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DAVID TALL 

A THEORY OF MATHEMATICAL GROWTH 
THROUGH EMBODIMENT, SYMBOLISM AND PROOF  

Abstract. This presentation considers the biological and mathematical mechanisms 
involved in the development from the child to a mathematician and theorizes how 
individuals grow in different ways over a life-time’s experience. The theory is then used to 
respond to questions on the long-term teaching and learning of mathematics over the whole 
curriculum from child to adult. 

Résumé. Une théorie du développement mathématique par l’embodiment, le 
symbolisme et la preuve. Cette présentation envisage les mécanismes biologiques et 
mathématiques engagés dans le développement de l'enfant au mathématicien et propose une 
approche théorique pour interpréter les différences de croissance individuelles résultant de 
l'expérience de toute une vie. La théorie est ensuite utilisée pour répondre à des questions 
concernant l'enseignement sur le long terme et l'apprentissage des mathématiques sur toute 
la scolarité de l'enfance à l'âge adulte. 

Mots-clés. Pensée mathématique, objet de pensée, action, opération symbolique, propriété, 
inné, déjà vu, connaissance procédurale, connaissance déclarative. 
___________________________________________________________________ 

Introduction 

This paper is written in the context of the conference on Mathematical Learning 
from Early Childhood to Adulthood, which focuses on the overall growth of 
mathematical thinking in individuals. It is in two parts, the first presents a 
framework of long-term cognitive growth and the second uses this theory to 
address questions posed for discussion at the conference related to long-term 
learning.  

1. The Cognitive Growth of Mathematical Thought from Child to Adult 

1.1. The overall framework 

In studying mathematical learning from early childhood to adulthood we are 
involved with two very different frameworks. One is the coherence and structure of 
mathematics, the other is the biological development of the human mind. The brain 
has a number of essential aspects that enable us to build a highly sophisticated 
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mathematical mind. First it has a complex parallel-processing structure that carries 
on many routine operations subconsciously but needs to focus on a small number 
of conscious items to be able to make coherent decisions. This in turn requires the 
complementary aspects of mental compression and connection: 

− compression of important ideas into thinkable concepts that can be held in 
the focus of attention; 

− connections between such thinkable concepts can be built into dynamic 
action-schemas that connect successive actions in time, and more general 
knowledge schemas that connect ideas together in webs of relationships. 

Compression may occur in a variety of ways: 

− action-schemas may be practised so that they can be performed 
automatically with little conscious effort, and imagined as a whole as 
thinkable processes; 

− processes may be further compressed into thinkable concepts, often by 
using a symbol to refer both to the process (eg 2+3 as addition) and to the 
concept (2+3 as sum). A symbol that can be used to switch between a do-
able process and a think-able concept is called a procept1; 

− concepts may be categorised and named so that the names can be held in 
the focus of attention to refer to the categories as thinkable concepts. This 
occurs in geometry where different figures are categorized to give 
hierarchies such as square, rectangle, parallelogram, quadrilateral, polygon, 
each with its own array of related properties. It also happens in arithmetic 
and algebra with concepts such as prime number, square number, 
irreducible polynomial, and so on; 

− thought experiments can lead to connections between properties, in the 
form of ‘if this property holds, then so does that property’. The results can 
be used as thinkable concepts to develop further structures; 

− in formal mathematics, generative properties can be listed to define 
axiomatic systems that are named and considered as thinkable concepts in 
further hierarchies of mathematical theory; 

− at higher levels, knowledge schemas such as ‘whole number arithmetic’, 
‘euclidean geometry’, or ‘category theory’ may be named as thinkable 
concepts. 

                                                           
1 See Gray and Tall (1994) for a technical discussion of the notion of procept. 
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The general biological faculty that enables this to happen is the strengthening of 
links between neurons that prove successful and the suppression of others that are 
less relevant, building mental modules that operate together in consort in a process 
termed long-term potentiation. Such links may be helpful in new situations, but 
may also be subtly misleading, so that the cognitive development of mathematical 
ideas is by no means a simple logical development. 

The need to compress knowledge to fit into the focus of attention means not only 
making links that are important, but also suppressing conscious links to ideas that 
are less essential to decision-making. Thus real-world meaning, which is essential 
in the initial building of ideas, may become less important as links between 
symbolic ideas become more important and the individual’s thinking focuses more 
on mathematical activities and less on the original perceptual sources. 

1.2. The three mental worlds of mathematics 

The long-term construction of mathematical knowledge uses the power of the 
biological brain, with input through perception, output through action and the 
internal power of reflection to re-assemble ideas into useable mental structures. I 
hypothesise that mathematical thinking evolves through three linked mental worlds 
of mathematics, each with its own particular way of developing greater 
sophistication (Tall, 2004): 

− an object-based conceptual-embodied world reflecting on the senses to 
observe, describe, define and deduce properties developing from thought 
experiment to Euclidean proof; 

− an action-based proceptual-symbolic world that compresses action-
schemas into thinkable concepts operating dually as process and concept 
(procept); 

− a property-based formal-axiomatic world focused to build axiomatic 
systems based on formal definitions and set-theoretic proof. 

1.3. Childhood: the origins of mathematical thought 

Our mathematical growth is built on the same biological abilities that are part of 
our genetic inheritance at birth and develop through a life-time of experiences. We 
are not born as tabula rasa on which ideas may be written as on a blank slate; at 
birth we already have many built-in abilities that are in the process of maturation. 
For instance, a new-born child has a visual structure that not only builds a picture 
of the light falling on the retina, but also has a hierarchy of neuronal structures to 
detect colours, changes in colours, changes in shade, edges, to put this information 
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together to distinguish objects from background, and to track the movement of 
these objects. 

This gives us (and other species) the ability to observe one or more objects and to 
have a primitive sense of ‘numerosity’ already set in our cognitive structure. 
Children can track the movement of one, two and perhaps three objects, so that if 
two separate objects are seen being put behind a screen and the screen is removed 
to reveal only one object, a child of even a month old may stare longer and seem to 
express surprise.  

1.4. Set-befores and met-befores 

A mathematical concept (such as numerosity of small sets) which is with us at birth 
or soon after, I call a set-before, because it is set before our birth in our genes. As 
individuals meet new contexts, they build new ideas based on mental structure that 
they have at the time. A previous construction that is recalled to address a current 
situation is called a met-before. In practice the distinction between set-before and 
met-before is less important than the way in which both predispose us to think in 
new situations. For instance, scientific concepts such as force and momentum are 
subtle combinations of genetic and experiential origins that are deeply intertwined. 
In what follows, the term ‘met-before’ will be be used to refer to either or both. 

The value of using a catchy term such as ‘met-before’, as opposed to a more 
technical term relating to prior knowledge, is that it can be used in conversation 
with learners to explore ideas that may have previously made sense in a particular 
context but is now causing problems. For example, subtraction is initially met as a 
physical ‘take-away’ that carries with it a met-before that ‘you can’t take away 
more than you have, because you can’t have less than zero.’ This met-before 
remains valid for taking away physical objects but no longer applies in contexts 
such as temperatures below zero, credits and debts, or the number line. 

In building a curriculum, designers focus on the positive effect of met-befores, 
such as the way arithmetic of counting numbers generalises to fractions, decimals, 
and real numbers on the number line. However, there is far less emphasis on 
strategies for dealing with the negative effects of met-befores that no longer work 
in a new context. 

As an example, consider the transition from arithmetic to algebra. Students 
learning arithmetic have met before the idea that every arithmetic expression has an 
answer:  2 + 3 is 5, but algebraic expressions such as 2 + 3x  do not have an answer. 
Children mystified by this may find that they are being asked to manipulate 
symbols representing processes that are not thinkable objects. They may focus on 
the part they can calculate to add 2+ 3  to get 5 and leave the x they do not 
understand to give the erroneous answer 5x. Another possible met-before is the use 
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of letters standing for numbers ( a = 1, b = 2 , …) so that 30 − x  is seen as 6; 
another is the met-before of place value where 23 is two tens and a three, so 2x for 
  x = 3 may be seen as 23 and for x = 17 , 2x may be 217 or 37. There is also the use 
of letters to stand for units, as in 1m = 100 cm, which can lead to the reversal error 
in the ‘Student-Professor’ problem where the proportion of six students for each 
professor may be interpreted as 6S=1P, even when S and P are given to represent 
the number of students and professors. The proliferation of a variety of different 
met-befores makes the analysis of mathematical thinking very messy. However, the 
theory of met-befores itself gives such analysis a coherent overall framework. 

Cognitive growth is revealed as a story of each individual born differently endowed 
with an underlying set-before structure and having a variety of experiences that 
construct met-befores used later to develop highly individual mental capacities. 
Some cling to the security of old ideas, finding it difficult to shift from the evident 
‘truths’ suggested by their met-befores; others focus on the new ideas and see their 
relevance and power in new contexts to shift their focus of attention to a new way 
of working. There is thus a growing spectrum from those learning procedures to 
solve an increasingly complicated collection of problems and those that see the 
simple power of new ideas in new situations. 

Taking note of the neural Darwinism of Edelman (1992), it is as if each event in 
our lives modifies the fitness of our capacity to respond to new events, and long-
term potentiation acts as an agent for natural selection of an increasingly 
sophisticated cognitive system. 

1.5. Compression of knowledge through focus on effect 

The fundamental idea in powerful cognitive growth is the compression of ideas 
into thinkable concepts that can be connected together in increasingly flexible 
ways. This is facilitated by an important parallel between compression in the 
worlds of embodiment and symbolism identified by Poynter (2004). When 
teaching the notion of vector she noted an essential shift of attention from the 
action of a hand translating an object on a table to the effect of that action. The 
effect can be seen in terms of a free vector representing only magnitude and 
direction of the action, and the combination of two shifts is simply the free vector 
that has the same effect as following one action after the other. 

This idea proves to be generally applicable to the compression of an action into 
thinkable concept, always provided that the learner is aware of the precise effect to 
focus upon. For instance, in sharing an object or collection into 4 equal parts and 
taking 2 of them gives a different number of parts from sharing into 6 equal parts 
and taking 3; but in terms of the quantity produced, each operation has the same 
effect. It gives a half of the original. Thus compressing action into effect is an 
embodied way of representing the formal idea of equivalent fractions. It shows a 
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way in which the natural development of human thinking can lead at a later stage 
to a fundamental formal idea. 

The shift from action to effect is of central importance in symbolism. For instance 
the symbols 2n+2 and 2(n+1) involve quite different sequences of actions (‘double 
a number and add two’, or ‘add one and double the result’) but they have the same 
effect. The notion of function relies on this idea, for two different procedures that 
give the same effect are regarded as the same function. More generally different 
symbols representing different actions but having the same effect are considered to 
be different ways of representing the same procept (Gray & Tall, 1994). All these 
instances exemplify the way in which the relation between action and effect gives 
parallel constructions in the worlds of conceptual embodiment and proceptual 
symbolism. 

Successive shift in focus gives a steady compression of knowledge from step-by-
step procedure, to the possible choice of several different procedures, to seeing the 
overall effect as a general process that can be carried out in various ways, to 
encapsulating it as a thinkable object through the use of symbols. While it may 
happen that learners at different stages of compression may be able to solve a 
particular problem, the manner of solution and the consequences of long-term 
development of learning can be very different, moving from rigid use of a single 
procedure through increasing flexibility to symbolic operations on thinkable 
concepts (figure 1). 

 
Figure 1: Spectrum of outcomes from increasing compression of symbolism 

(expanded from Gray, Pitta, Pinto & Tall, 1999, p. 121). 
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1.6. Increasing complexity and simplicity 

As the two worlds of conceptual-embodiment and proceptual-symbolism become 
more sophisticated, there are significant differences in the ways they operate. In 
particular, as each situation is replaced by a more sophisticated context, some 
embodiments can become more subtly complex while, in a very genuine sense, the 
mathematical meanings often remain simple. 

For instance, in measurement the product of two lengths is an area, which can be 
used to visualise algebraic formulae such as the difference of two squares; this can 
be ‘seen’ by picturing a square of side a and removing a smaller square of side b 
and rearranging what is left to ‘see’ a2 − b2 = (a − b)(a + b)  (figure 2). 

 
Figure 2: Take a square side b from a square side a and rearranging as  

(a–b)×(a+b). 

However, this only works for 
positive values of a and b when a is 
bigger than b. If directed numbers 
are considered, there are a range of 
different looking pictures to be 
taken into account. Figure 3 shows 
one of several cases introduced by 
Percy Nunn (1914) teaching 
mathematics education as Director 
of the Institute of Education in 
London in the early part of the 
twentieth century. 

If we move on from quadratic 
expressions to cubic expressions 
(such as the difference between two 
cubes) then this must be seen in 
three dimensions, and higher order 

 

Figure 3: a directed number version. 
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expressions move into higher dimensions, accompanied by all the complications of 
the signs and sizes of the values. Meanwhile, algebraic expressions continue to 
work for all signs and sizes of values, based only on the coherent use of simple 
rules of algebra. 

On the whole, as the mathematics becomes more sophisticated, more successful 
students tend to focus increasingly on the power of the symbolism than on the 
sensory meaning of the embodiments (Krutetskii, 1976; Gray et al., 1998, Presmeg, 
1986). These symbols too subtly change their cognitive meanings as the curriculum 
develops through arithmetic, algebra and symbolic calculus. Arithmetic invariably 
involves operational processes where symbols 3+ 4 , 5/9 … all have answers 
produced by carrying out an algorithm. In algebra, symbols such as   3+ 4x  have 
potential processes that can only be carried out when the variable x is given a 
numerical value. The potentially infinite limit processes of sequences, series and 
the calculus usually tend to a limit without ever reaching it in a finite life-time. 
Each of these takes its toll of learners struggling to make sense of more 
sophisticated mathematics while those that embrace the new meanings find even 
greater power (Tall et al., 2001). 

Consider, for example, the symbol 23  which has a simple meaning as the repeated 
product of three twos (2 × 2 × 2); this extends naturally to x3  as the product of 
three xs, or  xn  as n xs: 

( x × x ×…× x
n  times

1 244 344 ). 

It leads naturally to the formula xm+n = xmxn , valid for any real x and any whole 
numbers m and n. But the notation xn  cannot be thought of as ‘n lots of x’ if n is 

fractional or negative. The meaning no longer applies to 2
1

x as ‘half an x multiplied 
together’. This can be a huge obstacle to many students struggling to make sense of 
a fractional or negative power. But for those willing to see what happens when the 

power law is used for m = n = 
2
1

will find that 2
1

2
1

xx ×  = 2
1

2
1
+

x , suggesting that 

2
1

x  can be given an entirely new meaning as the square root of x. Procepts such as 

2
1

x  have meaning, not because they have an operation that can be carried out, but 
because operating on them using the power law gives coherent results. Using them 
and building confidence in their coherence gives a sense of symbolic meaning quite 
separate from the original embodiment. 
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1.7. Reflection on properties leading to proof 

As children develop cognitively, by reflecting on the properties of processes and 
objects encountered, they may build inferences such as ‘if a triangle has two equal 
sides, then it will also have two equal angles’, ‘if two numbers are odd, then their 
sum is even’, ‘if I multiply  x + y  and x − y , then the product is x2 − y2 ’. In this 
way a variety of means of proof develop in both the embodied world of objects (in 
particular of geometric figures) and the symbolic world of procepts dually 
representing process and concept. 

The manner in which proof develops in the embodied world is well-represented by 
the geometric theory of van Hiele, starting from observations of global aspects of 
objects, to noting and describing specific properties, then using those properties in 
the form of definitions that can be used for deduction leading eventually to agreed 
conventions about congruent triangles used as a basis for Euclidean proof. 

In the symbolic world, proof also starts by observing regularities. If I count 3 black 
balls and 2 white ones, I get the same result as counting the white ones first. When 
I do this with other numbers, the same thing happens. A change in focus from 
conceiving  3+ 2  as a specific example to seeing it as a typical ‘generic’ example 
in its class, leads to a general principle of commutativity of addition. From here, 
generic examples in arithmetic can lead to generalised arithmetic using algebraic 
notation to give a symbolic representation of generality. 

Throughout the embodied and symbolic worlds, definitions and deduction are 
based on experience of the properties of objects and of actions that are symbolised 
as procepts. A further shift becomes possible that focuses not on objects or on 
actions, but on properties. 

The formal-axiomatic world expresses properties in general set-theoretic terms to 
turn mathematics on its head. Instead of building from perceptions and actions and 
teasing out their properties, we verbalise the definitions of mathematical structures 
by prescribing generative properties as axioms and deducing other properties by 
deductive proof. 

This leads to very different methods of making arguments in the three worlds of 
mathematics. In the embodied world 3+2 is the same as 2+3 because I can see it. In 
the symbolic world 3+2 is the same as 2+3 because I can calculate it. In the formal 
world,  x + y = y + x in a specific mathematical structure because it is an axiom. 

Rodd (2000) explains these different ways of proof by looking at what convinces 
an individual of the truth of an observation, using the term ‘warrant for truth’ for 
‘that which secures knowledge’. In the embodied world, a warrant for truth occurs 
first through ‘seeing’ something is true, later developing more sophisticated 
warrants using agreed principles of deduction such as those arising in Euclidean 
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geometry. In the proceptual world, a warrant for truth arises through calculating 
that a result is correct, or using the generalized arithmetic of algebraic 
manipulation to verify the required symbolic statement. In the formal world it is 
through specifying axioms and definitions set-theoretically and deducing theorems 
by formal proof. 

The transition to the formal world requires a considerable change in approach in 
which the learner must build on the met-befores of embodiment and symbolism in 
elementary mathematics which need re-thinking to give the formal proof of 
axiomatic theories. According to Pinto (1998) some take a natural approach by 
performing thought experiments on imagery to give meaning to definitions and 
formal deduction, others take a more formal approach, to extract meaning from 
definitions by working through given theorems until they make sense. 

Weber (2004) studied students taught by analysis by a professor who first 
approached theorems in a logico-structural way, writing the beginning and end of 
the proof at the top and bottom of a column on the left and using a right-hand 
column as a scratch-pad to encourage students to think about the overall proof 
construction. Later he moved more quickly through the proofs focusing on the 
syntax in the left column and using the right hand column for working out detail. 
Then he moved on to topological ideas which he focused on the semantics by 
building on visual imagery in a more natural way. Students were likely to use 
different approaches depending on the context of the problems. In a topological 
question most used a natural approach, in questions on functions and on limits they 
used either a formal approach that gave logico-structural meaning to the deductions 
or a procedural approach which reproduced arguments learned by rote. 

 Professional mathematics have a huge range of experience and techniques to 
construct and prove theorems, including embodied imagery, thought experiments, 
and a range of symbolic manipulation and logical deduction. However, every 
mathematician began life as a new-born child, who could not speak, and had only 
genetic set-befores to start their journeys of mathematical growth. Many 
experiences are encountered and met-befores constructed on the journey to become 
a fully-fledged mathematician. 

2. Theoretical Implications 

In this part of the paper, I give brief replies to the following questions suggested for 
the conference: 

1. How do the notions learned at elementary school influence later learning? 

2. What are the respective roles in the learning process of procedures and 
concepts? What is the meaning of the expressions “mental representation”, 
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“mental object”, “mental image” and “mental model”? How do these 
mental entities unfold and relate to each other? 

3. On which basis and following what criteria should one organise 
mathematical matters to induce a kind of natural learning? How to 
elaborate guidelines? How to determine necessary passage points; 

4. What are the respective roles of intuition and rigor? How could the 
requirements concerning both aspects be modulated? 

5. What are the respective roles of problem-solving and theoretical 
structuring? 

6. What is the role of logic? 

7. What about past attempts to grasp mathematical learning globally, in terms 
of matters and methods? How did they deal with the above questions? How 
did these attempts affect school practice. 

2.1. How do the notions learned at elementary school influence later 
learning? 

A contribution has been made to this question in terms of the notion of ‘met-
before’, both in terms of the conceptions that have longer-term value and those 
which work in one context but not in another. In the apparent logical structure of a 
mathematics curriculum, the biological brain will bring previous experiences to 
interpret the situations that are presented which can lead to unforeseen difficulties 
that arise through apparently sensible approaches. For instance, in England, the 
Inspectorate has for many years encouraged all mathematics teaching to be based 
on practical activities. However, we now know of many instances in which ideas 
built in one context fail in another and may need significant re-thinking in new 
contexts. Practical experiences help build up a coherent overall picture, but may 
contain implicit elements that act as impediments in future learning. 

My current belief is that there is a need to analyse the cognitive growth of ideas to 
help teachers and students to address inappropriate met-befores when they are 
likely to occur. This is a long-term strategy over years rather than over the duration 
of a particular lesson or a particular course. A current major concern in the UK is 
that students are learning necessary procedures to pass national examinations, yet 
seem to lack the flexibility to solve multi-step problems at university. 

This would suggest the introduction of discussion concerning how compression is 
required to produce thinkable concepts, in part by giving meaningful embodiments 
to actions to focus on the effect and in part to the corresponding symbolic 
phenomenon where focus shifts from the steps of a procedure to its effect. This 
focuses on the simplicity of the desired effect as opposed to the complication of 
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many possible actions. It also uses the language of met-befores to discuss why 
ideas that may have been perfectly sensible in one situation need rethinking in 
another. 

While it may be considered (as did Skemp, 1971) that long-term learning needs to 
take account at any given time of the long-term use of a particular concept, in 
practice, the student at a given point of learning must learn in a way consistent with 
his or her current knowledge. Therefore the introduction of inevitable met-befores 
at a given point will result naturally in the need to address what is necessary when 
shifting to a new context. Thus re-organisation of knowledge is an important part 
of curriculum building. At present it is an idea that is almost totally absent from 
most curriculum frameworks. 

2.2. What are the respective roles in the learning process of procedures and 
concepts? What is the meaning of the expressions “mental 
representation”, “mental object”, “mental image” and “mental model”? 
How do these mental entities unfold and relate to each other? 

Here I address only the first part of the question. The second is a diversion into the 
meanings given to a range of terms from different theoretical positions and a 
discussion of their meanings and related theories would cause me to stray too far2. 

The terms procedural and conceptual knowledge have been widely used (eg 
Hiebert & Lefevre, 1986, Hiebert & Carpenter, 1992). In the theory of three 
worlds, these terms take on refined meanings. Conceptual knowledge relates to the 
forming of knowledge schemas that can be used in a flexible manner. Procedural 
knowledge relates to step-by-step actions before they are condensed into overall 
processes and crystallised into thinkable procepts. This relates to APOS theory 
(Action-Process-Object-Schema) to build am overall conceptual structure (Cottrill 
et al. 1996). 

                                                           
2 The terms mental representations, objects, images, models have different meanings in different 
theories, and even in a single theory, variations in meaning can occur. For instance, I share the notion 
of concept image with Shlomo Vinner (Tall & Vinner, 1981), yet he and I have quite different 
meanings, with his original meaning being a distinction between mental pictures and concept 
definitions which are separate cells while mine has a cognitive biological meaning constructed in the 
brain where the concept definition (if it exists) is part of the concept image. This significant 
difference in meaning has had no effect in the shared used of the term in the mathematical education 
community who are largely unaware of it. The term ‘object’ is equally used in a range of different 
ways, for instance, Dieudonné (1992) used it to refer to an axiomatic mathematical structure, others 
use it to mean a cognitive entity that can be manipulated (eg. Sfard 1991, Dubinsky 1991), There is 
further discussion in What is the Object of the Encapsulation of a Mathematical Process (Tall et al. 
2000). The term ‘object’ is polysemous—it has many meanings—so a debate to get a universally 
accepted meaning is essentially doomed to failure. 
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Procedural knowledge occurs in both the embodied and the symbolic worlds, with 
the possibility of an insightful linkage between embodied focus on the effect of an 
action and the corresponding notion of symbolic process-object encapsulation 
(figure 4). 

 
Figure 4: Procedural knowledge as part of conceptual knowledge. 

Furthermore, as various concepts are built into knowledge schemas, these may 
themselves be encapsulated into thinkable concepts in a manner that Skemp (1979) 
imagined in his varifocal theory, in which concepts at one level can be seen in 
more detail as a knowledge schema and vice-versa. (Figure 5). 

On the face of it, therefore, embodiment can support process-object encapsulation 
and shift the thinker from the routine doing of mathematical procedures to flexible 
thinking about mathematics. 
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Figure 5: Compressing a proceptual knowledge schema into a thinkable concept. 

This link, however, also has a weakness, as we have seen. Basing thinking on a 
specific embodiment may give rise to met-befores that may inhibit thinking in a 
different context. There is therefore an exquisite tension between embodiment as 
meaning and embodiment as cognitive obstacle in an inappropriate situation. 

This tension between different embodiments and their meanings leads to a 
spectrum of performance in which some children cling to inessential aspects of a 
particular embodiment and fail to make flexible sense of the essential mathematical 
symbolism. Gray & Tall (1994) formulated the ‘proceptual divide’ between those 
individuals who move on to flexible manipulation of numbers as process and 
concept and those who remain with inflexible procedures. Gray et al. (1998) reveal 
how this bifurcation continues as the more successful make sense of flexible 
relationships between symbols (perhaps with continuing links to embodiment), 
while the less successful continue to be imprisoned in limited embodiment and 
inflexible procedures. 
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This gives a mechanism underlying the spectrum of approaches noted by Krutetskii 
(1976) and Presmeg (1986) between those who think symbolically, geometrically, 
or a harmonic blend of the two. The research evidence suggests that most able 
students tend to focus more on symbolism than on visualization, just as the 
mathematical community tends to value the symbolic in examinations and gives 
less emphasis to the visual. 

However, significant mathematics is also created through a powerful combination 
of embodiment and symbolism leading to formal proof. A shining example is the 
recent Abel prize awarded to Atiyah and Singer (1962) for their Index Theorem 
yielding a formal proof relating topological and analytic aspects of a problem in n-
dimensional space. 

Building on embodiment and symbolism leads to different kinds of mathematical 
minds, some maintain fundamental links with embodiment and translate it into 
formalism, others continue to use the symbolism of arithmetic and algebra for more 
subtle purposes, others move firmly into a formal world of definition and axiomatic 
deduction for public dissemination of ideas, though they may continue to use a 
private world of thought experiment and embodiment to inspire formal theorems. 

2.3. On which basis and following what criteria should one organise 
mathematical matters to induce a kind of natural learning? How to 
elaborate guidelines? How to determine necessary passage points 

The theoretical perspective presented in this article reveals a natural evolution of 
ideas making sense of met-befores that can enhance or inhibit the formation of later 
concepts. It also reveals a phenomenon in which different individuals develop 
different ways of addressing their problems in learning. Some remain limited to 
rigid embodiments and rote-learning of procedures in increasingly complicated 
confusion while others benefit from successive compressions of knowledge that 
make it simpler and more comprehensive. 

I theorise that the idea of focusing on the effect of actions can be used to explain to 
teachers and learners how to develop more sophisticated ideas but it cannot be 
expected that all the population will benefit from any one style of teaching. Broad 
guidelines outlining these ideas may be helpful for both teacher and student, 
though the institutionalization of testing structures can have both positive and 
negative effects. 

My own personal view is that the growth of the individual child needs a mentor as 
teacher to guide the child to focus on essential connections, which requires the 
teacher to understand not only the mathematical structure but also the role of 
previously constructed met-befores that need to be addressed in learning new topic 
areas. 
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The King’s College Project (Askew et al. 1996) studying teaching styles 
categorised teachers into those who taught by transmission in which the teacher 
gave information to the class, those who taught by discovery learning, giving 
children contexts where they could construct ideas for themselves, and those who 
were connectionist, actively helping children to construct important connections 
between ideas. It was no surprise to me that the most successful teachers by far 
were the connectionist teachers. 

2.4. What are the respective roles of intuition and rigor? How could the 
requirements concerning both aspects be modulated? 

The theory presented reveals intuition not just as a basic human faculty, but as a 
growing cognitive facility based on previously constructed met-befores. Our earlier 
discussion on warrants for truth reveals that thought experiments give a warrant for 
truth before the rigor of formal deduction is considered. There is a therefore a 
mismatch between the views of mathematicians who inhabit the formal world and 
the learner who is building upon embodiment and symbolism in contexts that grow 
increasingly more sophisticated. 

Ideas of proof begin in the worlds of embodiment and symbolic operations where 
warrants for truth relate to what can be seen and what can be calculated. In such 
contexts it is possible to work with the world of the child to focus on explicit 
properties to see that certain other properties must follow. 

As we saw earlier, at different stages of development, different warrants for truth 
are likely to convince. The idea that addition is independent of order is evident in 
the early stages of the embodied world where re-ordering a collection of 9 objects 
and 2 objects gives the same number as 9 objects and 2 objects. It is self-evident 
because it can be seen to be true. It is less evident in the initial stages of counting 
where counting on 2 after 9 is fairly simple but counting on 9 after 2 is a much 
longer procedure. It becomes more evident when experience reveals that addition 
gives the same answer irrespective of the order of addition. Now 9+2 is the same as 
2+9 because this always happens whenever any two numbers are added. It is true 
by calculation. Later, in formal mathematics, x+y equals y+x because it is assumed 
as an axiom. 

Ideas of proof are very different for children at different stages of development. 
The level of detail required in an argument must respect the child’s developing 
conceptions while at the same time seeking increasing clarity and precision. 

Even in the formal world of mathematicians, proofs are rarely strictly rigorous. 
Mathematical proof works in a context where some truths are well-accepted and 
taken for granted, while important logical turning points are given greater attention. 
In Foundations of Mathematics, Stewart & Tall (1976) introduced the notion of 
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contextual proof to students, so that as the mathematics became more complex, the 
focus of attention changed to the more important ideas. For instance, in building up 
the notion of complete ordered field, starting with the axioms of a field we needed 
to quote all the relevant axioms to deduce the truth of a new statement, but when 
the order axioms were introduced, arithmetic properties became part of the context 
and the proof only explicitly focused on the order axioms, then in the theory of 
analysis, the arithmetic and order properties were accepted contextually and the 
focus of attention shifted to the completeness property. 

We believe that such a distinction between what has become contextually 
acceptable in a given context and what needs to be carefully documented is an art 
that needs to be made explicit to students. 

2.5. What are the respective roles of problem-solving and theoretical 
structuring? 

First we need to say what we mean by ‘problem-solving’. In my own case I see this 
as a development of a strategy for solving problems in general, not simply a harder 
kind of exercise that occurs at the end of a structured approach. I taught a course I 
called ‘problem-solving’ for over twenty years, based on the book Thinking 
Mathematically by Mason, Burton and Stacey (1982). At the end of the course 
students rarely felt that they had learnt any new mathematics but they considered 
they knew a great deal more about how to formulate problems and to attack them 
in new situations. In particular, their attitude to mathematics changed in highly 
positive ways (Yusof & Tall, 1999). 

My personal view is that a teacher as mentor can do a great deal by adopting a 
connectionist viewpoint to help each learner to address a problem by building on 
current knowledge. Such connectionism has a problem-solving sense of adventure 
to make new connections and to use existing connections in innovative ways. What 
is the problem? Can I make sense of it? Can I look at it in a more flexible way? 
This is a world away from the transmission of procedures that work in a familiar 
context but fail in slightly different situations. 

2.6. What is the role of logic? 

Logic as an abstract concept belongs in the formal axiomatic world, not the worlds 
of embodiment and symbolism. However, as in the development of conceptions of 
proof, the search for clarity and precision is a worthy enterprise in all education. 
The role of logic in the long-term curriculum needs to be rethought in the light of 
the different warrants for truth in different contexts, as part of a spiralling 
curriculum of increasing sophistication. Different individuals may respond to it in 
different ways. 
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2.7.. What about past attempts to grasp mathematical learning globally, in 
terms of matters and methods? How did they deal with the above 
questions? How did these attempts affect school practice? 

This is a big question that I can only deal with briefly. Essentially the curricula of 
earlier generations arose in part because of the need to educate a particular 
population for a certain purpose and then, with the beginnings of international 
activities from the mathematical community in the early twentieth century, to teach 
the mathematics that was conceived by the mathematical community to be 
essential. This reached its zenith in the ‘New Mathematics’ of the sixties and 
seventies, based on the premise that if children are taught the full truth of 
mathematics in fundamental terms then proper learning will occur. 

The New Mathematics did not prove to have the desired universal effect, certainly 
not with the school population as a whole. The parallel development of 
constructivist mathematics brought about an alternative child-centred approach in 
which the child constructed his own knowledge. The ‘Math Wars’ in the USA are a 
sign of the great controversy still raging between math-centred and child-centred 
mathematics. A new synthesis is required that takes into account the rich structure 
of mathematics that is available to our culture, but at the same time, attends to the 
diverse ways in which the child’s thinking grows in different individuals. My 
perception is that we need to see the coherence and simplicity of mathematics as a 
whole, but we need also to look at how different learners build these ideas over 
time so that hard-earned simplicity is constructed and re-constructed in ways 
appropriate for each individual. 



A THEORY OF MATHEMATICAL GROWTH THROUGH EMBODIMENT, SYMBOLISM AND PROOF 

 

213 

Bibliography 

ASKEW M., BROWN M., RHODES V., JOHNSON D., & WILIAM D. (1997) Effective 
Teachers of Numeracy, Final Report of a study carried out for the Teacher Training 
Agency 1995–96 by the School of Education, King’s College, King’s College, 
London. 

ATIYAH M.F. & SINGER I.M. (1963) The Index of Elliptic Operators on Compact 
Manifolds, Bull. Amer. Math. Soc., 69, 322-433. 

COTTRILL J., DUBINSKY E., NICHOLS D., SCHWINGENDORF K., THOMAS K. & 
VIDAKOVIC D. (1996) Understanding the limit concept: Beginning with a co-
ordinated process schema, Journal of Mathematical Behavior, 15, 167–192. 

DIEUDONNE J. (1992) (translated J. Dales) Mathematics-The Music of Reason, 
Springer, New York. 

DUBINSKY E. (1991) Reflective abstraction in advanced mathematical thinking, In 
D. O. Tall (Ed.), Advanced Mathematical Thinking, 95-123, Kluwer, Dordrecht. 

EDELMAN G. M. (1992) Bright Air, Brilliant Fire, NY: Basic Books, reprinted 
Penguin, 1994. 

GRAY E. M. & TALL D. O. (1994) Duality, Ambiguity and Flexibility: A Proceptual 
View of Simple Arithmetic, The Journal for Research in Mathematics Education, 
26, 115-141.  

GRAY E.M., PITTA D., PINTO M.M.F., TALL D.O. (1999) Knowledge Construction 
and diverging thinking in elementary and advanced mathematics, Educational 
Studies in Mathematics, 38 (1–3), 111-133. 

HIEBERT J. & CARPENTER T.P. (1992) Learning and Teaching with Understanding, 
In D. Grouws, (Ed.), Handbook of Research on Mathematics Teaching and 
Learning,, 65-97, MacMillan, New York. 

HIEBERT J., & LEFEVRE P. (1986) Conceptual and Procedural Knowledge in 
Mathematics: An Introductory Analysis, In Hiebert (Ed.), Conceptual and 
procedural Knowledge: The Case for Mathematics, 1-27, Erlbaum, Hillsdale, N.J. 

KRUTETSKII V.A. (1976) The Psychology of Mathematical Abilities in 
Schoolchildren (Trans, J. Teller, ed. J. Kilpatrick & I. Wirzup), University of 
Chicago, Chicago IL. 

MASON J. (1989) Mathematical Abstraction Seen as a Delicate Shift of Attention, 
For the Learning of Mathematics, 9 (2), 2-8. 



DAVID TALL 

 

214 

MASON J., BURTON L. & STACEY K. (1982) Thinking Mathematically, London, 
Addison Wesley. 

NUNN T.P. (1914) The Teaching of Algebra (including Trigonometry), London, 
Longmans. 

PINTO M.M.F. (1998) Students’ Understanding of Real Analysis, PhD Thesis, 
Warwick University. 

POYNTER A. (2004) Effect as a pivot between actions and symbols: the case of 
vector, Unpublished PhD thesis, University of Warwick,   
http://www.annapoynter.net. 

PRESMEG N.C. (1986) Visualisation and mathematical giftedness, Educational 
Studies in Mathematics, 17, 297-311.  

RODD M.M. (2000) On mathematical warrants, Mathematical Thinking and 
Learning, 2 (3), 221-244. 

SFARD A. (1991) On the Dual Nature of Mathematical Conceptions: Reflections on 
processes and objects as different sides of the same coin, Educational Studies in 
Mathematics, 22, 1-36. 

SKEMP R.R. (1971) The Psychology of Learning Mathematics, Penguin, London. 

SKEMP R.R. (1979) Intelligence, Learning, and Action: A foundation for theory 
and practice in education, John Wiley, Chichester. 

STEWART I.N. & TALL D.O., (1977) Foundations of Mathematics, University 
Press, Oxford. 

TALL D.O. & VINNER S. (1981) Concept image and concept definition in 
mathematics, with special reference to limits and continuity, Educational Studies in 
Mathematics, 12, 151-169. 

TALL D.O., THOMAS M.O.J., DAVI, G., GRAY E.M., SIMPSON A. (2000) What is the 
object of the encapsulation of a process?, Journal of Mathematical Behavior, 18 
(2), 1-19. 

TALL D.O., GRAY E.M., ALI M.B., CROWLEY L., DEMAROIS P., MCGOWEN M., 
PITTA D., PINTO M.M.F., THOMAS M.O.J., YUSOF Y.B. (2001) Symbols and the 
Bifurcation between Procedural and Conceptual Thinking, Canadian Journal of 
Science, Mathematics and Technology Education, 1, 81-104. 

TALL D.O. (2004) Thinking through three worlds of mathematics. Proceedings of 
the 28th Conference of PME, Bergen, Norway, 158-161. 



A THEORY OF MATHEMATICAL GROWTH THROUGH EMBODIMENT, SYMBOLISM AND PROOF 

 

215 

WEBER K. (2004) Traditional instruction in advanced mathematics courses: a case 
study of one professor’s lectures and proofs in an introductory real analysis course, 
Journal of Mathematical Behavior, 23, 115-133. 

YUSOF Y.B.M. & TALL D.O. (1999) Changing Attitudes to University Mathematics 
through Problem-Solving, Educational Studies in Mathematics, 37, 67-82. 

 

 

 
DAVID TALL 

Mathematics Education Research Centre 
University of Warwick 

Coventry CV8 2DR 
UK 

david.tall@warwick.ac.uk 



216 

 

 


