of
the traveller, is of 4 kilometers per hour. This is also written as gk

One could also draw arrows on table 3, to show the external ratio, as
well as the correspondence of the sums and that of the internal ratios.

Generalizing this observation, we may conclude :

in a table of proportionality between two magnitudes of different
types, both measured in a given unit, there is an external ratio,
which varies with the units.
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A consequence of this dependence on units is that, for magnitudes of different
types, internal ratios are easier to understand and to manipulate than the
external ratio'®. Hence the success of the rule of three in the resolution of
proportionality questions, this rule relying upon internal ratios only.

Straight line graphs. Figure 5 is a diagram of the traveller’s motion
above. It relies on the following proportionalities:

first and foremost, distances and durations, both physical mag-
nitudes, are proportional before any measures : see section 6 for
this meaning of proportionality;

durations are measured in hours, the measures being propor-
tional to the durations;

the durations in hours are transformed into lengths in cm via
the proportional rule that 1.2 ¢cm represents by 1 h; this trans-
formation is also a proportionality;

these computed cm are marked on the duration axis; this is the
reciprocal action of a measure: passing from a measure to the
corresponding physical magnitude, here a length along the axis;

distances are measured in kilometers, the measures being pro-
portional to the distances;

the distances in km are transformed into lengths in cm, via the
rule that 0.3 cm represents 1 km;

these computed cm are marked on the distance axis.

There is proportionality at every stage. The result is a straight line
diagram. Why ? We have seen above that an appropriate disposition of pro-
portional lengths yields such a rectilinear diagram. In the example above,
due to the whole chain of proportionalities, the lengths marked on the dura-
tion axis are proportional to the lengths marked on the distance axis. This
explains the straight line.

This example of a motion is typical of a general practice: for the sake
of representation, all kinds of magnitudes are transformed into lengths, via
measurements and scales. Lengths are the most “readable” magnitudes.
That is why most diagrams are based on lengths. The transformation of
magnitudes into lengths is a central application of proportionality. No doubt

15This is common observation in schools and has been strikingly illustrated by I. Soto
[1994], when observing illiterate people in Chile.
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Figure 5:

that proportionality is a key to faithful representation of magnitudes and
mappings.

9 Taking negative quantities into account

Figure 6 shows a road with distances in kilometers, measured from some
point 0, positive towards East and negative towards West. We used positive
and negative numbers to locate points on the line.

km
—t—t—t—t+— E

W ] 1 : :

Figure 6:

This implies a new interpretation of the notion of order. Up to here,
larger and smaller were interpreted in the common meaning. From now on, a
number will be said to be larger than another one, if its corresponding point
on the line lies at the right of this one. Whereas the abstract laws of order,
e.g. transitivity, are still valid, the interpretation changes considerably. This
is a drastic mutation. However, the previous interpretation of order is still
valid for positive numbers.
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Table 4 gives the position of a traveller on this road at various moments
in time.

time position
in hours | in kilometers
—0.75 +3
—0.50 +2
—0.25 +1
0 0
+0.25 -1
+0.50 -2
+0.75 -3
+1.00 —4
+1.25 )
Table 4:

The situation is similar to that of the traveller of section 8 in this respect that
in both cases, a person travels at 4 kTm But there are important differences.
For instance, concerning such a motion, one may ask the following questions:

Knowing the position of the traveller at time (4+0.50), where was
he 2 hours earlier?
Knowing the velocity of the traveller and his initial position,

where is (or was) he at a given time, positive or negative?

To answer such questions conveniently, one introduces an addition and a
multiplication on the new type of numbers. These numbers — the reals
in their full extension generalize the positive reals. This extension is a
mutation, as is shown, amongst other things, by two spectacular changes:

the sum of two reals is no longer necessarily larger than either
of its terms;

the product of two real numbers obeys the famous law of signs,
irrelevant in the case of positive reals.

Further, one generalizes once more the notion of ratio. In spite of the
major changes mentioned above, its definition remains phrased identically :

if , B and ~ are reals, and if

B=7xa,
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then ~ is called the ratio of 8 and a.

Further, and as before, any two reals (zero excepted) have a ratio.

Whereas the definition of ratio does not formally change, its meaning
does. The ratio is now something more than an expression of how much
larger or smaller a number is as compared to another. It also takes into
account the fact that the numbers being compared can be on either side of
the origin 0 on the number line.

Now, in spite of these drastically new interpretations of addition and
ratio, a table of proportionality still exists and remains formally the same,
or in other words, obeys the same definition. The permanence of the struc-
ture can be observed on table 4. Figure 7 shows that the graph of this
proportionality is still a straight line.

Position in km

12 +
10 +

T Timeinh
6

=+
N
w
IS
o

Figure 7:

Let us emphasize that, although the notion of proportionality remains
structurally the same, its interpretation, its relation to real situations has
changed considerably. However, whenever only positive numbers and ratios
are concerned, nothing is changed.

24



10 Abstract proportionality, linearity

In our examples up to here, all numbers expressed measures of volumes,
lengths, distances covered by a traveller, distances from the origin on an
axis, durations, velocities, etc. Consequently, we took into account the
units of measure, and our external ratios were sometimes composed magni-
tudes such as (measured) velocities. Let us now “cut the umbilical cord” of
proportionality.

We drop any reference to measures and define a proportionality between
pure numbers. Such a proportionality is a one-to-one correspondence be-
tween the system of real numbers and itself. It can be illustrated by a two
column table, showing couples of real numbers (as many as one wishes)
facing each other, with the following properties: the correspondence of the
sums, the correspondence of the internal ratios, the existence of an external
ratio, a straight line graph. This correspondence is also called a real linear
mapping.

At first sight, such an abstract notion of proportionality says nothing
about nothing, except itself. What is its use? It is a pure structure —
something common in mathematics —, a kind of model ready to be applied
either to concrete situations via appropriate interpretations, or to other
mathematical contexts.

11 Oriented magnitudes, vectors, linear transfor-
mations

Some of the magnitudes studied up to here were measured by positive re-
als, and could be represented on a graduated half axis. Some others were
measured by reals in general, they were directed magnitudes, representable
on a graduated axis. Both types are one-dimensional. However, in everyday
life as well as in geometry, physics, etc., there are magnitudes oriented in
the plane or in space. For instance, the changes of position of a point, the
translations of a solid object, the velocities of a point moving in a plane or
in space, the forces, etc., all these magnitudes can no longer be measured
by a real number, nor be represented by a point on a line. In addition to
being large or small, they point to some direction. We call them oriented
magnitudes. They can be represented by an arrow. Of course, the common
notion of proportionality, the one studied up to here, cannot be applied as
such to this new kind of magnitudes, it has to be adapted.

In principle, just as we did with ordinary magnitudes, we now ought to
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deal with concrete oriented magnitudes, i.e. we ought to explore the context
in which this new kind of proportionality arises. Such a development, a must
on the way towards vector spaces in every curriculum, would be too long
here. So let us limit ourselves on the one hand to the displacements of a
point, and on the other to the forces.

If a moving point passes from a fixed position A to another A’, and then
from A’ to A”, its displacements can be represented, as on figure 8, by two
arrows, namely ﬂ and W (in straightforward notations). The resulting

displacement is AA” (see figure 8). We call it the sum of the other two.

Al ’ A11

A A

Figure 8:

Figure 9(a) represents two forces 7) and g applied to a given point P
(e.g. a point possessing a mass). One may imagine that these forces are
obtained by pulling at two strings attached to A. They have an effect on P
(an acceleration). One obtains the same effect on P while replacing 7 and
g by another force ﬁ), the one appearing in figure 9(b). We call this third
force the sum of the other two.

Let us now replace displacements and forces by “abstract” arrows: we
call them wectors'®. Two vectors can be added either like displacements or
like forces. The result is the same. So we have an addition of vectors.

In the same way we defined the multiplication of an ordinary magnitude
by a real number, we define the multiplication of a vector by a real number.
This is known as the multiplication of a vector by a scalar (a new name for
real number). We give no details here.

What now about ratios? The ratio of a vector to another one “should
be” a number which, multiplying the latter, yields the former. But such a

15We allow ourselves to confuse arrow (or oriented segment) and wvector.
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Figure 9:

number exists if and only if both vectors have the same direction. A dead-
lock ?

While, as we just saw, it is usually impossible (in a plane) to pass from a
vector to another one using a single real number, it is usually possible to pass
from two vectors to a third one using two real numbers. Let @ be a vector,
and @ and b two non vanishing vectors with different directions. Then
there exist two reals A and u such that @ =A@ + ,u?. Such an expression
is called a linear combination of @ and b . So the linear combination 18, in
some way, a generalized form of the ratio.

Let us now see wether we can rely on the idea of linear combination in
view of generalizing the idea of proportionality. As a preliminary, let us
first look at the way a table of proportionality, in the usual sense, can be
generated. One writes a real nonvanishing number a in the first column.
Then one writes, in the same column, as many real numbers as one wishes.
Each such number can be written in the form b = Aa, where )\ is a real
number. This number is the (internal) ratio of b to a. Then, in the second
column and facing a, one writes a number a’ chosen at will. At last, using
the correspondence of the internal ratios, on writes the numbers b’ = \a’ in
the second columln, facing the numbers b = Aa in the first. The external
ratio of the table is %/

Let us now imitate this procedure in the context of vectors. In the first
column, we write two vectors @i et @3, nonvanishing and having different
directions. In the same column, we write as many vectors as we want, of
the form

T =x1a7 + :L'g@, (*)

where x1 and x5 are real numbers. Next, we write in the second column,

facing respectively @i and @3, two vectors a_'1> et g chosen at will. At last,
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facing each vector of the form (*), we write, in the second column, the vector
? = 1'1(71 + 1'2?2.

This table is such that any linear combination of two terms chosen in the first
column corresponds to the linear combination of the corresponding terms

of the second column. Let us put this in another, more suggestive way.

Whenever two vectors ' and ? face T and 7/, then 7+ ? face T + /.

There is correspondence of the sums. Further, whenever ? faces 7, then
/\? faces A7, for any real . There is correspondence of the internal ratios,
in this restricted sense (vectors of same direction).

We just defined a linear mapping for vectors in two dimensions. This
notion generalizes the proportionality, which may thus be named linear map-
ping in one dimension. On can define in the same way linear mappings in
three dimensions. In this passage from one to two and then three dimen-
sions, there appears a large variety of new phenomena. Let us only mention
that all classical plane and space geometries are developed in the context of
linear mappings. We now see how proportionality, at the origin a modest
seed (fed by many contexts), became a large (abstract) tree full of blossoms.

This however is not the end of the story. For linearity develops next from
plane to space, then from 3-space to n-dimensional spaces, where algebra
expresses geometrical facts by necessity, imagination falters, and spatial in-
tuitions although still work. Not to mention the infinite dimensional spaces
of functional analysis, with the dramatic discovery that not all linear map-
pings are continuous.

At the end of this long journey, let us remark that, when studying linear
phenomena, one should not forget to contrast them with nonlinear ones. Un-
fortunately, we don’t have enough space here to develop this pedagogically
fundamental viewpoint.

CONCLUSIONS

In this paper, we outlined a genetic theory, the one of the linear structure.
Relying on this example, let us try to understand more precisely the nature
of a genetic theory and its relevance. As we have seen, a genetic theory
consists in a sequence of notions, theories, structures, starting from common
experience and thought and aiming at constituted mathematics. Essentially,
these notions are of an increasing generality, each one being relevant in a
context broader than the preceding one. Passing from one to the next is
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strongly motivated by questions, observed shortcomings, obstacles or the
need of a new understanding. Each new theoretical stage appears as an
adapted, efficient answer to the encountered difficulties, to the new contexts
taken into account. It is rooted in everything that precedes, its main source
of meaning and intuitions.

The genetic theory leads to formal theories (rationals, reals, vector spaces,
...). Underway, these theories cut their ties to common experience, to con-
crete contexts. But they remains capable to rediscover them at any moment,
because they started therefrom. They are not like theories which, conceived
at a formal level, seek their applications afterwards.

Therefore, a genetic theory does not proceed from axioms and definitions
to lemmas, theorems and corollaries. It is not globally deductive. But
then, one may rightly wonder where are, in such a scheme, the proofs, the
deductions. The fact is that, as stated before, each new notion or theory
results from a mutation (remember the observed successive meanings of the
term ratio). And as there is at each stage change of a definition or a property,
one has to reorganize things each time. And reorganizing means bringing
some new deductive order. A genetic theory requires proofs at every stage.

Now, after all, what is the use of a genetic theory? Here are some
tentative answers.

A genetic theory throws light on the relations between everyday things
and phenomena on the one hand and their mathematical expressions on the
other. It shows the strong, although sometimes hidden, reasons underlying
the construction of mathematics. It helps to identify what might be called a
mathematical culture, closely connected to its sources in common thought.
If it were not a little ambitious, one might say that it is the result of an
effort towards a rational epistemology'”.

But what can be the use of a genetic theory in teaching ?

To avoid damageable confusions, let us stress the fact that a genetic
theory cannot directly inspire a curriculum. Namely, things happen, in the
family or school progression of a child, in an order devoid of such a degree
of rationality. For example,

children do not discover the properties of plain (not yet mea-
sured) magnitudes before getting acquainted with some mea-

Y7 Rational epistemology as opposed to historical epistemology, the one studying the
secular evolution of concepts, and to genetic epistemology (in Piaget’s sense), studying
the emergence of concepts amongst children. Rational epistemology would rather result
from a search for the relations between concepts, as they appear to an adult using his
reason. It would be a product of the lumiére naturelle (the natural light) in the sense of
Descartes or Pascal.
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sures;

they do not learn all the essential properties at the basis of the
natural numbers before meeting some simple fractions;

they observe negative numbers on the thermometer before learn-
ing how to use them fully in algebra;

they experience velocities and forces and certain of their proper-
ties before representing them by vectors.

After this warning, let us now examine the reasons justifying the elaboration
of genetic theories.

Hopefully, if the authors of curriculums or textbooks clearly understand
the construction of the subject matter, they will more efficiently introduce
new concepts, and only in case of necessity or of reasonable usefulness.

Hopefully, a teacher having assimilated a well constructed guideline, on
the one hand will have at her disposal some keys construct her course and to
interpret the difficulties encountered by the students, and on the other will
fully realize which stage her class has reached, what logically (not chrono-
logically) comes before that stage and what is being prepared.

Hopefully, a teacher having thoroughly studied some genetic theory would
realize that mathematics have some roots in reality, that their form and
articulations are intelligible, and would have an increased interest in this
science and would fear it less.

Let us conclude by a single suggestion: that in each country, a permanent
group of teachers of all levels and of mathematicians, studies the curriculum
as a whole, from early childhood to adulthood, from common knowledge to
mathematics, avoiding any premature concept. We insist on a permanent
group, for casual discussions are likely to be inefficient on such a subject,
where mutual understanding has proved to be so difficult. Isn’t it essential
to have at work on the same project those people who know the children
intimately and those who know mathematics intimately?

This paper comes as a continuation of a collective study of the CREM on
the same subject (see N. Rouche ed. [2002]). T wish to express my gratitude to
its authors: M. Ballieu, M.-F. Guissard, P. Laurent, C. Lemaitre, L. Lismont, P.
Tilleuil, T. Sander, E. Vanderaveroet, F. Van Dieren, M.-F. Van Troeye, J. Van
Santvoort and P. Wantiez.

I also thank M. Ballieu, Ch. Docq, G. Cuisinier and M.-F. Guissard for their
useful remarks and critics and Th. Gilbert for her help in identifying clearly the
nature of a genetic theory.
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Thanks also to G. Decat for criticizing my English. But in this respect, all
remaining incongruities are mine.
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