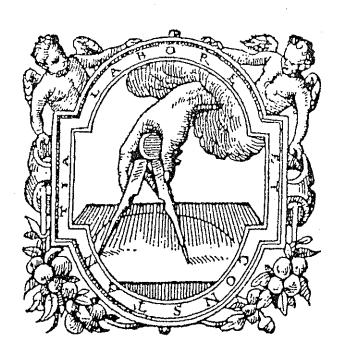


Reproduction de textes anciens nouvelle série n° 4



Michel Chasles
Les porismes d'Euclide

UNIVERSITE-PARIS VII

Reproduction de textes anciens nouvelle série n° 4

Michel Chasles

Les porismes d'Euclide

LES TROIS LIVRES

DE

PORISMES D'EUCLIDE,

RÉTABLIS POUR LA PREMIÈRE FOIS,

D'APRÈS LA NOTICE ET LES LEMMES DE PAPPUS,

ET CONFORMÉMENT

AU SENTIMENT DE R. SIMSON

SUR LA FORME DES ÉNONCÉS DE CES PROPOSITIONS;

PAR M. CHASLES,

Membre de l'Institut; Professeur de Géométrie supérieure à la Faculté des Sciences de Paris; Membre de la Société royale de Londres; Associé de l'Académie royale des Sciences de Bruxelles; Correspondant des Académies royales de Berlin, Naples et Turin; de l'Académie pontificale des Nuovi Lincei de Rome.

PARIS,

MALLET-BACHELIER, IMPRIMEUR-LIBRAIRE

DU BUREAU DES LONGITUDES, DE L'ÉCOLE IMPÉRIALE POLYTECHNIQUE, Quai des Augustins, 55.

1860.

(UAuteur et l'Éditeur de cet ouvrage se réservent le droit de traduction

MICHEL CHASLES

1793 - 1880

Fils d'un marchand aisé (son père a été président de la chambre de commerce de Chartres), CHASLES est né à Epernon le 15 novembre 1793. Il entre à l'Ecole polytechnique en 1812. Après une tentative commerciale qui est un échec, il se retire en Beauce et se consacre aux mathématiques et à leur histoire. A partir de 1841, il enseigne à l'Ecole polytechnique et, de 1846 à la mort, occupe la chaire de Géométrie Supérieure créée pour lui à la Sorbonne.

Bibliophile et collectionneur passionné, CHASLES a été victime d'une escroquerie célèbre : il a versé plus de 200 000 francs au faussaire Denis VRAIN LUCAS pour de faux autographes de personnages célèbres, qu'il avait achetés sans aucun discernement

Sa première oeuvre importante, l'Apercu historique (1837) montre à la fois sa vaste culture historique et ses dons de géomètre. L'histoire de la Géométrie de l'Antiquité au début du XIXème siècle, qui occupe les 300 premières pages, insiste surtout sur les méthodes qui ont précédé et préparé la théorie des transformations géométriques et la géométrie projective. Elle est suivie de 200 pages de notes d'une grande érudition et d'un mémoire de l'auteur sur deux principes généraux de la science : la dualité et l'homographie, où il expose ses propres recherches. L'ouvrage est encore de nos jours une référence historique classique.

Son <u>Traité</u> <u>de Géométrie supérieure</u> (1852), qui correspond à son enseignement à la Sorbonne, expose la théorie générale de l'homographie; la notion de rapport anharmonique y joue un rôle

central. Dans son <u>Traité</u> <u>des section coniques</u> (1865), il applique ses méthodes aux coniques ; il y pose également les bases de la géométrie énumérative qui sera développée quelques années plus tard par Hermann SCHUBERT.

En analyse, CHASLES a étudié l'attraction des ellipsoides (1837) et ses résultats sur la théorie générale de l'attraction (1845) prolongent ceux de GAUSS et de GREEN.

Jean-Luc VERLEY

BIBLIOGRAPHIE DES OUVRAGES DE CHASLES

Apercu historique sur l'origine et le développement des méthodes en géométrie, particulièrement de celles qui se rapportent à la géométrie moderne...

Bruxelles, 1837.

Ibid, 2ème ed. Paris 1875, 3ème ed. Paris 1889. Réedité par l'IREM de LILLE

Histoire de l'Arithmétique.

Paris, 1843

Traité de géométrie supérieure.

Paris, 1852

Les trois livres des porismes d'Euclide

Paris, 1860

Traité des sections coniques, faisant suite au traité de géométrie supérieure.

1ère partie (seule parue), Paris, 1865

Rapport sur les progrès de la géométrie.

Paris, 1870. Réedité par l'IREM de LILLE.

TABLE DES MATIÈRES.

INTRODUCTION.

§ I.	Exposé historique. — Premiers essais de divination de la doctrine des Porisnies. — Ouvrage de R. Simson. — Questions non traitées dans cet ouvrage. — Ce qu'il reste à faire pour rétablir les trois Livres d'Euclide
§ 11.	Recherches consignées dans l'Aperçu historique. — Réta- blissement des Porismes que comportent les énoncés de Pappus. — Caractère général de ces propositions. — Leur analogie avec les théories qui forment les bases de la Géométrie moderne
Ş III.	Texte de Pappus relatif aux Porismes 14-21
§ IV.	Explication de la proposition des quatre droites, de la pro- position générale de Pappus et du Porisme complet du l ^e Livre. — Observation relative aux deux définitions des Porismes
§ V.	Indication succincte des matières contenues dans le Traité des Porismes de Simson — Définition des Porismes.— Opinion de Playfair
§ VI.	Reflexions sur quelques passages de Pappus. — Éclaireis- sements sur la nature et l'origine des Lieux et des Po- rismes. — Différence et point de contact entre les Po- rismes et les Corollaires. — Accord des deux définitions des Porismes, sauf l'insuffisance de la seconde. , 32-41 Analogie entre les Porismes et les Données d'Enclide. —
	Identité d'origine de ces deux classes de Propositions.

(vn) He Livre. Porismes LXXVIII-CXXIII...... Pages 177-228 III Livre. Porismes CXXIV-CCXX 229-322 Observation concernant le théorème de Desargues sur l'involution..... 231 Observations sur la relation des Lieux et des Porismes; et sur la forme des énoncés des Lieux d'après Pappus, Eutocius et Hassan ben Haithem.. 269-272 Observations sur les difficultés considérables qu'Euclide a dû éprouver pour énoncer avec une exactitude rigoureuse nombre de Porismes. - Dissérence entre les Porismes des Xº et XVIº Genres, qui s'expriment, dans la Géométrie moderne, par une même ERRATA..... 324

TABLE DES PORISMES

DANS LESQUELS ON FAIT USAGE DES XXXVIII LEMMES (1).

Leannes.	Porismes.
I.	ι, 8.
H.	2.
111.	3, 21, 25, 28, 30, 32, 106, 107, 110, 113, 114, 117, 119, 122, 124-128, 130, 131, 133-135, 162, 181, 189, 208, 209, 210, 211, 214.
IV.	4.
٧.	5, 172, 177.
VI.	6.
VII.	η, 145.

⁽¹⁾ On n'a porté dans cette Table que les Porismes dans lesquels les Lemmes sont etites textuellement. Il sera facile de voir que les Lemmes sont utiles encore, quoique non explicitement, pour la démonstration de la plupart des autres Porismes, parce que cette démonstration s'appuie directement sur des Porismes, 188 Limontois 1883, 1883, 1885, 1886, 18

		-Traité des Connues géométriques du géomètre arabe
		Hassan ben Haithem Notice de Proclus sur les Po-
		rismes Passages de Diophante Pages 41-53
6	viii.	Nouvelle définition des Porismes Identité de ces pro-
		positions, quant à leur forme, avec la plupart des pro-
		positions de la Géomètrie moderne 53-58
S	IX.	De l'utilité des Porismes pour la résolution des Problè-
		mes 58-6:
5	x.	Observations et éclaircissements préliminaires au sujet des
		XXIX Genres de Porismes décrits par Pappus Ordre
		qu'on suivra dans le rétablissement des trois Livres
		d'Enclide 61-67
9	XI.	Analyse des XXIX Genres de Porismes Expression.
		algebrique des Genres qui comportent des relations de
		segments. — Autres Genres qui se rapportent aux mêmes
		matières 67-73
5	XII.	Analyse des XXXVIII Lemmes de Pappus relatifs aux
		Porismes Corollaires des Lemmes III et XI. 73-84
5	XIII.	Usage des XXXVIII Lemmes de Pappus pour le rétablis-
		sement des trois Livres de Porismes 84-87
S	XIV.	Énoncé des XXXVIII Lemmes de Pappus sur les Poris-
		mes d'Enclide 87-98

LES TROIS LIVRES DE PORISMES.

(viii)

```
Porismes.
Lemmes.
VIII.
               17, 18.
               19, 20.
IX.
               22, 24, 81.
х.
XI.
               11, 23, 34, 37, 40, 43, 51, 54, 73, 75, 76, 81-
               83, 89, 91, 92, 94, 96-98, 100, 110, 114, 119,
               120-122, 138, 146, 158, 170, 171, 179, 189,
               209, 211, 212.
XII.
               24, 29.
XIII.
               24, 29.
XIV.
               51.
XV.
               41.
XVI.
               42, 43, 51, 83, 93, 113, 114, 176, 181.
XVII.
               4ι.
XVIII.
               44.
               102, 103, 171, 219.
XIX.
               144, 193, 207.
XX.
XXI.
               193.
               136 bis.
XXII.
               137, 143, 187.
XXIII.
               136 bis.
XXIV.
XXV.
               137, 187.
XXVI.
               204.
XXVII.
               167, 204.
XXVIII.
               160, 168, 172, 216.
               148, 192.
XXIX.
               152, 166, 167, 168, 173.
XXX.
               174, 194.
XXXI.
 XXXII.
               207.
               161.
 XXXIII.
               160, 167, 169, 207, 216.
XXXIV.
               160, 168, 172.
XXXV.
 XXXVI.
               175, 196.
               143.
XXXVII.
 хххуш.
               180.
```

TABLE DES PORISMES

QUI SE RAPPORTENT AUX XXIX GENRES.

Genres.	Porismes,
T.	11-13, 158, 159.
H.	1-10, 14-30, 102-109, 160-165, 218-220.
III.	31, 32, 110, 166-169.
IV.	33, 35.
v.	36-38, 111, 170-172, 212, 213.
VI.	39-44, 112-118, 173-183, 214.
VII.	45-48, 119, 184-186, 215.
VIII.	49, 50.
IX.	51-55, 120-122, 187-189, 216.
x.	56-58, 123, 190, 191.
XI.	Énoncé défectueux.
XII.	59-71, 192.
XIII.	72, 73.
XIV.	94, 95.
Xv.	76, 77, 193-198.
XVI.	78-81, 1 <u>99</u> .
XVII.	82-84, 200, 201.
XVIII.	85 , §6.
XIX.	87.
XX.	88-g2.
XXI.	93-101, 202-210.
XXII.	124-135, 211.
XXIII.	136, 136 bis, 137.
XXIV.	138-140.
XXV.	141-146.
XXVI.	147.
XXVII.	148-151.
XXVIII.	152-154.
XXIX.	155-157, 217.

DΕ

PORISMES D'EUCLIDE,

RÉTABLIS POUR LA PREMIÈRE FOIS, D'APRÈS LA NOTICE ET LES LEMMES DE PAPPUS, ET CONFORMÉMENT AU SENTI-MENT DE R. SIMSON SUR LA FORME DES ÉNONCÉS DE CES PROPOSITIONS.

INTRODUCTION.

§ I. — Exposé historique. —Premiers essais de divination de la doctrine des Porismes. — Ouvrage de R. Simson. — Questions non traitées dans cet ouvrage. — Ce qu'il reste à faire pour rétablir les trois Livres d'Euclide..

Parmi les ouvrages des mathématiciens grecs qui ne nous sont pas parvenus, aucun n'a plus excité les regrets et la curiosité des géomètres des siècles derniers que le Traité des Porismes d'Euclide.

Cet ouvrage ne nous est connu que par la Notice qu'en a donnée Pappus dans le VII^e Livre de ses Collections mathématiques (1), et par une très-courte mention de Proclus

(1) Pappus, mathématicien d'Alexandrie, florissait vers la fin du tve siècle de notre ère. Ses Collections mathématiques en huit livres, dont malheureusement les deux premiers nous manquent, sont un ouvrage extrêmement précieux pone l'histoire des mathématiques. Pappus y fait connaître des recherches sur toutes les parties de la géométrie, et même sur les machines dans le VIII. Livre, et fournit des notions sur heaucoup d'ouvrages dont

(a)

dans son Commentaire sur le 1er Livre des Éléments d'Euclide.

Mais ce qu'en dit le premier de ces auteurs, qui était luimême un géomètre éminent et des plus compétents pour apprécier les œuvres de ses devanciers, a été bien propre, indépendamment du nom d'Euclide, à faire naître ces regrets des Modernes et leur désir de retrouver ou de parvenir à rétablir un ouvrage si précieux: car, selon Pappus, « cet ouvrage renfermait une ample collection de propo-» sitions d'une conception ingénieuse et d'un très-utile se-» cours pour la résolution des problèmes les plus dissi-» ciles. »

Aussi Montuela, dont nous nous bornerons à citer ici le jugement, a-t-il pensé que ce Traité des Porismes était a le plus profond de tous les ouvrages d'Euclide et celui qui lui ferait le plus d'honneur s'il nous était par» venu » (1).

La Notice de Pappus, un des fragments les plus intéressants qui nous soient restés des mathématiques grecques, renferme deux définitions de ce genre particulier de propositions appelées *Porismes* par Euclide, et une trentaine d'énoncés qui s'y rapportent; mais le tout en termes concis et obscurs, dont les géomètres, à diverses époques depuis

nous ignorerions, sans cela, même les titres et les noms des anteurs. On doit à Commandin (1509—1575), savant géomètre et commentateur intelligent, une traduction de ces Callections mathématiques qui parut sprès se mort sous le titre: Pappi Alexandrini Bathematica Collectiones a Federico Commandina Urbinate in Latinum conversa, et Commandriis Illustratar. Pisuuri, 1588, infolfo.— Ecclem. In hue nostra editione ab innumeris, quibus scatebant mendis, et practipuè in Graco contextu diligenter vindicata. Bononia, 1660, infolio. Plusieurs géomètres a'étaient proposé, à diverses époques, d'éditer le lexte même de cet ouverage, un des plus importants, incontestablement, qui nous soit parvenn des Grecs. Il est bleu à regretter que leurs projets alont

deboué. Aucuno entroprise no saurait être plus digne des encouragements

destinés aux publications seiontifiques.
(1) Histoire des Hathématiques, 1, 1, p. 215.

(3)

la Renaissance, ont vainement cherché à pénétrer le sens.

Cependant Albert Girard, savant géomètre des premiers temps du xvn° siècle, avait fait espérer qu'il rétablirait ces Porismes, dont il parle dans deux endroits différents de ses œuvres (1); mais ce travail n'a peut-être pas été terminé; du moins il ne nous est pas parvenu, et l'on ne peut préjuger jusqu'à quel point l'auteur avait entrevu la pensée d'Euclide.

Vers le même temps Fermat s'est occupé du même sujet, bien digne de sixer l'attention d'un esprit'aussi pénétrant. Dans un écrit très-succinct, intitulé: Porismatum Euclidæorum Renovata Doctrina et sub forma isagoges recentioribus Geometris exhibita, il dit que si plusieurs auteurs,

⁽¹⁾ Voici quels sont ces deux passages d'Albert Girard : 1º Dans son petit Traité de Trigonométrie se trouve un chapitre des polygones rectilignes, ou l'auteur, après avoir énuméré les formes différentes que peut avoir un quadrangle, un pentagone, un hexagone, ajoute : « Le tout, quand il n'y a * que deux lignes qui passent par un poinct, comme jadis estoyent les Po-· rismes d'Euclides, qui sont perduz, lesquelz j'espere de mettre Lien tost en · lumiere, les ayant restituez il y a quelques années en ça. » (Tables des sinus, tangentes et secuntes, seton le Raid de 100000 parties. Avec un traicté succinct de la Trigonométrie cant des triangles plans, que sphéricques, etc., par Albert Girard, samielois. La Haye, 1626, in-24); 2º Dans le Traité de l'art pondéraire ou de la statique de Stevin, à la suite de la proposition relative au centre de gravité du triangla, dans laquelle l'auteur fait usage du théorème de Ptolémée sur le triongle coupé par une transversale, Albert Girard ajoute ce qui suit: « Caluy qui n'entend pas ceste maniera de de-» monstration doit recourir premierement au lleu cité de Ptolemée, puis à a l'Arithmetique du present autheur vers la fin touchant l'addition et souss traction des raisons. Les Anciens, comme Archimedes, Euclides, Appollone » Pergee, Eulocius Ascalonite, Pappus Alexandrin, etc., ont leurs livres remplis de l'égalité d'une raison a doux autres, excepté que ce qu'en a escrit Euclides és Elemens vulgaires est assex rare, comme en la 23 » proposition du sixlesme livre, et en la 5 proposition du huitlesme » livre, Mals il est à estimer qu'il en a plus escrit en ses trois livres de Porit-nes qui sont perdus, lesquels, Dieu oidant, j'espere de mettre en lumiere, les ayant inventes de nouveau. . (V. Les Couvres mathématiques de Simon Stevin da Bruges, etc. Le tout reveu, corrigé et augmenté par Albeau Gianab, sumielois, Mottemportes des les 1881 de 1881 de

Viête notamment, « ce géomètre plein de génie et qui n'a pas encore été assez loné », ont rétabli avec succès quelques ouvrages des Anciens, néanmoins on ignore encore et l'on n'a pas même soupçonné ce qu'étaient les Porismes. Il donne ensuite cinq exemples de Porismes, et il exprime sa pensée sur le genre des propositions ainsi nommées par Euclide, qu'il croit avoir été des propositions de Lieux (1). Il ajoute que, si cet aperçu est goûté des savants, il rétablira un jour les trois livres perdus; qu'il ira même au delà du géomètre grec, et fera connaître dans les sections coniques et dans quelques autres courbes, des Porismes admirables et pourtant encore ignorés. Ailleurs il semble dire qu'il a rétabli l'ouvrage d'Euclide. Toutesois, sans examiner ici les propositions données par Fermat comme exemples de Porismes, lesquelles ne paraissent pas présenter un caractère spécial bien déterminé qui les distingue nettement des propositions locales ordinaires, il faut remarquer que, hormis une ou deux peut-être, elles ne peuvent se rapporter aux propositions d'Euclide indiquées par Pappus (l'une d'elles même concerne la parabole). On peut inférer de là que c'était seulement sur la nature et l'objet du livre d'Euclide, c'est-à-dire sur la doctrine même des Porismes, que Fermat était parvenu à fixer ses idées, à un certain point de vue, mais qu'il n'avait pas rétabli les propositions que peuvent comporter les énoncés de Pappus.

Quelque temps après, Boulliau (2) et Renaldini (3) paraissent avoir aussi entrepris cette divination. Mais ils se

(t) . Cum autem ut jam diximus Porismata ipsa sint loci... . (Vacia opera mathematica, etc., p. 119.)

(6)

n heaucoup trop serré pour un sujet aussi dissièle » (1). Il était réservé à son savant compatriote R. Simson, professeur de mathématiques à l'Académie de Glasgow, de pénétrer ce mystère qui résistait à tant d'efforts. Les premiers essais heureux de ce géomètre, après de longues et persévérantes tentatives, datent de 1720. C'était l'explication de trois propositions, les seules, parmi une trentaine d'énoncés divers, que Pappus ait décrites en termes suffisamment complets. La première concerne un système de quatre droites; la seconde, qui est la même, étendue à un nombre quelconque de droites, est la proposition générale dont parle Halley; et la troisième, relative encore à des droites, est d'un genre différent.

Maintenant que le seus précis des trois propositions nous est connu, le texte de Pappus peut paraître suffisamment explicite, nonobstant sa concision; mais assurément il présentait alors de grandes difficultés.

Aussi l'explication de Simson fut une découverte inattendue. Communiquée par l'auteur à Maclaurin et bientôt après à la Société Royale de Londres, et insérée dans les Transactions philosophiques de mai 1723 (2), elle attira l'attention des géomètres et par sa nouveauté et par son importance.

Les efforts persévérants de Simson lui ayant fait faire de

sont bornés à de simples réflexions qui n'ont répandu aucune lumière sur la question elle-même.

Il y a lieu de penser que la plupart des géomètres qui ont rétabli quelques-uns des autres ouvrages grees sur lesquels Pappus a laissé des Lemmes, que Snellius et Viète (1) notamment, n'avaient point négligé de porter leur attention sur le Traité des Porismes, de préférence même à tout autre, à raison de la grande supériorité de cet ouvrage, proclamée par l'appus, et des secours qu'il devait procurer dans toutes les investigations géométriques.

Le célèbre astronome Halley, très-versé dans la connaissance de la géométrie des Grees, traduisit de l'arabe, comme on sait, le Traité de la Section de raison, et rétablit celui de la Section de l'espace et le VIII livre des Coniques d'Apollonius, L'énigme des Porismes devait naturellement lui offrie de l'attrait. On lui doit d'avoir mis au jour le texte gree qui s'y rapporte, resté jusqu'alors manuscrit comme tout l'ouvrage de Pappus, au grand regret des géomêtres, qui n'en connaissaient que la version latine de Commandin. Halley a joint à ce texte, inséré dans son édition de la Section de raison et de la Section de l'espace, une traduction latine; mais sans commentaire ni aucun éclaireissement; car il confesse ne rieu comprendre à ce texte des Porismes, « rendu inintelligible, tant par la perte » d'une figure à laquelle Pappus renvoie, que par quelques n omissions ou autres altérations qui affectent une certaine proposition générale; d'autant plus, ajoute-t-il, que » le style de l'anteur, outre ces défants, a celui d'être

(7)

nouveaux pas dans la voie qu'il ouvrait si heureusement par un résultat partiel, mais incontesté et d'autant plus précieux, il parvint à fixer son opinion sur la doctrine des Porismes, et il la développa dans l'oùvrage intitulé: De Porismatibus tractatus; quo doctrinam Porismatum satis explicatam, et in posterum ab oblivione tutam fore sperat Auctor. Mais cet ouvrage ne parut que beaucoup plus tard, en 1776, huit ans après la mort de l'auteur. Il fait partie d'un volume publié aux frais de lord Stanhope et par les soins de J. Clow, professeur de philosophie à l'Académie de Glasgow, à qui Simson avait légué ses papiers, volume dans lequel se trouvent aussi la divination des deux livres de la Section déterminée d'Apollonius, et quelques autres ouvrages de Simson restés jusqu'alors inédits comme celui des Porismes (1). Le traité de Lieux plans d'Apollonius, rétabli aussi par cet habile interpréte des Anciens, avait paruen 1749, du vivant de l'auteur (2).

C'est surtont la divination des Porismes qui a fait à juste titre la célébrité de Simson dans l'histoire des mathématiques.

Cependant, si l'on considère que le rétablissement de l'ouvrage d'Euclide embrassait deux questions différentes; qu'il s'agissait de découvrir, premièrement ce qu'était cette doctrine des Porismes ignorée des Modernes, et secondement ce qu'étaient ces propositions si nombreuses (cent

⁽²⁾ Exercitationes geometrica tres: 1º circa demonstrationes per inscriptas et circumteriptas figuras; 2º circa conicarum sectionum quasdam propositiones; 3º de Portunatibus. Parisiis, 1657; in-4º.

⁽³⁾ De recolutione et compositione mathematica, libri duo. Patavii, 1668; in-fol.

⁽¹⁾ a llactenus Porisusatum descriptio nec mihi nec lectori profutura, a neque aliter fleri potuit: tam ob defectum achematis cujus fit mendo; a unde rectre satis multo, de quibus hic agitur, absque notis alphabeticis,

utlove allo distinctionis charactere inter se confunduntur i quam ob omissa quædam et transposita, vel aliter vitiata, in propositionis generaa lis expositione; unde quid sibi velit Pappus haud mibi datum est conji-

[»] cere. Hisce adde dictionis modum nimis contractum, ac in ro difficili, a qualis hac est, minime usurpandum. »(Apollonii Pergui de Sectione ra-tionis,... p. xxxvii.)

⁽²⁾ Pappi Aloxandrini Propositiones dua generales, quibus plura ex Euclidis Perismatis complexus est. Restitute à Vivo Dectissies Reb. Siec.

⁽¹⁾ Viète a rétabli sons le titre d'Apollonius Gullus le Traité des contacts des cercles d'Apollonius, at Snellius le traité de la Section déterminée sons le titre d'Apollonius Batarus (Lugodini, 1608, in 4°), et les deux traités de la Section de raison et de la Section de l'espace (ibid., 1607). Pascol avait été na delà do Viète dans un ouvrage qu'il intitulait: Promotus Apollonius Cullus, qui ne nous est pas parvenu.

⁽¹⁾ Roberti Simson, matheseos nuper in Academia Glusguensi professoris, Opera quadam reliqua. Glusgues, 1776; in- 4^{α} .

⁽²⁾ Apollonii Pergoi Locorum plunorum libri II, restituti a Roberto Simson. Ulasguez, 1749; in-4º.

On sait que Fermet et Schooten avaient déjà rétabli ce Traité des Lieur plans, ou du moins démontré, le pramier par la simple géométrie, et le second par le calcul algébrique de Descartes, les nombreuses propositions de Lieux rapportées par Puppus. Sinteon a'est proposé, en rovenant sur ce sujet, d'imiter dans ses démonstrations le style géométrique des Anciens

soixante et ouze), qui formaient les trois livres de Porismes d'Euclide, il faut reconnaître que c'est la première seulement de ces deux questions que Simson a résolue, mais qu'il n'a pas été beaucoup au delà, et qu'il a laissé à d'autres le soin de rétablir l'ouvrage d'Euclide. Car sur vingt-neuf énoncés transmis par Pappus dans un style concis et énigmatique, et qui résument les nombreuses propositions d'Euclide, Simson n'a donné que dix Porismes répondant à sept seulement de ces énoncés. Il a done laissé intacts vingt-deux énoncés, en exprimant même la pensée qu'il serait fort difficile de les rétablir (1).

Ces dix propositions, dont six concernent des figures rectilignes et les quatre autres le cercle, ne pouvaient suffire pour faire connaître le caractère général des Porismes d'Euclide.

En outre, R. Simson n'a pas recherché quelle avait pu être la pensée qui a dirigé le géomètre grec dans sa conception originale; il n'a pas fait voir non plus comment cette doctrine des Porismes devait être si utile, nécessaire même pour la résolution des problèmes, comme le dit Pappus, et quels rapports elle pouvait avoir avec les propositions et les méthodes modernes, qui, ainsi que je le dirai plus tard, l'ont suppléée à notre insu.

Depuis, bien que la plupart des géomètres qui ont écrit sur les Porismes aient approuvé la divination de Simson, en y reconnaissant la pensée d'Enclide sur la forme propre à ce genre de propositions (2), néanmoins ils ne l'ont pas

(2) Mathieu Stewart, Hutton, Playfair, Wallace, mylord Broughom, Lhuil-lier, J. Leslic, Davies, etc.—Outre le Mémoire inséré dans le volume de 1798

(10)

dissipé toute l'obscurité qui enveloppait cette grande énigme. Peut-être pourrons-nous dire plus loin la nature des difficultés qui s'opposaient à l'intelligence des énoncés de Pappus et au rétablissement des propositions d'Euclide.

§ II. — Recherches consignées dans l'Aperçu historique. — Rétablissement des Porismes que comportent les énoncés de Pappus. Caractère général de ces propositions. - Leur analogia avec les théories qui forment les bases de la Géométrie moderne.

Ayant dù présenter une analyse de l'ouvrage de Pappus, surtout des nombreux Lemmes relatifs aux Porismes d'Euclide, dans l'Aperçu historique, où je traitais de l'origine et du développement des Méthodes en Géométrie, j'ai été conduit à m'occuper, après tant d'autres géomètres, de la question des Porismes. L'intérêt du sujet m'a entrainé souvent dans des recherches plus prolongées que je ne l'aurais voulu, excité par le désir de parvenir à porter un jugement sur le travail de Simson, et même à donner suite, s'il m'était possible, à cette divination qui paraissait comporter plusieurs questions essentielles, indépencomplétée, ou plutôt on ne voit point qu'ils y aient fait de nouveaux pas, ni en produisant quelques Porismes qui répondissent à d'autres énoncés de Pappus, ni en émettant quelques vues, soit sur le caractère général des propositions qui ont dû entrer dans le Traité d'Euclide, soit sur le genre d'utilité de cet ouvrage et les points de contact qu'il aurait avec nos théories et nos méthodes actuelles.

R. Simson et ses successeurs (1) sont donc loin d'avoir

des Philosophical Transactions de la Société Royale de Londres, sous le titre : General Theorems, chiefly Porisms, in the higher Geometry, par lord Brougham, on peut consulter surtout les développements sur, la Géométrie des Grees et en particulier sur la doctrine des Porismes, dans lesquels l'illustre savant est entre en faisant la biographie de Simson (V. Lives of Philosophers of the time of George III. By Henry, Lord Brougham, F. R. S., member of the Institute of France, etc.)

(1) Nous n'entendons parler lei que des ouvrages antérieurs à 1835, époque à l'aquelle nous étions fixé sur cette question des Porismes et nous avions préparé le présent travail, comme on le voit dans une Note de l'Aperçu historique, qui on contient une analyse (p. 27/1-284). Nons ne faisons dono aucunoment allusion à divers écrits qui ent puru dans ces dernières années, à ceux notamment qui ont donné lieu à une polémique qui so continue en-

D'ailleurs, en parlant des successeurs de Simson, nons n'entendons quo ceux qui ont embrassé ses vues et sa doctrine, et il arrive, si je ne me trompe, que les outeurs des recherches les plus récentes, quoique différant entre enx de sentiment sur la question, se sont accordés à se prononcer contre le sys-

Ces recherches, quels que soient le mérite et l'utilité qui s'y rattachent, n'ont pas pour objet, en fuit du moins, de rétablir l'ouvrage d'Euclide: leurs auteurs paraissent s'y être proposé principalement de parvenir à une traduction du texte de Pappus plus satisfaisante que celles de Commandin, de Halley et de R. Simson, pour en tiver la signification du mot Porime et le caractère propre des propositions sinsi nommées par Euclide.

Mais on ne peut se dissimuler que ce travail n'est qu'une partie de celui que comporte et exige le rétablissement de l'ouvrage même d'Euclide, et qu'il demande à être complété par de nombreux exemples de Porismes et par un ensemble de propositions répondant aux énoncés de Pappus

Or c'est précisément ce recueil de propositions qui a toujours fait les dif-ticultés du sajet dopuis la divination de Simson. Cependant ce travail est nécessaire, on pent dire indispensable, non pas sculement aux youx des géomètres qui se proposeraient le rétablissement des trois livres de Porismes

(11)

damment du rétablissement de l'ouvrage lui-même, comme je viens de le dire.

On avait remarqué dans les Lemmes de Pappus certaines traces de la théorie des transversales, telles que quelques propriétés relatives au rapport harmonique de quatre points et une relation d'involution dans le quadrilatère coupé par une droite (1).

Un nouvel examen de ces Lemmes m'y a fait reconnaître une autre proposition, plus humble en apparence peutêtre, et qui, par cette raison sans doute, avait échappé aux investigations antérieures, quoique, en réalité, elle ait une bien plus grande importance que toutes les autres. Il s'agit, en esset, de la propriété projective du rapport anharmonique de quatre points, qui se trouve démontrée dans six Lemmes différents (2) et dont, en outre, Pappus fait usage pour la démonstration de plusieurs autres Lemmes.

Ces circonstances, bien propres à fixer toute mon attention, pouvaient m'autoriser à penser que les propositions d'Euclide étaient de celles auxquelles conduisent naturellement les développements et les applications de la notion du rapport anharmonique, devenue fondamentale dans la géométrie moderne (3).

Parmi ces développements se présente en première ligne la théorie des divisions homographiques formées sur deux droites ou sur une seule, dont le caractère propre consiste

⁽t) : I mean those of the first book, for us to those of the two others, » excepting what may be included in the second of the above-mentioned Propositions, I believe it will be extremely difficult for any body to restore
 them.
 (Lattra adressée au doctour Jurin, scerétaire du la Société Royale, le 1er forrior 1713. V. Account of the Life and Writings of R. Simson, by the Rev. William Trail, 1812; lu-40, p. 21.)

d'Euclide, comme on a rétabli plusieurs autres ouvrages de l'antiquité, mais nième aussi au point de vue plus restreint de ceux qui s'attachent principalement à Interpréter le texte de Pappus, et à y chercher le but et les bases de cette doctrine des Parismes.

Car, quel que soit le système que l'on adopte, on ne peut se dispenser, dans un travail de cette nature, d'en vérifier et d'en démontrer la justesse : co qu'on ne fera qu'en sonmettant ce système à l'expérience pratique. Et lei cotto expérience consiste à former, commo nous venons de la dire, un ensemble systematique de propositions, distinctes à cortains égards des théorèmes et des problèmes, et répondant aux énences énigmatiques de l'appus et aux paroles de ce géomètre sur l'importance et l'utilité de l'ouvruge d'Euclida.

Telle est la véritable question des Porismes. C'est pourquei diverses tentatives qui ne se sont pas complétées, en quelque sorte pratiquement, comme elles de Boulliau, de Renaldini, etc., sont restées infractueuses et ont luissé la questiou dans le même état

⁽¹⁾ Poncelet, Propriétés projectives des figures; p. xxxvi, xun; 17, 83, 92. (2) Lemmes III, X, X1, XIV, XVI et XIX. (Propositions 129, 136, 137, 140,

¹⁴² et 1 (5). - Aperça historique, p. 33. - Traité de Géométrie supérieure, p. xx1. (3) « Après avoir reconnu que la plupart des Lemmes de Pappus qui paraissent so rapporter au premier livro des Porismes d'Euclide pouraient

[»] se déduire de la proposition...., nous avens pensé que cette proposition pourrait bien aussi être la clof de tout co premier livre de Porismes et

[·] conduire à une interprétation des énoncés que l'appus nous a laisses. »

⁽Aperça historique, p. 39.)

en ce que le rapport anharmonique de quatre points d'une division est égal à celui des quatre points correspondants de l'autre division : ce qu'on exprime par des équations à deux, à trois et à quatre termes (1).

Or, ces équations une fois connues, on ne pouvait manquer de s'apercevoir que la plupart des énoncés de Pappus constituent des relations de segments telles que celles qui se déduisent de ces équations mêmes. Remarque importante, car elle devait saire espérer que ce pourrait être cette théorie fort simple des divisions homographiques qui donnerait enfin la clef des nombreux Porismes énoncés par Pappus et dont la signification avait résisté aux ellorts de tant de géomètres et de Simson lui-même.

Et en esset, ce point de départ dans mes essais de divination m'a conduit assez aisément au rétablissement de la plupart des énoncés de Pappus, c'est-à-dire, à des propositions, souvent très-multiples, qui satissont aux conditions exprimées par ces énoncés coucis et énigmatiques. J'ai pu annoncer ce résultat dans l'Apercu historique (2), me bornant alors à faire connaître deux Porismes très-généraux, dont l'un notamment suffit pour embrasser dans ses nombreux corollaires une grande partie des énoncés en question (3).

Je reprends aujourd'hui ce travail. Le long retard qu'il

(1) Géométrie supérieure, p. 81-101. — Iperça hist., p. 281.

(2) . En prenant pour point de départ et pour base noire manière de con-· cerair la doctrine des Porismes, nons avons obtenu assez naturallement » une interprétation des ráchoncés de Perismes que n'a pas rétablis Simson, » (Aperçu hist., p. 279.)

- (3) « Les limites dans lesquelles nous devous nous renfarmer ne nous » parmattent pas d'énoncer ici les Porismes que nous avons trouvés comme
- * répondant au texie de Pappus. Mais nous allons donner deux proposi-
- Hons très-générales qui nous ont para comprendre dans leurs nombreux co-
- · rollaires les 15 énoncés de l'appus appartenant au premier livre des Po-
- * rismes d'Euclide. Aperça hist., p. 279.)

(14)

sont peut-être rencontrées que dans l'ouvrage perdu d'Eu-

Ce caractère du Traité des Porismes semble bien propre à justifier pleinement les paroles de Pappus qui proclame le mérite éminent de cet ouvrage, recueil ingénieux de propositions fécondes, indispensable à tous ceux qui veulent se livrer aux recherches mathématiques.

On reconnaît encore combien les géomètres, sur la foi de Pappus, ont eu raison de déplorer la perte de cet ouvrage; et combien cette perte a été préjudiciable aux progrès des mathématiques. Car si ce livre des Porismes nous fût parvenu, il eût donné lieu depuis longtemps à la conception et au développement des théories élémentaires du rapport anharmonique, des divisions homographiques et de l'involution, et l'on ne doutera pas que ces théories ne fussent entrées sans hésitation ni objections, avec l'autorité due au nom d'Euclide, dans les ouvrages destinés à l'enseignement, comme formant les bases naturelles de la géométrie générale.

§ III. - Texte de Pappus relatif aux Porismes.

- a Après les Contacts sont les Porismes d'Euclide, en trois livres, collection ingénieuse d'une foule de choses qui servent à la solution des problèmes les plus difficiles, et que la nature fournit avec une inépuisable variété.
- » Il n'a rien été ajouté à cet ouvrage d'Euclide, si ce n'est que depuis quelques géomètres peu expérimentes ont donné de nouvelles rédactions de quelques-uns de ces Porismes. Bien que chacune de ces propositions soit susceptible d'un certain nombre de démonstrations, comme nous le faisons voir, Euclide n'en donne qu'une, qui est toujours la plus claire.
 - . Les Parismes renforment que desaites sabille

éprouve, dù principalement à d'autres occupations, s'explique encore par la nature même du sujet. Car il fallait donner d'abord aux trois théories du rapport anharmonique, des divisions homographiques et de l'involution les développements dont étaient susceptibles les germes qui s'en trouvent dans les Lemmes de Pappus. C'est ce que j'ai cherché à faire dans le Traité de Géométrie supérieure, ouvrage dont ces théories mêmes forment les bases.

On ne verra peut-être pas sans étonnement que l'ouvrage si célèbre d'Euclide, dont une si profonde obscurité cachait la forme, le contenu, le caractère général et le but, non moins que les points de contact qu'il pouvait avoir avec nos méthodes actuelles, renfermait précisément les germes de ces méthodes elles-mêmes et plusieurs des propositions qui en forment les applications les plus immédiates et les plus naturelles.

Il fallait, pour être à même de soupçonner ce caractère spécial de l'ouvrage gree et rétablir les nombreuses propositions qu'il renfermait, connaître préalablement toutes les conséquences de la notion du rapport anharmonique et les équations diverses qui servent à les exprimer, comme je

l'ai dit dans l'Aperçu historique (1).

C'est ce qui explique, je crois, comment il a paru toujours si difficile jusqu'à ces derniers temps, je pourrais dire presque impossible, de donner une interprétation de la plus grande partie des énoncés de Porismes laissés par Pappus, puisque la plupart des propositions qui satisfont à ces énoncés se rapportent à un genre de relations qui, sauf quelques cas les plus simples, n'étaient pas encore entrées dans la géométrie moderne, et qui chez les Anciens ne se

- (1) . Chacune de ces équations peut se transformer de différentes manières en d'autres qui auront deux, trois on quatre termes. Plusieurs de
- ces transformations sont nécessaires pour donner l'interprétation des
- * Porismes du premier livre d'Euclide. * (Apereu hist., p. 281.)

(15)

naturelle et nécessaire, surtout très-générale et d'une étude très-agréable à ceux qui savent voir et trouver.

- u Les diverses espèces de ces Porismes ne sont, ni des théorèmes, ni des problèmes, mais sont, en quelque sorte, d'une forme intermédiaire; de façon qu'on peut les présenter comme des théorèmes ou comme des problèmes.
- » Il est résulté de là que, parmi beaucoup de géomètres, les uns les regardent comme des théorèmes, et d'autres comme des problèmes, n'ayant égard qu'à la forme des énoncés.
- Mais les définitions données par les Anciens prouvent qu'ils ont mieux compris les différences qui existent entre ces trois genres de propositions. Ils disaient, en effet, que:
- » Le Théorème est une proposition où l'on demande de démontrer ce qui est proposé.
- » Le Problème est une proposition où l'on demande de construire ce qui est proposé.
- » Le Porisme est une proposition où l'on demande de trouver ce qui est proposé (1).
- » Cette définition des Porismes a été changée par des géomètres modernes qui, ne pouvant pas tout trouver, mais conservant les éléments de cette doctrine, se contentèrent

⁽¹⁾ Nous exprimerous les termes περισμοί et περιζω dont Pappus fait usage par le moi trouver, parce que ce moi, que nous aurans à employer fort souvent, est consacro presque exclusivement dans les recherches mathématiques, quelles que puissent être les nuances qui aient lieu dans la nature des questions. Tontefois les expressions acquerir, se procurer rendraient mileux fei l'intention précise de Pappus. En effet, il ne s'agit pas dans les Portsmes de trouver une chose absolument incomue comme dans les problèmes en général: ce qu'il s'agit de trouver, c'est une partie seuloment d'une chose connue et designée dans l'énoncé, mals incomplètement; c'est, par exemplo, la grandeur ou la position de cette chose. Question, comme on voit, qui présente une nuance avec le problème proprement dit. Voilà dans quel sons nous nous servons lei du mot trouver. On verra plus loin les considérations sur lesquelles se fonde notre manière d'envisager la ductrine des Porismes et comment elles permettent, si nous ne nous trompons, de terer les difficultés du sujet

de prouver que la chose cherchée existe, sans la déterminer

» Et quoiqu'ils fussent condamnés, tant par la définition que par les propositions mêmes, ces géomètres donnèrent du Porisme, d'après une considération particulière, cette définition : ce qui constitue le Porisme est ce qui manque à l'hypothèse d'un théorème local » (en d'autres termes, le Porisme est inférieur, par l'hypothèse, au théorème local; c'est-à dire que quand quelques parties d'une proposition locale n'ont pas dans l'énoncé la détermination qui leur est propre, cette proposition cesse d'être regardée comme un théorème et devient un Porisme).

» Les lieux géométriques sont une espèce de ces Porismes : ils aboudent dans les livres du lieu résolu. Séparés des Porismes proprement dits, on les a réunis sous des titres particuliers, et on en a formé des traités distincts, parce que cette espèce est bien plus nombreuse que les autres; car les lieux sont plans, solides ou linéaires : il y a aussi les lieux aux moyennes.

» Il arrive encore aux Porismes de présenter des énoncés très-raccourcis, parce que beaucoup de choses y sont sousentendues. Il est résulté de là que beaucoup de géomètres, ne les considérant que sous une partie de leurs faces, en

ont ignoré des points des plus importants.

» Il est dissicile de réunir plusieurs de ces Porismes sous un même énoncé, parce qu'Enclide n'en a pas donné heaucoup de chaque espèce, mais seulement un ou quelques-uns comme exemples. Cependant il en a placé, au commencement de son Ist livre, dix qui sont analogues entre eux; ils appartiennent à cette espèce des lieux la plus abondante de toutes. Nous avons reconnu que ces dix propositions peuvent être rensermées dans un seul énoncé, savoir : Étant données quatre droites se coupant deux à deux, si trois des points d'intersection situés sur l'une d'elles, ou deux seulement dans le cas du parallélisme,

(8)

identique ou unique dans beaucoup d'hypothèses différentes (1).

ier Livre des Porismes.

- » Voici donc comment il faut classer les choses cherchées dans les propositions du I^{er} Livre. La figure est au commencement du VII^e.... (2).
- I. » Si de deux points donnés on mène deux droites se coupant sur une droite donnée de position, dont l'une intercepte sur une droite donnée de position un segment compté à partir d'un point donnée l'autre formera aussi sur une aûtre droite un segment ayant avec le premier une raison donnée.
 - » Et dans les autres :
- II. Que tel point est situé sur une droite donnée de position.
- III. Que le rapport de telle droite à telle autre droite est donné.
- IV. Que le rapport de telle droite à telle abscisse est donné.
 - V. Que telle droite est donnée de position.
 - VI. Que telle droite passe par un point donné.
- VII. Que telle droite a un rapport donné avec le segment compris entre tel point et un point donné.
- VIII. Que telle droite a un rapport donné avec telle autre droite menée de tel point.

(2) lei so tronvo une lacune dans les manuscrits.

sont donnés (c'est-à-dire restent fixes), et que des trois autres deux soient assujettis à rester chacun sur une droite donnée, le dernier sera situé aussi sur une droite donnée de position.

- » Il s'agit ici de quatre droites seulement, dont pas plus de deux ne passent-par un nième point. Mais on ignore que la proposition est vraie pour un nombre quelconque de droites. La voici : Si plusieurs droites, en nombre quelconque, se rencontrent, mais pas plus de deux en un même point; que tous les points situés sur une d'elles soient donnés, et que chacun de ceux qui appartiennent à une autre se trouve sur (décrive) une droite donnée de position; ou plus généralement, si plusieurs droites, en nombre quelconque, se rencontrent, mais pas plus de deux en un même point; que tous les points situés sur une de ces droites soient donnés, et que parmi les points d'intersection des autres, lesquels forment un nombre triangulaire, il s'en trouve autant qu'il y a d'unités dans le côté de ce nombre triangulaire, assujettis à rester situés chacun sur une droite donnée de position, pourvu que de ces points il n'y en ait pas trois qui soient les sommets d'un triangle (formé par les droites mêmes dont ces points sont les intersections), chacun des autres points restera situé aussi sur (décriva) une droite donnée de position.
- » Il n'est pas vraisemblable que l'auteur des Éléments ait ignoré cette extension; mais il aura voulu seulement en poser le principe. Car il parait, dans tous ses Porismes, n'avoir eu en vue que de répandre des principes et le germe d'une foule de choses importantes.
- » Ce n'est pas par les dissérences des hypothèses qu'il faut distinguer les Porismes, mais par les dissérences des résultats ou des choses cherchées. Les hypothèses, en esset tontes dissérentes et constituent des spécialités; mais des résultats ou des choses cherchées, chacun se trouve être

(19)

- 1X. Que tel rectangle a un rapport donné avec le rectangle construit sur telle droite et une droite donnée.
- X. Que tel rectangle équiveut à un rectangle donné plus le rectangle formé sur telle abscisse et sur une droite donnée.
- XI. Que tel rectangle, pris seul ou avec un certain espace donné, est..... (1), l'autre a un rapport donné avec telle abscisse.
- XII. Que telle droite, plus une autre avec laquelle telle autre droite est dans une raison donnée, a un rapport donné avec un segment formé par tel point à partir d'un point donné.
- XIII. Que le triangle qui a pour sommet un point donné et pour base telle droite est équivalent au triangle qui a pour sommet un point donné et pour base le segment compris entre tel point et un point donné.
- XIV. Qu'une droite, plus telle autre droite, a un rapport donné avec tel segment compris entre un point donné et tel point.
- XV. Que telle droite forme sur deux autres droites données de position des segments dont le rectangle est donné.

ile Livre des Porismes.

- » Dans le II^e Livre les hypothèses sont différentes, mais les choses cherchées sont pour la plupart les mêmes que dans le I^e Livre.
 - » Il y a en outre celles-ci:
- XVI. Que tel rectangle seul, ou tel rectangle plus un certain espace donné, est dans une raison donnée avec une certaine abscisse.
 - XVII. Que le rectangle compris sous telle droite et telle

⁽t) C'est-à-dire que dans beaucoup de questions différentes on arrive à une même conclusion, par exemple, que le lieu d'un certain point est une ligne droite déterminée de position; que certaine droite passe toujours par un point déterminé de position; qu'un certain retangle dont les côtés sont variables, a une surface donnée de grandeur; etc. C'est ainsi que l'a antenda R. Simson. « (Multa sunt Porismata que diversus hypothèses habent, sed que omnia concludant punctum aliqued tangere rectum positione datam; val rectam aliquem vergere ad punctum datum, etc. » (R. Simson, p. 349.)

⁽¹⁾ Lacune dans le texte.

autre droite est dans une raison donnée avec une certaine abscisse.

XVIII. Que le rectangle qui a pour côtés la somme de deux droites et la somme de deux autres droites, a un rapport donné avec tel segment.

XIX. Qu'un rectangle qui a pour côtés telle droite et une autre droite augmentée d'une seconde qui a un rapport donné avec telle autre droite, et le rectangle construit sur telle droite et telle autre qui a un rapport donné avec telle droite, ont leur somme dans un rapport donné avec une certaine abscisse.

XX. Que la somme de ces deux rectangles est dans un rapport donné avec le segment compris entre tel point et un point donné.

XXI. Que le rectangle compris sons telle droite et telle autre est donné.

III" Livre des Porismes,

u Dans le IIIe Livre, le plus grand nombre des hypothèses concernent le demi-cercle; quelques-unes le cercle et les segments. Pour les choses cherchées, la plupart ressemblent aux précédentes.

» Il y a en outre celles-ci :

XXII. Que le rectangle de telles droites est au rectangle de telles autres dans un rapport donné.

XXIII. Que le carré construit sur telle droite est à une certaine abscisse dans un rapport donné.

XXIV. Que le rectangle construit sur telles droites est égal au rectangle qui a pour côtés une droite donnée et le segment formé par tel point à partir d'un point donné.

XXV. Que le carré construit sur telle droite est égal au rectangle qui a pour côtés une droite donnée et le segment formé par une perpendiculaire, à partir d'un point donné.

(22)

autre, donnée comme exemple des Porismes du Ier livre d'Euclide, sont les trois seules que Pappus cite en termes complets, c'est-à-dire dans lesquelles il fasse connaître les hypothèses auxquelles se rapportent les conséquences énoncées. Toutes ses autres propositions (au nombre de 28), expriment certains résultats (qui sont pour la plupart des relations de segments), sans qu'on y trouve aucune trace de l'hypothèse ou des conditions qui donnaient lieu à ces relations dans l'ouvrage d'Euclide.

Les trois propositions décrites d'une manière complète sont celles sur lesquelles Simson a concentré pendant longtemps tous ses ellorts et qui l'ont conduit, après qu'il fut parvenu à en pénétrer le sens, à la conception de la doctrine des Porismes.

Pour ceux qui connaissent maintenant ces propositions, le texte de Pappus peut paraître se prêter assez aisément à une traduction qui permette d'y voir un énoucé exact et à peu près complet. Aussi tous les géomètres, quel qu'ait été leur sentiment ultérieur sur la doctrine des Porismes, ontils adhéré unanimement à cette partie de la divination, disons à cette découverte de Simson. Mais on ne peut méconnaître qu'avant que le savant interprète fût parvenu à découvrir le sens de ces propositions, elles présentaient de très-grandes difficultés, puisque les plus habiles géomètres du xvi et du xvi et du xvi et l'alley, à qui pourtant la langue grecque était familière, avaient échoué dans leurs tentatives (1).

La proposition des quatre droites signisse, en langage moderne, que:

XXVI. Que le rectangle qui a pour côtés la somme de deux droites et une droite en rapport donné avec telle autre droite, est dans un rapport donné avec telle abscisse.

XXVII. Qu'il existe un point tel, que des droites menées de ce point comprennent un triangle donné d'espèce. - XXVIII. Qu'il existe un point tel, que des droites me-

nées de ce point retranchent des ares égaux.

XXIX. Que telle droite est parallèle à une certaine droite, ou fait avec une droite passant par un point donné un angle de grandeur donnée.

» Il y a XXXVIII Lemmes pour les trois livres de Porismes : ceux-ci renferment 171 théorèmes. »

Ici se termine le passage du VIII Livre des Collections mathématiques de Pappus qui concerne les Porismes.

§ IV. — Explication de la proposition des quatre droites, de la proposition générale de Pappus et du Perisme complet du la Livre. — Observation relative aux deux définitions des Perismes.

Pappus dit que l'ouvrage d'Euclide renferme presque toujours un seul Porisme ou un petit nombre de chaque espèce; que néaumoins on trouve au commencement du I^{ve} livre dix propositions qui peuvent se résumer en une seule. Pappus énonce cette proposition. Elle est relative à quatre droites. Il dit ensuite qu'elle n'est elle-même qu'un cas particulier d'un énoncé plus général concernant un nombre quelconque de droites; il décrit cette proposition, et il ajoute avec un sentiment de justice qui fait honneur à son caractère, que sans doute cette généralisation n'a point échappé à Euclide, mais que, se bornant à répandre dans ses trois livres de Porismes des germes de propositions fécondes, il n'aura pas jugé qu'il fût nécessaire d'en faire mention.

Cette belle proposition, celle des quatre droites, et une

(23)

Étant données quatre droites, dont trois tournent autour des points dans lesquels elles rencontrent la quatrième, de manière que deux des points d'intersection de ces droites glissent sur deux droites données de position, le point d'intersection restant décrit une nouvelle droite.

En d'autres termes: Si l'on déforme un triangle en faisant tourner ses trois côtés autour de trois points fixes pris en ligne droite, et en faisant glisser deux de ses sommets sur deux droites fixes, prises arbitrairement, le troisième sommet décrit une troisième droite.

La proposition générale de Pappus concerne un nombre quelconque de droites, disons (n+1) droites, dont n peuvent tourner autour d'autant de points fixes situés tous sur la $(n+1)^{n-n}$. Ces n droites se coupent deux à deux en $\frac{n(n-1)}{2}$ points, nombre triangulaire dont le côté est (n-1); et on les fait tourner autour de leurs n points fixes, de manière que (n-1) quelconques de leurs n(n-1) points d'intersection glissent sur (n-1) droites fixes données : alors chaeun des autres points d'intersection (en nombre $\frac{(n-1)(n-2)}{2}$) décrit une droite.

Tel est le sens de la proposition de Pappus. L'auteur dit que des (n-1) points d'intersection des droites mobiles qui sont assujettis à glisser sur des droites données, il ne doit pas y en avoir trois qui soient les sommets d'un triangle. Cela s'entend du triangle formé par trois droites mobiles. Et en esset, d'après la proposition des quatre droites, deux seulement des trois points d'intersection de trois droites mobiles peuvent être assujettis à glisser sur des droites données, puisqu'il s'ensuit que le troisième décrit alors une droite déterminée, ou donnée virtuellement, et qui par conséquent ne peut pas être donnée de fait ou à priori-

⁽t) Simson observe avec raison que Fermat n'a pas même deviné le Porisme du let Livre énoncé par Pappus en termes complets e « At Fermatius ne vel primum primé tibré enucleavit, quod unicum integrum servavit Pappus, » (Opera quadam reliqua, etc., p. 318.)

C'est Sinson qui a déconvert la signification de cette condition qui complique l'énoncé. Et pour compléter l'intention de Pappus, il ajoute que quatre points d'intersection ne peuvent pas appartenir à quatre droites formant un quadrilatère; cinq à cinq droites formant un pentagone, etc.

Des $\frac{n(n-1)}{2}$ points d'intersection des n droites mobiles, les (n-1) qu'on assujettit à glisser sur autant de droites fixes peuvent apparténir à une même droite; c'est la première hypothèse de Pappus, qu'il a généralisée aussitôt. Ces (n-1) points peuvent aussi être les sommets consécutifs, moins un, d'un des polygones de n côtés formés par les n droites. Dans ce cas le théorème prend cet énoucé :

Si l'on a un polygone d'un nombre quelconque de côtes, et qu'on le déforme en faisant tourner tous ses côtés autour d'autant de points fixes pris arbitrairement en ligne droite, et en faisant glisser tous ses sommets moins un sur autant de droites données de position, le dernier sommet décrit lui-même une droite déterminée de position; et en outre, le point d'intersection de deux côtés quelconques du polygone décrit aussi une ligne droite.

Porisme complet du ler Livre d'Euclide.

L'énonce de Pappus exprime que :

Si autour de deux points fixes P, Q, on fait tourner deux droites qui se coupent sur une droite donnée L, et que l'une fasse sur une droite fixe AX donnée de position un segment A m compté à partir d'un point A donné sur cette droite : on pourra déterminer une autre droite fixe BY et un point fixe B sur cette droite, tels, que le segment B m' fait par la seconde droite tournante sur cette seconde droite fixe, à partir du point B, soit au premier segment A m dans une raison donnée \lambda.

Nous donnerons, dans le Ier Livre des Porismes, la dé-

(26)

crits par Pappus (les 1er, VIe, XVe, XXVIIe, XXVIIIe et XXIXe); et 15 (propositions 1-6, 38, 40, 47, 48, 66, 67, et 74 qui renferme 3 Porismes) comme se rattachant aux Lemmes et au texte de Pappus. Des 8 autres, 4 sont des Porismes de Fermat, présentés sous la forme adoptée par Sinson, et les 4 derniers sont empruntés de Mathieu Stewart.

li. - Définition des Porismes.

Simson dit que « la définition de Pappus étant trop générale, il la remplacera par une autre. » Il ne dit pas de laquelle des deux définitions il veut parler. Mais nous pensons que c'est de celle des Anciens. Dans cette opinion, que nous justifierons plus loin, nous mettrons d'abord sous les yeux du lecteur cette définition telle que Simson nous paraît l'entendre dans sa version du texte de Pappus:

a Le Porisme est une proposition dans laquelle on a à chercher la chose proposée (1). »

Cette chose, que l'on a à chercher, Simson l'appelle donnée, comme Pappus et Euclide.

Cela posé, voici sa propre définition du Porisme :

- « Porisma est Propositio in qua proponitur demonstrare n rem aliquam, vel plures datas esse, cui, vel quibus, ut et
- a cuilibet ex rebus innumeris, non quidem datis, sed quæ
- n ad ea quæ data sunt eandem habent rationem, convenire
- s ostendendum est affectionem quandam communem in
- » Propositione descriptam. »

Nous dirons, en cherchant à exprimer la pensée de Pauteur: monstration de cette proposition, de celle des quatre droites et de la proposition générale de Pappus.

Observation relative aux deux définitions des Porismes.

Pappus, ainsi qu'on l'a vn ci-dessus (§ III), donne deux définitions des Porismes, l'une des Anciens, et l'autre qui a été introduite par des géomètres modernes. Il condamne celle-ci, parce qu'elle repose sur une circonstance accidentelle. Elle ne s'applique, en effet, comme nous le verrons, qu'à une classe particulière de Porismes.

Nous reviendrons plus loin (§ VI, III) sur ces deux définitions, pour en expliquer le sens, et nous ferons voir qu'elles n'ont rien de contradictoire, du moins dans les limites que comporte la seconde.

§ V. — Indication succincte des matières contenues dans le Traité des Porismes de Simson. — Définition des Porismes. — Opinion de Playfair.

1. - Ouvrage de Simson.

Simson commence son Traité De Porismatibus par les définitions du Théorème, du Problème, du Donné, du Porisme et du Lieu; définitions qu'il éclaireit par des exemples. Puis il fait connaître la Notice de Pappus sur les Porismes, dont il donne une version latine. Après cette Notice, viennent les propositions qui forment le Traité des Porismes.

Ces propositions, au nombre de 93, comprenuent les 38 Lemmes de Pappus relatifs aux Porismes; 10 cas de la proposition des quatre droites; 29 Porismes; 2 problèmes destinés à montrer l'usage des Porismes; et quelques propositions qui servent pour la démonstration des Lemmes et des Porismes.

Des 29 Porismes, 6 (propositions 23, 34, 41, 50, 53 et 57) sont présentés comme répondant à 6 des genres dé-

(27)

Le Porisme est une proposition dans laquelle on demande de démontrer qu'une chose ou plusieurs sont dounées, qui, ainsi que l'une quelconque d'une infinité d'autres choses non données, mais dont chacune est avec les choses données dans une même relation, ont une certaine propriété commune, décrite dans la proposition.

La chose ou les choses qui sont données, c'est-à-dire qui sont des conséqueuces de l'hypothèse, peuvent être des grandeurs ou quantités, comme des lignes ou des nombres, ou bien ce peut être la position d'une ligne considérée comme lieu, ou bien encore la position d'un point par lequel passent une infinité de droites qui sont les choses variables, ou la position d'une courbe à laquelle sont tangentes toutes ces droites.

Cette définition de Simson comporte naturellement une forme d'énoncés particulière aux Porismes et qui caractérise ces propositions.

Cette forme technique, dont nous allons donner des exemples, est précisément celle des deux Porismes d'Euclide que Pappus nous a transmis complets.

III. - Exemples de Parismes conformes à la définition précédente.

I. Le Porisme complet cité par Pappus satisfait, dans son énoncé original, à la définition de Simson, puisqu'il s'agit de déterminer la position d'une droite et d'un point dont l'existence est annoncée.

II. Il en est de même du Porisme des quatre droites, et de la proposition générale de Pappus, puisque Simson admet que la chose à déterminer dans un Porisme peut être la position d'un lieu dont la nature est connue et annoncée dans l'hypothèse.

III. Trois droites étant données de position, si de chaque point de l'une on abaisse des verneudiculaires p. q. sur

^{(1) «} Dixerunt (Veteres), Theorema esso quo aliquid propositum est demonstrandum; Problema veco, quo aliquid propositum est construendum; Portima veco esse quo aliquid propositum est investigandum. » (De Portimatibus, etc., p. 347.)

les deux autres, on pourra trouver une ligne α et une raison λ telles, que la perpendiculaire p plus la ligne α sera à la perpendiculaire q dans la raison λ .

C'est-à-dire qu'on aura toujours

$$\frac{p+a}{q} = \lambda.$$

1V. Une droite étant donnée de position, et un vercle étant donné de grandeur et de position, il existe un point tel, que toute droite menée par ce point rencontre la droite et le cercle en deux points dont le produit des distances au point en question sera donné.

V. Si par deux points donnés on mène à un autre point deux droites telles, que leurs longueurs soient entre elles dans une raison donnée, ce point est situé sur une circonférence de cercle donnée de grandeur et de position.

En d'autres termes, le lieu d'un point dont les distances à deux points fixes sont entre elles dans une raison donnée, est une circonférence de cercle.

Cette proposition est un lieu, conséquemment un Porisme (1).

VI. Deux droites parallèles étant données de position, et sur ces droites deux points A, B, si l'on mène une troisième droite qui rencontre ces deux premières en deux points m, m', tels, que le segment Λ m, plus une ligne donnée a, soit au segment Bm' dans une raison donnée λ , c'est-à-dire que l'on ait $\frac{\Lambda m + a}{Bm'} = \lambda$, la droite mm' passera par un point donnée.

VII. Deux couples de points a, a' et b, b' étant donnés sur une droite, il existe un autre point O sur cette droite et

(30)

que ce sont les cas d'impossibilité ou de limitation des solutions, dans les problèmes, qui ont donné lieu aux questions de muxima ou minima, de même ce sont les cas où les problèmes deviennent indéterminés ou susceptibles d'un nombre infini de solutions, qui ont conduit à la doctrine des Porismes.

D'après cette idée, et trouvant la définition des Porismes de Simson fort obscure, il donne celle-ci :

Un Porisme est une proposition qui affirme la possibilité de trouver des conditions qui rendent un certain problème indéterminé ou susceptible d'un nombre illimité de solutions (1).

Il ajoute que cette théorie sur l'origine des Porismes, ou du moins la justesse des notions qui en dérivent, sont confirmées par les propres vues de Dugald Stewart: a Ce savant professeur, dit-il, dans un Essai sur le même sujet, lu devant la Philosophical Society il y a quelques années, définit le Porisme: Une proposition affirmant la possibilité de trouver une ou plusieurs des conditions qui rendent un théorème indéterminé. Il faut entendre par théorème indéterminé, un théorème qui exprime une relation entre certaines quantités déterminées et certaines autres qui sont indéterminées en grandeur et en nombre. »

Cette manière de considérer les Porismes, connue exclusivement sous le nom de Playfair, quoique, comme on voit, le célèbre philosophe écossais Dugald Stewart, alors professour de Mathématiques (2), en ait eu le premier l'idée,

une ligne μ , tels, que, quel que soit le point m que l'on prenne sur la même droite, la somme ou la différence des deux rectangles ma.ma', mh.mb' sera toujours égale au rectangle μ .mO(1).

Dans chacune de ces propositions il faut trouver ce qui est annoncé ou proposé; ce sont donc des Porismes, conformément à la définition que Pappus attribue aux Anciens.

Ainsi nous avons pu dire que c'est cette définition que Simson a eue en vue et qu'il a prise pour base de sa doctrine des Porismes. Une autre raison sufficait encore pour montrer que telle a été l'intention de Simson : c'est qu'il approuve Pappus d'avoir censuré la définition des Modernes, comme nous le dirons dans le paragraphe suivant.

IV. - Opinion de Playfair sur les Porisues.

Playfair, professeur de Mathématiques à l'université d'Edimbourg, a traité la question des Porismes dans un Mémoire intitulé On the origin and investigation of Porisms (2), qu'on peut considérer comme faisant suite à l'ouvrage de Simson. Mais l'auteur s'y est proposé principalement de rechercher l'origine probable des Porismes, e'est-à-dire les vues qui ont pu conduire les anciens géomètres à ce genre de propositions. Il pense que, de même

 $ma.ma' - mb.mb' + \mu.mo = 0.$

(V. Géom. sup. p. 153.)

Cette proposition a été connue des Anciens; on la trouve dans les Lemmes de Pappus sur le second livre de la Section déterminée, où elle est démontrée dans douze Lemmes (Propositions 45 à 56) à raison des différents cas auxquels donnent lieu les positions relatives des différents points de la figure.

(2) Lu à la Société royale d'Édimbourg, le 2 avril 1792, et Inséré dans les Transactions de cutte Société.

(3i)

a été adoptée par la plupart des géomètres qui ont adhéré à la divination de Simson sur la forme des énoncés des Porismes. Ainsi J. Leslie, dans sa Geometrical Analysis, dit : « Le Porisme a pour objet de démontrer qu'on peut trouver une ou plusieurs choses telles, qu'une certaine relation déterminée ait lieu entre ces choses et une infinité d'autres assujetties à une loi donnée.

» La nature du Porisme consiste à assiriner la possibilité de trouver des conditions qui rendent un problème indéterminé, c'est-à-dire susceptible d'une instinité de solutions (1). »

Disons tout de suite ici que, malgré l'assentiment assez général qu'a obtenu l'idée de Playsair, elle ne nous parait pas fondée.

En cstet, la recherche des conditions qui rendent un problème indéterminé conduit à certaines relations entre les données de la question, et il peut résulter de là un théorème: mais c'est un théorème ordinaire, c'est-à-dire dans l'énoncé duquel il ne reste rien d'inconnu. Ce théorème peut sans doute, comme tout autre, être transformé en un Porisme, ainsi que nous l'expliquons plus loin (§ VI, 11):

⁽¹⁾ Cette proposition se trouve parmi celles des lieux plans d'Apollouius, citées par l'appus. Eutocius la donné aussi comme exemple d'une proposition de lieu dans son Communiques sur les Coniques d'Apollonius.

⁽¹⁾ From this account of the origin of Porlsma, it follows, that a Porlsm may be defined, A proposition affirming the possibility of finding such conditions as will render a certain problem indeterminate, or capable of innumerable continues.

⁽²⁾ Dugald Stewart, nommé d'abord suppléant, en 1772, de Matthew Stewart, son père, dans la chaire de mathématiques d'Édimbourg, réunit à cet wart, son père, dans la chaire de enseignement, en 1778, la suppléance d'Adam l'orgoson dans la chaire de Philosophie morale. Il lui arrivait dans la même temps de joindre bénéve-

⁽¹⁾ Dans la géométrie moderne où l'ou donne dos signes aux segments, ce l'orisme s'exprime, d'une manière générale, par l'équation

lement à ces doubles fonctions l'enseignement de l'astronomie, et mêmo de la langue grecque et des helles-lettres, par obligeance pour ses collègues. Devonu professeur titulaire de Mathématiques, en 1785, à la mort de son père, il ne tarda pas à échanger cette chaire contre celle de Philosophia que résigneit Ferguson, et qui convenait mieux à ses admirables et rares talents de parole. Dès lors, il ne remplit plus qu'une chaire et il se livra exclusivement à l'étude des questions de philosophia, dans lesquelles il devait apporter avac tant de succès et d'éclat, les procédés de raisonnement des sciences particules.

⁽¹⁾ A Porism proposes to demonstrate that one or more things may be found, between which and immmerable other objects assumed after some given law, a certain specified relation is to be shown to exist.

The nature of a Porism consists in afterning the possibility of finding such conditions, as will render a problem indeterminate, or capable of imm-

mais il est à croire, il nous paraît même certain, que le théorème s'est présenté à l'esprit du géomètre avant le Porisme qui n'en est qu'un corollaire ou une expression différente.

En d'autres termes, la forme d'énoncé qui caractérise le Porisme n'est pas la conséquence immédiate ni nécessaire de la discussion d'un problème.

Il semble donc que la manière de concevoir l'origine du Porisme proposée par Playfair n'est pas fondée.

Assurément Euclide n'a pas eu besoin de résoudre des problèmes pour former ses 171 Porismes; il lui a susti de prendre des théorèmes et d'en changer la forme. Ce qu'il a fait dans une vue tout autre que celle d'exprimer les conditions qui rendent un problème indéterminé.

Il faut observer d'ailleurs que non-seulement la recherche des conditions qui rendent un problème indéterminé ne conduit pas immédiatement ni nécessairement à un Porisme, mais qu'en outre on n'aperçoit point, en général, dans un Porisme le problème qui aurait donné lieu, par cette recherche des conditions d'indétermination, à ce Porisme.

§ VI. — Réflexions sur quelques passages de Pappus. — Éclaircissements sur la nature et l'origine des Lieux et des Porismes. — Différence et point de contact entre les Porismes et les Corollaires. — Accord des deux définitions des Porismes, sauf l'insuffisance de la seconde.

I. — Différences entre le théorème local, le lieu et le problème local. — Origine des Lieux.

Pappus, comme nous l'avons vu (§ III), dit que les Lieux sont des Porismes. Or à l'égard des Lieux il n'y a pas de mystère; la forme de leurs énoncés nous est parfaitement connue par les nombreuses propositions des Lieux plans d'Apollonius que Pappus nous a transmises.

(34)

et les points de contact qui existent entre les trois propositions qui se rapportent aux lieux: le théorème local, le lieu proprement dit, et le problème local.

Le lien est différent du théorème local et du problème local; mais il participe de l'un et de l'autre, puisqu'on s'y propose de démontrer une vérité énoncée, savoir que tel point soumis à une loi connue est, par exemple, sur un cercle, ce qui constitue un théorème, et qu'il faut en outre déterminer la grandeur et la position de ce cercle, ce qui tonche au problème.

Origine des Lieux. — Un théorème provient toujours de plusieurs autres propositions dont il est une déduction, mais avec lesquelles il n'a pas en général de ressemblance ou de connexion apparente.

La solution d'un problème résulte, comme la connaissance d'un théorème, de raisonnements formés sur plusieurs vérités connues; et cette solution constitue, au fond, un théorème.

Une proposition appelée lieu résulte, en général, soit d'un théorème connu avec lequel ce lieu a des rapports manifestes, soit de la solution d'un problème, solution qui, comme nous venons de le dire, équivant à un théorème.

Le lieu exprime donc la même chose que le théorème, mais d'une manière moins explicite et qui laisse quelque chose à compléter.

Telle nous paraît être la seule origine que nous puissions attribuer aux propositions qui par leur forme sont des lieux.

II. — Differences entre les Porismes, les Théorèmes et les Problèmes, — Comment les Lieux sont des Porismes. — Origine des Porismes. — De la signification qu'Euclide à voulu attribuer au terme Porisme. — Rapprochement entre les Porismes et les Corollaires.

Pappus dit que les Porismes ne sont, quant à la forme, ni des théorèmes, ni des problèmes; qu'ils constituent un Les Lieux doivent donc nous offrir les moyens de véritier la définition donnée précédemment des Porismes et de rechercher, jusqu'à un certain point, la nature de ces propositions. Pour cela nous allons préciser les différences et les points de contact qui nous paraissent exister entre le théorème local, le lieu et le problème local.

Le théorème local est une proposition qui exprime une propriété commune à tous les points d'une même ligne, droite ou courbe, complétement définie. Exemple:

Etant pris sur le diamètre AB d'un cercle deux points C. D tels, que l'on ait la relation $\frac{CA}{CB} = \frac{DA}{BD}$, les distances de chaque point m de la circonférence à ces deux points sont entre elles dans le rapport constant $\frac{CA}{DA}$.

Le lieu est une proposition dans laquelle on dit que tels points soumis à une même loi connue, sont sur une ligne (droite, circulaire on autre) dont on énonce la nature, et dont il reste à trouver la grandeur et la position. Exemple:

Deux points étant donnés, ainsi qu'une raison, le lieu d'un point dont les distances à ces deux points sont entre elles dans cette raison, est une circonférence de cercle donnée de grandeur et de position.

Ensin dans le problème local ou question de lien, our demande de trouver la nature, la grandeur et la position d'un lieu, c'est-à-dire la courbe, lieu commun d'une infinité de points soumis à une loi commune. Exemple:

Deux points étant donnés, ainsi qu'une raison \(\lambda\), quel est le lieu d'un point dont les distances à ces deux points sont entre elles dans la raison \(\lambda\)?

La solution, ou réponse à la question, constitue une vérité complète, c'est-à-dire un théorème, qui est ici le théorème local que nous venons de citer.

Ces exemples suffisent pour établir la distinction précise

3*

(35)

genre intermédiaire; mais que parmi beaucoup de géomêtres, les uns les regardent comme des théorèmes et d'autres comme des problèmes.

On conclut de là que les Porismes devaient participer tout à la fois des théorèmes et des problèmes, puisque beaucoup de géomètres s'y méprenaient, ou du moins se croyaient en droit de ne pas les distinguer de ces deux sortes de propositions.

Or les Porismes, entendus selon la définition de Simson, dont nous avons donné ci-dessus des exemples (§ V, 111), satisfont à cette condition, c'est-à-dire qu'ils ont le double caractère des théorèmes et des problèmes.

En effet, les théorèmes sont des propositions où l'on doit démontrer une vérité connue et énoucée.

Les problèmes sont des propositions où l'on a à découvrie une chose incomme.

Et les Porismes sont des propositions où l'en a tout à la fois à démontrer une vérité énoncée et à trouver la qualité ou la manière d'être, comme la grandeur ou la position, de certaines choses mentionnées dans l'énoncé de cette vérité.

D'après cette manière de concevoir le Porisme, qui est le commentaire rigoureux de la définition de Simson, on peut dire que le Porisme participe du théorème et du problème. Ce qui s'accorde avec ce que rapporte Pappus des opinions différentes des géomètres de son temps.

A notre sens, le Porisme se rapproche plus du théorème que du problème; car il faut, comme dans le théorème, démontrer une vérité énoncée; et quant à la chose à trouver, elle n'est pas absolument inconnue comme dans le problème proprement dit; elle se rapporte à la vérité énoncée, elle en est une conséquence qui le plus souvent résulte de la démonstration même, sans exiger aucune recherche.

Comment les Lieux sont des Porismes. — Le double caractère du Porisme do partition la this base qui le

blème, c'est-à-dire d'avoir à démontrer et à trouver, est précisément aussi le caractère des Lieux, comme nous l'avons vu ci-dessus. Nous sommes donc amené à conclure que les Lieux sont des Porismes, lors même que nous ne saurions pas que Pappus le dit formellement.

Origine des Porismes. — Il y a eucore sur un autre point une identité parfaite entre les Porismes et les Lieux: nous voulons parler de l'origine même des uns et des autres. En effet, ce que nous avons dit précédemment de l'origine des Lieux s'applique de soi-même aux Porismes. Un Porisme est la conséquence d'un théorème ou de la solution d'un problème, qui elle-même constitue un théorème. Le Porisme exprime la même chose que le théorème dont il se déduit, mais sous une autre forme et d'une façon moins complète et qui laisse quelque chose à déterminer.

L'exemple que nous avons donné d'un lieu comparé au thécrème local auquel il se rapporte, s'applique aux Porismes de même qu'aux Lieux. Ainsi nous conclurons que l'origine d'un Porisme est un théorème proprement dit.

La transformation des théorèmes en Porismes tendait à simplifier les énoncés des propositions en les débarrassant de certaines déterminations complémentaires qui n'étaient pas toujours nécessaires. On reconnaîtra, je pense, dans cette conception la sagacité d'Euclide et sa profonde intelligence des besoins de la science, quand nous aurons dit, dans un des paragraphes suivants, combien ses Porismes touchent de près, par leur forme même, à celle de la plupart des propositions de la géométrie moderne.

De la signification qu'Euclide a voulu attribuer au terme Porisme. — Rapprochement entre les Porismes et les Corollaines. — Euclide exprime par le même mot πορισμα les corollaires des Eléments et les propositions de ses trois livres de Porismes. Pour les corollaires, le terme grec, dont la signification d'après Proclus serait ici gain,

(38)

à ce nouveau genre de propositions qu'il introduisait dans la Géométrie, le nom même des corollaires de ses Éléments.

Mais en constatant cette analogie partielle et secondaire entre les Porismes et les corollaires, répétons qu'il existe entre les deux genres de propositions une différence fondamentale. Les corollaires, qui sont, comme le dit Proclus, un gain trouvé en passant et dont profite le géomètre, diffèrent, en général, des théorèmes qui ont procuré ce gain, et sont des propositions de même forme; tandis que les Porismes, sous une autre forme qui leur est propre, ne sont que les théorèmes qui les ont produits. Ce sont, si l'on veut, des corollaires, mais d'un autre ordre que les corollaires proprement dits.

III. — Explication de la seconde définition des Porismes. — Accord des deux définitions. — Dans quel sens il faut entendre le blame de Pappus à l'égard de la seconde. — Origine de cette définition.

Pappus, après avoir donné la définition des Porismes des Anciens, en fait connaître une seconde introduite plus tard.

Il dit que des géomètres modernes, nonobstant la définition ancienne et les propositions mêmes, donnèrent des Porismes, d'après une circonstance particulière, cette définition: Ce qui constitue le Porisme est ce qui manque à l'hypothèse d'un théorème local; en d'autres termes: le Porisme ast inférieur, par l'hypothèse, au théorème local.

Cette brève définition, à laquelle Pappus n'ajoute aucun développement, paraît signifier que : Quand quelques parties d'une proposition locale n'ont pas dans l'énoncé de la proposition la détermination, de grandeur ou de position, qui leur est propre et qui se trouverait dans l'énoncé d'un théorème local proprement dit, cette proposition n'est pas regardée comme un théorème et devient un Porismo.

Prenons pour exemple ce théorème local déjà cité ;

acquisition (V. ci-dessous § VII, v1), est bien choisi. Mais pour les propositions dont il s'agit, le seus qu'il faut attribuer à ce terme πορισμα a toujours été une énigme; parce que n'ayant pas une idée précise de la nature intime des Porismes, on ignorait surtout l'origine de ces propositions.

Il nous semble que les considérations précédentes jettent cofin du jour sur cette question; car elles conduisent à un rapprochement naturel entre les Porismes et les corollaires, ces propositions si différentes au fond.

En effet, d'une part, les corollaires sont des propositions qui se concluent immédiatement soit de l'énoncé d'un théorème, soit d'un passage de la démonstration de ce théorème, soit d'un raisonnement qui a conduit à la solution d'un problème. Mais, en général, ces corollaires constituent des propositions différentes des théorèmes d'où on les conclut, et dont ils ne sont pas la reproduction sous une autre forme, comme on le voit, par exemple, dans les Éléments d'Euclide (1).

D'autre part, les Porismes prennent leur origine dans des théorèmes déjà connus, mais dont on change la forme pour en faire des Porismes; de sorte qu'on peut dire que les Porismes sont des conséquences immédiates de théorèmes; qu'ils en sont une sorte de corollaires.

Telle a pu être la raison qui a porté Euclide à donner

(39)

Un point C étant donné sur le diamètre AB d'un cercle, si l'on prend un second point D tel, que l'on ait $\frac{CA}{CB} = \frac{DA}{DB}$, las distances de chaque point de la circonférence à ces deux points seront entre elles dans le rapport $\frac{CA}{DA}$.

Que l'on n'indique pas la position du point D, ni la valeur du rapport des distances de chaque point de la circonférence aux deux points C et D, on pourra encore exprimer la même proposition, mais sous un énoncé trèsdifférent qui en change le caractère, savoir:

Un point C étant donné sur le diamètre AB d'un cercle, on pourra trouver un second point D et une raison à tels, que le rapport des distances de chaque point de la circonférence au point C et à ce point D sera égal à la raison à.

C'est là un Porisme conforme à la définition des Anciens, puisqu'il faut trouver ce qui est annoucé comme conséquence de l'hypothèse, savoir la position du point D et la valeur de la raison à.

Ce Porisme dissère du théorème local en ce que ces deux choses qu'il faut trouver sont déterminées de position et de grandeur dans le théorème.

Il satissait donc à la seconde définition des Porismes. De sorte que les deux définitions n'ont rien de contradictoire,

Cependant Pappus semble dire que « les géomètres modernes qui ont introduit dans la géométrie leur définition auraient du être arrêtés par la définition ancienne et par les propositions mêmes. »

On est induit à conclure de ces paroles que la définition moderne impliquait quelque idée ou quelque condition que ne comportait pas la première. Et, en effet, Pappus ajoute que « cette définition est fondée sur une circonstance accidentelle »; ce qui signific qu'elle ne s'applique qu'à une classe de Porismes.

⁽i) Exemples. Euclide, après avoir démontré que la perpendienlaire menée du sommet de l'angle droit d'un triangle réctaugle sur l'hypoténuse divise le triangle en deux triangles semblables, ajoute, sons le titre de corollaire.

<sup>Il suit de la que dans un triangle rectangle la perpendiculaire menée de
l'angle droit sur la base est moyenne proportionnelle entre les segments
de la base, et que chaque côté de l'angle droit est moyen proportionnel</sup>

[•] entre la base et le segment qui lui est contigu. • (Liv. VI), prop. 8.)

A la suite de ce problème : • Trouver le centre d'un cercla •, qui forme
la tre proposition du Livre III, on trouve ce cevellnire : • De là il suit évia demment que si, dans un cercle, une conse en coupe une entre en deux
» parties égales, en faisant avec elle deux angles droits, le centre du cercle
» est placé sur la corde sécante. •

On reconnaît sans difficulté cette circonstance : c'est que la définition implique l'idée ou la condition d'une proposition locale; de sorte qu'elle ne s'applique qu'aux Porismes qui se rapportent à de telles propositions, comme les Porismes I, II, III, IV, V précédents (§ V), et qu'elle exclut conséquemment un grand nombre d'autres Porismes, comme les VIe et VIIe.

C'est ainsi que Simson a entendu le blàme de Pappus et le défaut de la définition des Modernes; blame qu'il approuve(1).

Les deux définitions des Anciens et des Modernes ne sont donc point contradictoires, à part le défaut de généralité de la seconde.

Cet accord devait se présumer. Car Pappus ne dit pas que la nouvelle définition fût la base d'une nouvelle sorte ou d'un nouveau genre de Porismes, loin de là : il dit formellement, au commencement de sa Notice, qu'on n'a pas ajouté de Porismes nouveaux à ceux d'Euclide. La définition des Modernes se rapportait donc à une classe des Porismes d'Euclide, et, dans cette limite, ne pouvait avoir rien d'inexact et devait s'accorder avec l'aucienne.

Une raison bien simple a pu donner lieu à la nouvelle définition. Quelques géomètres, voulant traiter succinctement, soit dans leurs leçons, soit dans leurs livres, de la doctrine des Porismes, auront fait un choix de propositions appropriées à leur enseignement et les auront prises dans l'ouvrage d'Euclide parmi celles qui se rapportaient aux lieux, parce que les lieux plans (lieux à la droite et au cercle) formaient les premières matières cultivées à la suite des Éléments proprement dits. Dès lors ces géomètres ont

(42)

l'énoncé de la proposition, la détermination, de grandeur ou de position, qui leur est propre en vertu de l'hypothèse, détermination qui se trouverait dans l'énoncé d'un théorème proprement dit.

La proposition consiste à assirmer que cette détermination est comprise implicitement dans l'hypothèse, qu'elle en est une conséquence nécessaire et qu'on peut l'effectuer. C'est ce qu'Euclide exprime en disant que la chose anuontée est donnée ; il faut entendre est donnée virtuellement, c'est-à-dire est comprise implicitement dans l'hypothèse et peut s'en déduire.

Par exemple, prenons la proposition 6 du livre des Donnces, que nous exprimerons ainsi en langage moderne :

Si deux grandeurs a et b ont entre elles une raison donnée à, la grandeur composée des deux aura avec chacune d'elles une raison donnée.

Si Euclide eût voulu faire de cette proposition un théorème proprement dit, il aurait indiqué dans l'énoncé la valeur de la raison de la somme (a+b) à chacune des deux grandeurs a et b, savoir: $\frac{\lambda+1}{\lambda}$ pour $\frac{a+b}{a}$, et $(\lambda+1)$ pour $\frac{a+b}{b}$.

D'après ces remarques, on peut dire que les propositions appelées Données par Euclide étaient des théorèmes non complets, en ce qu'il y manquait la détermination, en grandeur ou en position, de certaines choses annoncées comme conséquence de l'hypothèse.

Ce caractère spécial des Données est accusé par la forme même de leurs énoncés qui se terminent toujours, comme dans l'exemple ci-dessus, par cette affirmation, que telle chose est donnée.

Les Porismes peuvent aussi être considérés comme des théorèmes non complets. Car la détermination des choses qu'on demande de trouver complétera le théorème, c'est-àdirequ'on obticudes une proposition dans laquelle toutes

dù approprier la définition des Porismes d'une mauière précise mais restreinte, à cette classe particulière de Porismes qui se rapportent aux Lieux, sans être nécessairement eux-mêmes des Lieux. Telle nous paraît être l'origine de cette definition dont Pappus a fait mention pour en signaler l'insuffisance.

§ VII. - Analogie entre les Porismes et les Données d'Euclide. -Identité d'origine de ces deux classes de Propositions. - Traité ces Connues géométriques du géomètre arabe Hassan hen Haithem. -Notice de Proclus sur les Porismes. - Passages de Diophante.

I. - Analogia entre les Porismes et les Données.

Il existe entre les Porismes et les Données une analogie profonde, à laquelle il ne paraît pas que l'on ait fait attention, et dout cependant il nous semble qu'il faut se pénétrer pour entendre dans son sens primordial et le plus intime la doctrine des Porismes.

Nous trouvous cette analogie sous toutes les faces que présente la question. Elle existe non-seulement dans la pensée d'où dérivent les deux classes de propositions, mais aussi dans leur but commun, dans les définitions qui leur sont propres et dans la forme même de leurs énoncés (1). Quelques éclaireissements vont nous en con-

Les Données sont des propositions dans lesquelles une ou plusieurs des choses dont il est question n'ont pas, dans

(43)

choses auront la détermination, de grandeur et de position, qui leur appartient.

Les Porismes ont encore avec les Données une autre analogie manifeste. C'est la forme de leurs énoucés, où il est toujours dit que telles choses sont données de grandeur ou de position.

Cette forme se trouve dans les Lieux plans d'Apollonins dont Pappus nons a conservé les énoncés et qui sont des Porismes, comme il le dit expressément : elle se trouve dans le Porisme complet, énoncé le premier de ceux qui se rapportent au Ier livre d'Euclide, lequel n'est pas un lieu, et semble présenter, à beaucoup d'égards, le type général des Porismes. On reconnaît la même forme technique dans tous les autres énoncés de Porismes donnés par Pappus, bien que ces énoncés concis n'expriment que les conséquences d'hypothèses sous-entendues (1).

Ainsi il ne peut exister aucun doute sur l'identité de contexture des énoncés tant des Porismes que des Données.

Enfin la définition ancienne des Porismes convient aux Données, puisque dans celles-ci, comme dans les Porismes, l'objet de la proposition est de trouver ce qui est annoncé,

Ces considérations concourent toutes à nous autoriser à regarder les Porismes comme dérivant, dans l'esprit d'Euclide, de la conception même des Données.

Ce genre de théorèmes non complets, comme nous l'avons dit, n'est appliqué dans le livre des Ponnées qu'aux théorèmes ordinaires tels que ceux des Éléments. Enclide a voulu l'étendre, dans les Porismes, aux propositions locales, et plus généralement aux propositions où l'on considère

⁽¹⁾ Ex his exemplis manifestum est multa esse Porismata que a Theoremato Locali hypothesi deficiunt, alia autem que ex Locis mullatenus pen-dent. Merito igitur juniores l'appus represendit, quod Porisma ex accidente definiverant, ox quadam se, re que quibusdam quidem non oranibus Porismatibus inest. . (Opera quædam, etc., p. 344.)

⁽i) Il m'a paru, depuis longtemps, que c'était là le véritable point de rue sous lequel il fallait considérer les Porisines. Cette opinion se trouve dess l'aperçu historique, en ces termes : « La conception des l'orimes nous ; 1-

a perçu misorique, on ces tormes : ello a été, selon nous, son origine den-· l'espeit d'Euclide. - Les Porismes étaient, par rapport aux propositions

locales, ce que les Dounces étaient par rapport aux simples theorèmes :es Elements. De sorte que les Porimes formaient avec les Donneles un con-

plément des Éléments de Géométrie, propre à faciliter les usages de ces • Éléments pour la résolution des problèmes. • (Aperçu, etc., p. 275.)

⁽¹⁾ On tenura les mêmes formes d'émmeés dans des propositions de numbres repeties Parismer per Dimbereto, comme nons to dicens play toje

des choses variables suivant une même loi, comme, par exemple, des droites qui passent par un même point, ou qui enveloppent un cercle ou une autre courbe.

II. - Traité des Connues géamétriques d'Hassan ben Haithem.

Les mathématiques arabes nous offrent à ce sujet un document d'un grand intérêt, qui prouve qu'en effet à une certaine époque on a considéré les Données, les Lieux et les Porismes comme formant un même genre de propositions qu'on pouvait réunir sous un même titre. Du moins, il existe un ouvrage arabe intitulé: Truité des Connues géométriques, qui est un recueil de propositions ayant toutes la même forme d'énoncés, et qui sont des Données proprement dites, des Lieux ou des Porismes. Seulement le terme donné, employé par les Grecs dans ces trois genres de propositions, est remplacé dans cet ouvrage par celui de connu.

Ainsi, l'on y lit que telle droite est connue de grandeur et de position; que tel point (variable) est sur un cercle connu de grandeur et de position; que le rapport de telle droite (variable) à telle autre, ou de tel rectangle (variable) à tel carré, est un rapport connu, etc.; propositions qui manifestement sont ou des données comme celles d'Euclide, ou des lieux comme ceux d'Apollonius, ou des Porismes comme ceux d'Euclide d'après le sens que nous avons attribué à la Notice de Pappus, conformément au sentiment de Sintson (1).

Le titre unique de Connues géométriques appliqué par l'auteur à ces trois classes de propositions que les Grecs distinguaient sous les trois noms différents de Données, Lieux et Porismes, prouve qu'il les considérait toutes trois

(46)

Il revient plus loin sur la même idée en ajoutant que les Porismes tiennent, en quelque sorte, le milieu entre les problèmes et les théorèmes; qu'en effet il ne s'agit pas, dans ces propositions, de choses que l'on ait à construire ou à considérer théoriquement, mais de choses qu'il faut prendre et montrer aux yeux; c'est-à-dire dont il faut déterminer la manière d'être, telle que la position ou la grandeur.

On peut reconnaître, nonobstant la concision et l'obscurité de cette sorte de définition, qu'elle concorde avec celle des Anciens rapportée par Pappus et entendue dans le sens bien défini que nous lui avons donné. Cet accord forme déjà une présomption favorable à notre système sur la doctrine des Porismes.

Mais ce qui nous paraît surtout offrir de l'intérêt ici, c'est que Proclus cite, comme exemples de Porismes, deux propositions sous forme de problèmes, lesquelles ne sont que de simples données, car les voici: Un cerclo étant donné, trouver son centre. Deux grandeurs commensurables étant données, trouver leur plus grande commune mesure.

Il est évident que dans chacune de ces questions, la chose demandée est une conséquence implicite de l'hypothèse; ce qui est le caractère des Données. Or il n'y a rien de variable dans ces propositions; elles sont donc de celles qui appartiennent à la classe des Données proprement dites. Ainsi quand Proclus les cite comme exemples des Porismes d'Euclide, on doit nécessairement en conclure qu'il a considéré ces Porismes comme des propositions du même genre que les Données, de même que l'a fait, 500 à 600 ans plus tard, le géomètre arabe Hassan ben Haithem.

C'est surtout le rapprochement entre ces deux faits qui nous a mis sur la voie de l'explication qui nous semble maintenant si naturelle, du passage de Proclus dont l'inter-prétation au vivant le prétation de la complete de la com

comme étant du même genre ou dérivant d'une même idée (1).

Cet ouvrage arabe, dont ou doit la connaissance et la traduction au savant orientaliste M. L. A. Sédillot, est du géomètre et astronome Hassan ben Haithem, qui florissait vers l'an 1009 et mourut au Caire en 1038 (2).

III. - Définition des Parismes tirée de Proclus.

Deux autres faits qui ont de l'analogie avec celui que vient de nous offrir le Traité des Connues géométriques, et que nous puisons chez les Grecs mêmes, dans Diophante et dans Proclus, contribueront encore à corroborer notre sentiment sur l'origine des Porismes et leur analogie avec les Données.

Citons d'abord Proclus, dont le texte que nous avons à invoquer est bien connu, mais a toujours paru fort obsenret n'a pas été entendu dans le sens que nous devons lui donner.

Il s'agit de la Notice sur les Porismes d'Euclide, que le célèbre philosophe platonicien a insérée dans son commentaire sur le I^{et} Livre des Éléments. Il dit que ces Porismes sont un genre de propositions où il y a quelque chose à trouver, et qui n'ont pas pour objet, cependant, ni une simple construction, ni une simple démonstration.

(47)

IV. — Porismes cités par Diophanie.

Diophante ne parle pas expressément des Porismes, comme Proclus, et n'a pas à les définir. Mais il cite dans ses Questions arithmétiques, sous le titre de Porismes, des propositions extraites d'un ouvrage, apparemment d'un Recueil de Porismes, qui ne nous est pas parvenu.

Ces propositions, auxquelles je crois que l'on n'avait jamais fait attention, du moins à titre de Porismes dans le sens d'Euclide, avant que nous les eussions signalées dans l'Aperçu historique, se rapportent aux propriétés des nombres; et ce qui a de l'intérêt ici, c'est que, sous le nom de Porismes, elles ont dans leurs énoncés la forme des Données, la même que nous attribuons aux Porismes.

Faisons remarquer d'abord, d'une manière générale, qu'effectivement la plupart des propositions de la théorie des nombres peuvent être considérées comme des Données. Car elles expriment que telle fonction de tels nombres, ou telle relation entre tels nombres, donne lieu à telle autre relation; en d'autres termes, que telle relation est une conséquence implicite de telle autre.

Par exemple l'identité

$$(a^3 + b^2)(a^3 + 6^3) = (a\alpha \pm b6)^3 + (a6 \mp b\alpha)^2;$$

si on l'énonce textuellement, sera un théorème proprement dit, ou théorème complet. Mais si, sans préciser la composition des deux carrés qui forment le second membre, on dit simplement que : Le produit de la somme de deux carrés par la somme de deux autres carrés s'exprime de deux manières par la somme de doux carrés, cet énoncé aura une certaine analogie avec ceux des Données.

Il en est de même des propositions suivantes :

⁽¹⁾ Nous donnous plus loin les énoncés mêmes de quatre propositions du Livre des Connucs géamétriques, dans lesquelles nous reconnaissons des Porismes.

⁽¹⁾ Il est permis d'espérer que si enfin l'on explorait les manuscrits arabes qui existent encore en grand nombre dans plusieurs grands dépèts, notamment dans la bibliothèque de l'Escurini, on trouverait dans d'antres ouvrages, comme dans colui de Hassan ben Haithem, des traces de la doctrine des Porismes qui servient d'un véritable intérêt. On ne doutera pas, en effei, que les manuscrits sur lesquels Cosiri a donné des notices précieuses dans son grand ouvrage (Bibliotheca arabico-hispana Escurialemis) ne puissent contonir souvent plusieurs autres pièces confondues sans titre, distincts, et que ce savant auteur n'a pas décrites.

⁽²⁾ V. Nouveau journal asiatique; mai 1834. Et Matériaux pour servir à l'histoire comparée des sciences mathématiques chez les Grees et les Orientaux. Paris, 1845, 1, 1er, p. 378-400.

différence des carrés de deux autres nombres, divisée par 4. Tout nombre premier de la forme 4n + 1 s'exprime par la somme de deux carrés.

Le produit de la somme de quatre carrés par la somme de quatre autres carrés s'exprime par la somme de quatre carrés.

Etc., etc.

Toutes ces propositions sont des théorèmes non complets, dans le sens que nous entendons, de même que les Données et les Porismes.

Revenons aux Porismes cités par Diophante. Ils se trouvent dans les Questions III, V et XIX du Ve Livre.

On lit dans la Question III : « Puisqu'on a dans les » Porismes: Si deux nombres sont tels, que chacun d'eux » augmenté d'un même nombre donné soit un carré et » que leur produit augmenté du même nombre soit aussi » un carré, ces nombres proviennent de deux carrés * consecutifs. *

C'est-à-dire que G étant un nombre donné, si deux autres nombres A, B, sont tels, qu'on sit

$$A + G = carré,$$

 $B + G = carré,$
 $AB + G = carré,$

les deux nombres A, B proviennent de deux carrés consécutifs.

En effet, prenant arbitrairement un nombre a tel, que at soit > G, il suffit de prendre ensuite $A = a^2 - G$ et $B = (a+1)^2 - G$. Car il en résulte

$$A + G = a^{3}, B + G = (a + 1)^{3},$$

 $AB + G = [a(a + 1) - G]^{3}.$

Tel est le seus que comporte l'énoncé de Diophante, qui

(5o)

u rismes : La différence de deux cubes est égale à la » somme de deux autres cubes. »

Ces propositions ne sont pas les seules de leur genre que renferme l'ouvrage de Diophante; on en trouve de semblables dans diverses autres Questions, sans que l'auteur aunonce qu'elles soient prises du Recueil des Porismes.

Par exemple :

« Le produit des carrés de deux nombres consécutifs, » plus la somme de ces deux carrés, fait un nombre carré » (Question XVII du Livre III). C'est le premier cas de la proposition citée comme Porisme dans la Question V.

n Si un nombre est le quadruple moins i d'un autre, a celui-ci, plus le produit des deux nombres, fait un carré (Question XX du même Livre).

n. Le carré de la différence de deux nombres, plus le qua-» druple de leur produit, est un carré (Question XX du

" Livre IV).

» Tout nombre triangulaire multiplié par 8 et augmenté

» de l'unité fait un carré (Question XLIV du même Livre). » Deux nombres dont l'un est double de l'autre étant

» donnés, le double de leur produit est un carré, et ce dou-

» ble produit moins la différence des carrés des deux nom-

* bres forme aussi un carré (Question XII du LivreVI). »

Ainsi, nous pouvons dire qu'il existait au temps de Diophante, outre ses célèbres Questions arithmétiques, dont il ne nous reste que six livres sur douze, un autre ouvrage sur le même sujet, recueil de propositions sur la théorie des nombres, que Diophante appelle Porismes; que ces propositions étaient des théorèmes non complets, dans lesquels il restait à trouver l'expression ou la valeur des choses annoncées, comme dans les Données; que, puisque Diophante les appelle Porismes, on est induit à penser que, sans être les mêmes que les Porismes géométriques d'Euclide, ils appartenaient au même genre de proposide nos jours peut paraître quelque peu obscur, puisqu'il n'y est pas dit comment les nombres proviennent ou sont formes de deux carrés consécutifs.

Si cet énoncé ne présente pas au premier aspect une aualogie suffisante avec les Données, on voit aussitôt que la proposition, tout en restant la même, reçoit le caractère d'une Donnée ou d'un Porisme, en admettant l'énoncé suivant: Deux carrés consécutifs étant donnés, ainsi qu'un nombre, on peut trouver deux autres nombres tels, que chacun d'eux et leur produit, augmentés du nombre donné, soient des carrés.

Dans la Question V, Diophante dit : « On a encore dans n les Porismes : Étant donnés deux nombres carres con-» sécutifs, on peut trouver un troisième nombre égal au " double de la somme de ces deux premiers plus 2, tel, que le produit de deux de ces nombres augmenté, soit de la somme des deux mêmes, soit du troisième nombre, » fasse un carré. »

C'est-à-dire que si A et B sout deux carrés consécutifs et qu'on forme le nombre $C=2\left(A+B\right)+2$, chacun des six autres nombres

$$[AB + (A + B)], [AB + C],$$

 $[AC + (A + C)], [AC + B],$
 $[BC + (B + C)], [BC + A],$

sera un carré.

Cet énoucé constitue un théorème non complet, puisqu'on n'y donne pas la forme des six carrés dont on annonce l'existence.

Cette proposition a donc de l'analogie avec les Données et les Porismes, comme les précédentes.

Il en est de même encore de la proposition suivante, qu'on trouve dans la Question XIX : « Nous avons dans les Po-

(51)

tions, ayant les uns et les autres le même caractère propre; que les Porismes d'Euclide étaient donc aussi des. théorèmes non complets et semblables dans leur forme aux Données, ainsi que nous pensons l'avoir déjà prouvé par d'autres considérations.

En résumé, les passages de Diophante nous paraissent fournir nu nouvel argument en faveur de notre système sur la doctrine des Porismes (1).

V. — Propositions du Traité des Connues géonétriques de Hassan ben Haithem conformes aux Porismes.

Proposition XVIII. Lorsque deux cercles connus de grandeur et de position sont tangents, et que l'un est dans l'intérieur de l'autre, si l'on mêne une droite qui coupe les deux cercles d'une manière quelconque, le produit des segments faits par un point du petit cercle sur la partie de cette droite comprise dans le grand cercle est au curré de la droite menée du point du petit cercle au point de tangence des deux cercles, dans un rapport connu.

Proposition XIX. Lorsque deux cercles connus sont tangents et que l'un est dans l'intérieur de l'autre, si l'on mène au petit cercle une tangente dont l'extrémité (autre que le point de tangence) soit à la circonférence du grand cercle, et qu'on joigne par une ligne droite cette extrémité au point de tangence des deux cercles, le rap-

⁽¹⁾ On sait que les Arabes ont travaille sur l'analyse indéterminée d'après Diophante, dont ils ant traduit et commenté les Questions arithmétiques. On doit croire qu'ils ont pussi connu le Recueil de Porisnes, qu'il fut de Diophante lui-mêma ou d'un autre auteur gree. Il est donc permis de penser qu'on pourra retrouver un jour quelques traces de cet ouvrago. Nous serions heureux que l'espoir d'une découverte aussi précieuse, aussi importante pour l'histoire des mathématiques, put foire entreprendre quelques recherches dans les manuscrits arabes, rechorches qui, du reste, conduiraient infailliblement à beaucoup d'autres découvertes.

port de cette dernière ligne à la tangente est un rapport connu.

Proposition XXI. Lorsque deux cercles connus sont tangents et que l'un des deux est dans l'intérieur de l'autre, si l'on mène du point de tangence le diamètre commun aux deux cercles, et que par le point où ce diamètre coupe le petit on mène une droite qui coupe le petit cervle en un second point, cette droite (terminée au grand cercle) sera divisée, en ce point, en deux parties telles, que le produit de ces deux parties plus un carré (connu) sera au carre de la partie comprise dans le petit cercle, dans un rapport connu.

Proposition XXII. Lorsque dans un cercle connu de grandeur et de position on mêne un diamètre connu de position et que sur ce diamètre on prend deux points ègalement éloignés du centre, si de ces points on mêne deux lignes qui se rencontrent en un point de la circonférence du cercle, la somme des carrés de ces deux lignes sera

Passages de Proclus relatifs aux Porismes.

Extrait du Commentaire relatif à la Ire Proposition des Élémente d'Euclide.

- « Porismo se dit de certains problèmes comme les Pon rismes d'Euclide. Mais il se dit plus particulièrement,
- » lorsque, des choses qui viennent d'être démontrées, surgit
- quelque théorème que nous n'avions point eu en vue, et
- » que pour cela on a appelé Porisme, comme une sorte de
- » gain qui s'ajoute à ce que l'on s'était proposé de démon-

Extrait du Commentuire relatif à la Proposition XV d'Enclide.

» Porisme est un des termes de la géométrie : mais il a » deux significations. Car on appelle Porismes les théorè-

(54)

Données qui se rapportent à des propositions où l'on considère une infinité de choses variables suivant une certaine loi, comme dans les propositions locales.

Mais les Données, n'étant plus en usage sous leur propre nom, demanderaient elles-mêmes une définition. Il sera donc plus simple et plus conforme à l'essence des choses de définir directement les Porismes, d'après leur _ caractère propre et abstraction faite de l'idée primitive de Donnée.

Nous reportant au sens bien défini que nous avons attribué à l'expression de théorème non complet, nous dirons que:

Les Porismes sont des théorèmes non complets, exprimant certaines relations entre des choses variables suivant une loi commune; relations indiquées dans l'énoncé du Porisme, mais qu'il faut compléter par la détermination, de grandenr ou de position, de certaines choses qui sont la conséquence de l'hypothèse, et qui seraient déterminées dans l'énoncé d'un théorème proprement dit ou théorème complet.

S'il ne fallait pas introduire dans la définition des Porismes, pour les distinguer des Données, la condition d'une infinité de choses variables, comme dans les Lieux, on pourrait dire simplement que : Le Porisme est une proposition dans laquelle on énonce une vérité, en affirmant qu'on peut toujours trouver certaines choses qui la complètent.

On ne peut manquer de remarquer que cette forme de théorèmes non complets tend à devenir le caractère le plus général des propositions dans beaucoup de parties des Mathématiques actuelles; qu'il y a donc à cet égard une analogie incontestable, qu'on était loin de soupconner, entre les Porismes d'Euclide et la plupart de nos propositions

» mes qui résultent de la démonstration d'autres théorèmes » comme un gain inattendu et dont profite le géomètre : et

» on appelle aussi Porismes des propositions qui n'ont pas

pour objet ni une simple construction, ni une simple démonstration, mais où il faut trouver quelque chose.

» Qu'on démontre que dans les triangles isocèles les n angles à la base sont égaux, on acquerra la connaissance » de ce qui est.

» Qu'on divise un angle en deux parties égales, on qu'on construise un triangle, ou qu'on ajoute ou retranche une

» ligne, tout cela demande une construction.

» Mais qu'il s'agisse de trouver le centre d'un cercle » donné, ou la plus grande mesure commune à deux gran-

» deurs commensurables données, toutes les questions de

ce genre tiennent en quelque sorte le milieu entre les Problèmes et les Théorèmes. En effet, il ne s'agit pas

. » là de la construction, ni de la considération purement théorique de choses cherchées, mais de leur acquisition :

car il faut les présenter à la vue, les mettre sous les

» yeux. Tels sont les Porismes composés par Euclide et

» qu'il a réunis dans ses Livres de Porismes. Mais nous ne

a dirons rien ici des Porismes de cette espèce.

» Quant aux Porismes qui se trouvent dans les Éléments » d'Euclide, ils se présentent comme conséquences des démonstrations d'antres théorèmes, quoiqu'ils n'aient pas

été le sujet de ces démonstrations.... »

Ce qui suit se rapporte aux corollaires des Éléments d'Euclide.

§ VIII. - Nouvelle définition des Porismes. - Identité de ces propositions, quant à leur forme, avec la plupart des propositions de la Géométrio moderne.

D'après ce qui précède (§ VII, 1), les Porismes sont des

(55)

modernes. Quelques exemples vont mettre cette analogie en parfaite évidence.

Soit cette proposition: Si l'on prend sur le diamètre d'un cercle deux points qui divisent ce diamètre harmoniquement, le rapport des distances de chaque point de la circonference à ces deux points sera constant.

Que l'on dise que ce rapport est donné, ce qui ici siguifiera la même chose que constant, on énoucera un Porisme dans le style même d'Enclide.

Pour que la proposition fût un théorème proprement dit, comme ceux que l'on trouve dans les Eléments d'Euclide, dans les Coniques d'Apollonius et dans les ouvrages d'Archimède, il faudrait faire connaître dans l'énoncé même la valeur de ce rapport constant et dire qu'il est égal au rapport des distances des deux points à l'une des extrémités du diamètre sur lequel ces points sont situés (1).

Dans un cercle, l'angle sous lequel on voit, du centre, la partie de chaque tangente comprise entre deux tangentes fixes, est constant.

Qu'on disc est donné, ce sera un Porisme.

Mart que l'on dise que cet angle est égal à celui que le rayon mené au point de contact d'une des deux tangentes fixes fait avec la droite menée du centre au point de rencontre de ces deux tangentes, on énoncera un théorème proprement dit on complet.

Dans l'hyperbole le produit des segments qu'une taugente fait sur les asymptotes est constant.

Qu'on dise est donné, on reconnaîtra aussitôt un Porisme. Mais que l'on disc que ce produit est égal à la somme des carrés des deux demi-axes de la courbe, on énoncera un théorème.

La Géométrie moderne offre une foule d'exemples sem-

blables de théorèmes non complets, qui sont de véritables Porismes selon la conception d'Euclide, sinon en apparence à cause des dissérences de style, du moins par la nature même de la proposition où l'on a à démontrer l'existence d'une chose annoncée, et à trouver (sans invention) la manière d'être, telle que la grandeur ou la position, de cette chose (1).

Ce qui précède nous paraît donner une idée bien nette de la doctrine des Porismes, et le véritable mot de cette énigme qui depuis si longtemps occupe les géomètres.

Nous y trouvons aussi l'explication d'un point assez embarrassant de l'histoire des Mathématiques : cet ouvrage qui, selon Pappus, renfermait une foule d'aperçus féconds, utiles et presque nécessaires pour la culture de la Géométrie, aurait disparu sans que rien en eût remplacé les théories dans la science, de sorte que de nos jours il y serait absolument étranger.

Bien loin de la : l'ouvrage d'Euclide n'est nullement étranger à nos Mathématiques. Au contraire il semble qu'elles en aient reçu l'influence, je ne dis pas quant à leur origine, le livre était perdu, mais quant à leur forme actuelle; et en réalité nous faisons journellement des Porismes, à notre insu.

Cette forme de nos propositions, que nous pouvons dire non complètes, eu égard aux théorèmes des Anciens, et qui se trouvent ainsi débarrassées de déterminations parfois compliquées et sans utilité, nous paraît être un progrès réel : car la science y trouve un degré de simplicité et d'abstraction qui facilite le raisonnement et la combinaison des vérités mathématiques entre elles.

111

En constatant la distinction qu'Euclide avait établie entre

(1) Voir la note de la p. 15 ci-dessus.

.(58)

de tel point variable est une section conique. Ce sont donc des Lieux, conséquemment aussi des Porismes. La dernière de ces propositions contient la propriété de la Directrice dans les sections coniques, en ces termes: Le lieu d'un point dont les distances à une droite donnée de position et à un point fixe, sont entre elles dans une raison donnée, est une section conique: parabole si la raison est l'unité, ellipse si elle est plus grande que l'unité, et hyperbole si elle est plus petite.

Ces exemples font voir, comme nous l'avons annoncé, que la distinction qu'Euclide avait établie entre les théorèmes d'une part, et les Données et les Porismes d'autre part, eût-elle été jamais observée dans la pratique, je veux dire dans la culture des Mathématiques, ne l'était plus au temps de Pappus, et que toutes ces propositions pouvaient être confondues indistinctement sous la seule dénomination de théorèmes.

§ IX. — De l'utilité des Porismes pour la résolution des problèmes.

Pappus dit que les Porismes d'Euclide étaient nécessaires pour la résolution des problèmes. Nous avons déjà vu (§ II) qu'à raison des matières qui formaient le sujet des trois livres de Porismes, cet ouvrage devait être extrêmement utile pour les progrès généraux de la Géométrie; mais il s'agit ici d'une utilité spéciale pour la résolution des problèmes. Voici comment nous concevons cette utilité.

C'est que la recherche d'un lieu géométrique déterminé par certaines conditions exigeait le secours de quelque Porisme. Car il fallait conclure de ces conditions une autre expression du lieu qui fût déjà connue, et qui par conséquent fit connaître la nature du lieu, sujet de la question. Or c'est le passage d'une expression du lieu à une autre expression qui exigeait un Porisme.

les théorèmes proprement dits ou théorèmes complets d'une part, et les Données et les Porismes, d'autre part, nous n'entendons pas dire que dans une composition mathématique on ait toujours dû donner à chaque proposition le nom spécial qui lui était propre à ce point de vue. Nous croyons qu'au temps de Pappus les géomètres et Pappus lui-même négligeaient cette distinction de noms.

En esset, d'abord il est à remarquer que Pappus donne le nom commun de THÉORÈMES AUX Données, aux Porismes et aux Lieux, dans ses Notices sur ces trois classes de propositions; car il dit que le livre des Données contient 90 THÉORÈMES, les trois livres de Porismes 171, et les deux livres des Lieux plans d'Apollonius 147.

Secondement, on ne trouve dans le recueil étendu des Collections mathématiques aucune proposition sous le titre de Porisme, et je crois même aucune sous celui de Donnéa, quoique plusieurs propositions aient pu être regardées les unes comme des Porismes, les autres comme des Données.

Ainsi dans le livre IV, la proposition VII ainsi énoncée: Si les quatre côtés d'un quadrilatère ABCD sont donnés, et si l'angle B est droit, la diagonale BD est nonnée, est incontestablement une proposition appartenant à la classe des Données. Il en est de même des deux propositions VIII et IX du même livre.

Dans le livre VII, la proposition CCXXVIII (qui est un des lemmes relatifs aux septième et huitième livres des Coniques d'Apollonius) appartient aussi à la classe des Données; car elle porte que: Quand la somme des carrés de deux lignes et la différence des mêmes carrés sont données, les deux lignes sont ponnées.

Les quatre propositions CCXXXV-CCXXXVIII du même livre VII (lemmes relatifs aux Lieux à la surface d'Euclide), sont tout à fait semblables, quant aux énoncés, aux Lieux plans d'Apollonius; elles expriment que le lieu

(59)

Par exemple, demande-t-on le lieu d'un point dont les distances à deux points fixes soient entre elles dans un rapport donné? On démontrera qu'il existe, c'est-à-dire que l'on peut trouver, (sur la droite qui joint les deux points donnés), deux autres points tels, que les droites menées de ces points à chaque point du lieu cherché font entre elles un angle droit. Proposition qui constitue un Porisme, et de laquelle on conclut que le lieu est un cercle.

Souvent une question de lieu pourra se résoudre par plus d'un Porisme.

Ainsi, dans la question précédente on démontrera, l'hypothèse restant la même, qu'il existe, ou qu'on peut trouver un certain point et une longueur de ligne tels, que la distance de chaque point du lieu à ce point sera égale à cette ligne.

Ce sera là un Porisme. Et l'on en conclura la connaissance complète du lieu cherché.

On voit par cet exemple comment on peut concevoir que toute question de lieu, ou problème local, obligeait de passer par un Porisme.

Cette marche est dans la nature des choses et subsiste dans les Mathématiques modernes : quelque méthode que l'on emploie pour résoudre un problème de lieu, on peut toujours y apercevoir un Porisme.

Il en est ainsi notamment dans le procédé général de solution fondé sur l'analyse de Descartes, qui conduit à une équation finale entre les coordonnées x, y, d'où se conclut le lieu cherché. Car cette équation constitue un véritable Porisme.

En effet, que cette équation, rapportée à deux axes rectangulaires, soit, par exemple,

$$x^3 + ax + y^4 + by = c:$$

elle exprime qu'étant pris arbitrairement deux axes rec-

tangulaires dans le plan de la sigure, on peut déterminer deux longueurs de lignes a, b, et un espace ou rectangle c, tels, que la somme des carrés des distances de chaque point du lieu aux deux axes, plus les produits de ces distances par les deux lignes a et b, forment une somme égale au rectangle c.

Proposition qui constitue un Porisme à la manière d'Euclide, sauf les expressions modernes qui en abrégent l'énoncé.

Les Anciens n'avaient pas une pareille méthode générale à laquelle ils pussent ramener toutes les questions de Lieux. Par conséquent, on conçoit qu'ils ont dû nécessairement chercher à multiplier les expressions différentes de chaque lieu, c'est-à-dire de chaque courbe, y compris aussi les lieux à la droite, et chercher à passer d'une expression à chacune des autres. Ce qui se faisait toujours par un Porisme, comme nous l'avons dit.

Le Traité des Porismes d'Euclide était donc une collection de propositions servant à passer ainsi d'une expression comme d'un lieu à une autre expression du même lieu, et plus généralement servant à passer des conditions commues qui déterminent un système de choses variables assujetties à une loi commune, à d'autres conditions déterminant les mêmes choses variables.

Nous n'entendons pas dire d'une manière absolue que tel était l'objet de tous les théorèmes d'Euclide sans exception, mais seulement que tel était leur caractère général et le but qu'Euclide s'était proposé en ajoutant au Traité des Données celui des Porismes, comme second complément des Éléments et provision de ressources pour la culture de la Géométrie supérieure, et spécialement pour la résolution des problèmes.

Quant aux lieux, Euclide n'a traité, dans ses trois livres de Porismes, que de la droite et du cercle, ainsi que le dit Pappus, et comme le prouvent ses 38 Lemmes qui ne

1621

» les différences des résultats ou des choses cherchées. » De sorte que chaque genre s'applique à des hypothèses qui peuvent être très-variées. C'est ainsi que les XXIX genres résument les 171 théorèmes que contenait le traité des Porismes.

Il est à remarquer que Pappus a fait du livre des Données d'Euclide une analyse assez semblable, dans laquelle il décrit, en termes encore plus généraux que pour les Porismes, le caractère des différents groupes de propositions : il indique le nombre des propositions de chaque groupe, mais sans faire connaître aucune proposition en particulier. Cette analyse aurait pu servir à rétablir conjecturalement les quatre-vingt-dix propositions du livre des Données, si cet ouvrage ne nous était pas parvenu. Il est à regretter que Pappus n'ait pas complété son analyse des Porismes en y ajoutant, comme pour les Données, le nombre des propositions de chaque genre.

Les Porismes, dont nous rappelons ici le caractère essentiel, sont des propositions dans lesquelles il y a certaines choses variables, comme dans les propositions locales; et c'est une relation entre ces choses variables (points, lignes, segments, etc.) et les choses constantes qui constitue les propositions.

Prenous quelques exemples des genres décrits par Pappus. Tel point est situé sur une droite donnée de position.

Cela signifie qu'un point variable a pour lieu géométrique une droite dont la position est déterminée en vertu de l'hypothèse ou des données de la question.

On peut croire que cet énoncé comprend toutes les propositions de lieux qui se trouvaient dans les trois livres d'Euclide; car ces lieux ne pouvaient être qu'à la droite et au cercle; et l'on ne trouve pas dans les huit genres spéciaux au III^e livre ni dans aucun de ceux qui les précèdent, un seul énoncé qui exprime un lieu au cercle, tel se rapportent qu'à des figures rectilignes et au cercle. Et quant à cenx des Porismes qui ne concernent pas des propositions locales proprement dites, on voit par plusieurs énoncés de Pappus, dont il suffit de citer celui-ci, du I^{er} Livre: « Telle droite passe par un point donné » et les trois derniers du III^e Livre, qu'il y en avait, même de très-variés, dans l'ouvrage d'Euclide. Notre restitution de ces trois livres en comprend aussi un assez grand nombre.

§ X. — Observations et éclaircissements préliminaires au sujet des XXIX genres de Porismes décrits par Pappus. — Ordre qu'en suivra dans le rétablissement des trois Livres d'Euclide.

١,

L'ouvrage d'Enclide était en trois livres et contenait 171 théorèmes.

Pappus comprend ces 171 Porismes sous XXIX enoncés qu'il appelle genres, dont 15 appartiennent au I^{ee} livre, 6 au II^e et 8 au III^e. Il ajoute que les 15 genres du I^{ee} livre se retrouvent dans le II^e avec les 6 propres à ce livre; et de même, que ces 21 genres entrent dans le III^e livre avec les 8 nouveaux. Il dit que la plupart des Porismes de ce III^e livre se rapportent au demi-cercle, et quelques-uns au cercle et aux segments. Ce qui indique que les deux premiers livres ne roulent que sur les figures rectilignes.

Dans chacun des XXIX énoncés, hormis le premier qui forme une proposition complète, Pappus ne décrit que les choses cherchées, en omettant les hypothèses qui, dans l'ouvrage d'Euclide, donnaient lieu aux propositions. Ce sont ces choses cherchées qui constituent les genres. Ainsi il dit: a Voici les genres des choses cherchées dans les propositions du Ist livre. »

Il a dit plus haut : « Ce n'est pas par les différences des » hypothèses qu'il faut distinguer les Porismes, mais par

(63)

que le lieu à la droite ci-dessus. Il fant en conclure que les Porismes relatifs au cercle dans l'ouvrage d'Euclide exprimaient des propriétés communes à tous les points de la circonférence, sans avoir la forme d'énoncé d'un lieu proprement dit.

Nous devrons nous conformer à cette indication.

Telle droite passe par un point donné.

Il s'agit d'un système de droites assujetties à une même loi et qui passent toutes par un même point donné virtuellement, c'est-à-dire dont la position est une conséquence des conditions de la question.

Ce genre comprendra un assez grand nombre de Porismes différents, qui se trouveront indistinctement dans les trois livres.

Telle droite est donnée de position.

Il s'agit d'une droite qui n'est pas considérée comme lien d'un point, et qui satisfait à certaines conditions concernant des choses variables. Par exemple, ce sera une droite sur laquelle certains angles intercepteront des segments égaux, ou une droite avec laquelle coincideront les diagonales de certaines figures, etc.

Ces genres de Porismes, que nons venons de citer, sont très-simples, et les choses cherchées y sont indiquées explicitement. Mais dans d'autres questions les choses cherchées sont multiples et peuvent n'être pas toutes indiquées explicitement, quelques-unes restant sous-entendues. Alors il peut y avoir incertitude et l'énoncé pourra s'entendre de plusieurs manières.

Prenons celui-ci, qui forme le XVe genre :

Telle droite fait sur deux autres droites données de position des segments dont le rectangle est donné.

Il s'agit d'une droite variable de position qui forme sur deux droites fixes deux segments dont le rectangle est constant; la valeur de ce rectangle est donnée virtuellement, c'est-à-dire qu'elle est une conséquence de l'hypothèse, qu'il faut déterminer.

L'énoncé est susceptible d'un autre sens. On peut supposer que les origines des deux segments sont deux points donnés de fait, et que les données virtuelles, c'est-à-dire les choses que l'on a à trouver, sont les directions des deux droites fixes menées par ces points, et la valeur du rectangle constant.

On voit par cet exemple comment un même énoncé pourra se prêtor à plusieurs interprétations disserntes qui produiront ainsi une sorte de subdivision des genres des Porismes.

Н.

Nous grouperons ensemble, dans chaque livre, les Porismes d'un même genre, pour mettre un certain ordre dans un si grand nombre de propositions si diverses, et faciliter le jugement que l'on portera sur ce travail de rétablissement. Mais nous n'avons pas de raison de penser qu'Euclide se fût assujetti à cet ordre d'une manière rigoureuse, car il n'aurait pu l'observer tout au plus qu'à l'égard des propositions d'un même livre, puisque les genres du Ier Livre se retrouvent dans le IIIe, et ceux du Ier et du IIe dans le IIIe.

Pour quelques propositions seulement nous nous sommes écarté de l'ordre que nous venons de tracer. Nous les avons placées à la fin du III livre: ce qui simplifie la démonstration. Car elles sont ainsi précédées par certaines autres dont elles pouvaient se conclure aisément.

Nous nous rensermerons strictement dans les énoncés de Pappus, c'est-à-dire dans les XXIX genres qu'il a décrits. C'est pour cela qu'on ne trouvera pas dans notre restitution des trois livres d'Euclide de lieux au cercle qui pourraient pourtant se présenter en grand nombre dans un Traité des

(66)

du les Livre. Nous croyons, au contraire, que les premiers Porismes dans l'ouvrage d'Euclide étaient les dix cas de la proposition des quatre droites. Plusieurs raisons nous semblent l'indiquer. D'une part, Pappus dit, comme nous l'avons déjà fait observer plus haut, qu'Euclide a placé ces propositions « au commencement du Ier Livre ». Il est vrai que le premier des XV genres qui résument les nombreux Porismes de ce livre comporte des propositions différentes; mais Pappus ne dit pas que ce Ier genre renferme précisément le premier Porisme. De sorte que ce passage n'infirme pas celui qui le précède et qui serait formel, si le texte où se lit le moi « commencement » n'offrait une lacune.

Mais, d'autre part, et indépendamment de ce motif, une raison tirée des Lemmes de Pappus relatifs aux Porismes nous a para tout à fait décisive.

Pappus présente le premier Lemme comme s'appliquant au premier Porisme, et le second Lemme au second Porisme. et il n'y a plus de mention semblable pour aucun des autres Lemmes. Or ces deux Lemmes conviennent si naturellement à deux cas de la proposition des quatre droites, qu'on peut dire qu'ils en sont l'expression immédiate. De plus, il en est de même des cinq Lemmes qui suivent les deux premiers : c'est à-dire qu'on en conclut aussi immédiatement cinq autres cas de la même proposition. Les trois cas qui complètent les dix se démontrent sans le secours d'aucun Lemme avec une très-grande facilité. Nous ajouterons que les Lemmes qui viennent après ces sept premiers trouvent leur emploi naturel pour la démonstration des Porismes appartenant aux genres successifs du Ier Livre; et enfin, que ces sept premiers Lemmes, desquels nous déduisons sept cas de la proposition des quatre droites, n'ont pour la plupart, les deux premiers notamment, aucun usage dans les démonstrations des autres Porismes.

Il semble donc résulter, avec quelque certitude, de ces

Porismes. Toutefois, les propriétés du cercle, que dans d'autres circonstances on exprimerait par des propositions de lieux proprement dites, entreront sous des énoncés différents et toujours conformes aux genres décrits par Pappus, dans notre III° livre, où elles seront assez nombrenses.

Les dix Porismes qui forment les dix cas de la proposition des quatre droites sont du genre des lieux à la droite : cependant, comme Pappus dit qu'ils se trouvent au commencement du I^{ut} Livre, et qu'il en parle d'une manière particulière, nous les avons placés les premiers et en quelque sorte hors ligne, sans les comprendre dans le genre des lieux à la droite, qui n'est décrit que le second.

Le genre décrit le premier par Pappus est le Porisme énoncé d'une manière complète, où il s'agit de trouver une droite et sur cette droite un point qui sera l'origine de segments en rapport donné avec d'autres segments.

On pourrait, à la rigueur, rattacher ce Porisme au V' genre énoncé ainsi: Telle droite est donnée de position. La recherche du point fixe sur cette droite serait une conditiou implicite, comme nous l'avons dit ci-dessus. Mais sans nous arrêter à l'incertitude qui peut naître ici, et pour nous conformer strictement au texte de Pappus, nous regarderons le Porisme dont il s'agit, comme formant le Ier genre du Ier Livre. Pappus, en reproduisant par exception cet énoncé tout entier, peut avoir en l'intention de donner un exemple taut de la forme la plus commune que du caractère et de la nature des Porismes. Car celui-ci nous paraît être, à certains égards, comme nous l'expliquerons tout à l'heure, une sorte de type de nombreuses propositions des trois Livres.

Simson a pensé que ce Porisme était le premier (1)

(t) Il l'intitule : Prop. XXIII. Quæ est Porisma I Lib. I Porismatum Euclidis. (Opera quædam reliqua, etc., p. 400.)

5

(67)

raisons tontes concordantes, que les dix cas de la proposition des quatre droites formaient les premiers Porismes dans l'ouvrage d'Euclide.

§ XI. — Analyse des XXIX genres de Porismes. — Expression algébrique des genres qui comportent des relations de segments. — Autres genres qui se rapportent aux mêmes matières.

I.

Le Porisme qui constitue le Ier genre, et dont la description est suffisamment complète, peut être regardé comme une espèce de type commun à nombre d'énoncés de Porismes. Mais c'est seulement à plusieurs égards, comme nous l'avons dit; et il ne s'agit que de certaines circonstances de l'hypothèse, qui peuvent se répéter dans différents genres. Il est en effet très-facile de voir qu'on satisfait à la plupert des genres par des propositions dont les hypothèses variées contiennent cependant des éléments semblebles, savoir : Deux droites qui tournent autour de deux points fixes en se coupant toujours sur une droite donnée de position, et qui font sur deux autres droites fixes, ou sur une seule, deux segments qui ont entre eux une certaine relation constante.

Ce seront les différences entre ces relations constantes qui donneront lieu aux différents genres.

Mais le II. Livre présente un caractère spécial : c'est que parmi les six genres qui s'y rapportent, il y en a quatre au moins dans lesquels les segments considérés sont nécessairement formés sur une seule droite : pour les deux autres genres ces segments peuvent être formés indifférement sur une seule ou sur deux droites; tandis que dans les genres du I. Livre, hormis deux ou trois peut-être, les segments paraissent être formés toujours sur deux droites.

Sans nul doute les relations générales entre les segments formés sur deux droites ont lieu de même sur une seule droite, puisqu'on peut supposer que les deux droites. ent

d'ordinaire sont données à priori comme faisant partie de l'hypothèse, soient coïncidentes. Mais ce cas particulier donne lieu à de nouvelles relations, d'une autre forme, dans lesquelles entre le segment compris entre les deux points variables. Or ce sont ces relations spéciales qui nous paraissent faire le caractère propre de quatre des six genres attribués par Pappus au IIº Livre.

Dans le IIIº Livre on a encore à considérer, dans beaucoup de propositions, deux droites tournant autour de deux points fixes et formant, soit sur deux droites soit sur une scule, des segments entre lesquels il existe des relations semblables à celles des deux premiers Livres. Mais ces relations out lieu dans le cercle: les deux points fixes sont peis sur la circonférence même, et les deux droites qui tournent autour de ces points se coupent sur cette circonférence, au lieu de se couper sur une droite, comme dans les deux premiers Livres. Il y a en outre, dans ce IIIª Livre, divers autres genres relatifs au cercle.

Presque toutes les relations de segments, sinon toutes, des deux premiers Livres, sont de celles qui expriment que deux points variables sur deux droites ou sur une seule forment deux divisions homographiques. Ces relations sont des équations à deux, à trois, à quatre ou à cinq termes.

Pour qu'on en juge, nous allons présenter un tableau des XXIX genres décrits par Pappus, en fixant par une équation le sens que nous attribuons à chaque énoncé où entre une relation de segments.

Genres.

I.
$$\frac{Am}{A'n'} = \lambda (i)$$
.

(i) Les lettres m, m', m'', M, p, p' designent dans les formules qui vont

(70)

II. Livre.

Genres.

XVI. $\frac{Am \cdot B'm' + \nu}{mm'} = \mu$. Divisions homographiques sur une droite.

XVII. $\frac{A m \cdot B' m'}{mm'} = \mu$. Divisions homographiques sur

XVIII. $\frac{(Am + Bm)(C'm' + D'm')}{mm'} = \mu$. Divisions homographiques sur une droite.

XIX. $\frac{\operatorname{Am}\left(\operatorname{B}'m'+1,\operatorname{C}'m'\right)+\operatorname{D}m,\lambda_{i},\operatorname{E}'m'}{mm'}=\mu. \text{ Divisions}$

homographiques sur une droite.

XX. $\frac{Am.B'm' + Cm.D'm'}{Gm} = \mu$. Divisions homographiques sur deux droites.

XXI. $Im.J'm' = \nu$. Divisions homographiques sur deux droites.

III Livre.

XXII. $\frac{A m \cdot B' m'}{C m \cdot D' m'} = \lambda$. Divisions homographiques sur deux droites ou sur une scule.

XXIII.
$$\frac{\overrightarrow{Am}}{mm'} = \mu$$
.

XXIV. $Am.J'm' = \mu.A'm'$. Divisions homographiques sur deux droites ou sur une seule.

XXV.
$$\overline{Om}^2 = \mu.Dp$$
.

XXV. $\overline{Om}^2 = \mu.Dp$. XXVI. $\frac{(Am + Bm)\lambda.C'm'}{mm'} = \mu$. Divisions homographiques sur une droite.

XXVII. Un point duquel on peut mener deux droites (variables) qui comprennent un triangle donné d'espèce.

Corres.

II. Tel point décrit une droite donnée de position.

III.
$$\frac{Am}{A'm'} = \lambda$$
; $\frac{Sm}{Sm'} = \lambda$.

$$1V, \ \frac{\mathbf{A}m}{nm'} = \lambda.$$

V. Telle droite est donnée de position.

VI. Telle droite passe par un point donné.

VII.
$$\frac{Am}{A'm'} = \lambda$$
.

VIII.
$$\frac{Am}{Mm'} = \lambda$$
.

IX. $\frac{Am.J'm'}{a.A'm'} = \lambda$. Divisions homographiques sur deux

X. $J'm \cdot Im' = v + \mu \cdot mm'$. Divisions homographiques sur une droite.

XI. Enoncé incomplet.

XII.
$$\frac{Am + \lambda \cdot Bm}{Cm} = \mu, \quad \frac{Am + \lambda \cdot Bm}{C'm'} = \mu,$$
$$\frac{Am + \lambda \cdot B'm'}{C'm'} = \mu, \quad \frac{Am + \lambda \cdot B'm'}{C''m'} = \mu.$$

Divisions en parties proportionnelles sur deux ou sur trois droites.

XIII. Am.Op = A'm'.O'p'.

XIV. $\frac{Am + Bm}{C'm'} = \mu$. Divisions on parties proportionnelles sur deux droites.

XV. Im. J'm' = ν . Divisions homographiques sur deux droites.

suivre des points variables. Ce sont, en général, les extrémités des segments entre lesquels ont fieu les relations qui nous paraissent répondre aux énoncès de Pappus. Les lettres A, B,... désignent des points fixes, origines des segments; ces points sont donnés, de fait ou virtuellement. Enfin, 2, 4,... représentent des lignes, des espaces, ou des rapports constants, qui sont aussi donnés, de fait ou virtuellement.

(71)

Cenres.

XXVIII. Un point d'où partent deux droites (variables) qui interceptent des ares égaux.

XXIX. Un point par où passe une droite faisant avec telle autre un angle donné.

On remarquera qu'indépendamment du les genre dont nous avons fait ressortir le caractère, quatre genres, Ill, IV, VII, VIII, semblent exprimer une même chose, savoir, que le rapport de deux lignes est constant. On pourrait donc croire au premier abord qu'il y a ici confusion, par suite de quelque erreur dans le texte. Mais il existe des différences notables dans les expressions de Pappus, et il a en certainement on vue des propositions qui ne sont pas identiques, notamment quant aux choses que l'on cherche.

Ainsi nous pensons que, dans le llIe genre, on considère des segments dont les origines sont connues, et que l'on a simplement à démontrer la constance du rapport entre les deux segments variables, et à trouver la valeur de ce rapport; que dans le VII", qui semble avoir la même équation, une seule origine est donnée, et que les choses cherchées sont la seconde origine et la valeur du rapport constant.

Le IVe genre distère de ces deux-là, en ce qu'on n'y considère qu'un segment compté à partir d'un point fixe, et que l'autre segment est l'abscisse comprise entre les deux points variables.

Dans le VIII^e genre, l'une des deux droites variables dont le rapport est constant n'est pas un segment compté sur une droite fixe, mais bien une oblique on une perpendiculaire abaissée d'un point variable sur une droite donnée de position.

Ces quatre genres sont donc différents. Ils embrassent, dans leurs applications, une foule de propositions relatives aux points homologues de deux droites divisées en parties proportionnelles. Ils donnent lieu aussi à différents autres III. - Autres genres qui ne se trouvent pas dans les Porismes d'Euclide.

Nous venons de voir que la plupart des relations de segments qui font le sujet d'un grand nombre des l'orismes d'Euclide expriment que deux séries de points sur deux droites, ou sur une seule, forment deux divisions homogra-

Il existe plusieurs autres relations par lesquelles on représente les mêmes divisions et qui par conséquent auraient pu se trouver dans l'onvrage grec.

D'abord l'équation

$$\frac{a+\lambda.\,Am}{B'm'}=\mu,$$

dans laquelle a est une ligne donnée, de fait ou virtuellement, exprime deux divisions en parties proportionnelles, sur deux droites ou sur une seule, et donne lien à d'assez nombreux Porismes.

Ensuite quatre autres exprimeront chacune deux divisions homographiques générales, faites sur deux droites ou sur une seule:

$$\frac{(a+\lambda.Am)B'm'+y}{Bm} = \mu,$$

$$\frac{(a+\lambda.Am)B'm'+y}{Am} = \mu,$$

$$\alpha.\Delta m.B'm'+6.Bm.C'm'=Bm.B'm',$$

$$\frac{(\Delta m+Bm)C'm'}{Cm} = \mu.$$

Les deux suivantes résultent de deux divisions faites sur

(24)

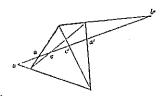
trois catégories : 23 sont relatifs à des figures rectifignes; 7 se rattachent au rapport harmonique de quatre points, et 3 concernent le cerele.

Des 23 Lemmes relatifs à des sigures rectilignes, 6 out pour objet le quadrilatère coupé par une transversale; 6 l'égalité des rapports anharmoniques de deux systèmes de quatre points qui proviennent des intersections de quatre droites issues d'un même point, par deux autres droites; 4 peuvent être considérés comme exprimant une propriété de l'hexagone inscrit à deux droites; 2 donnent le rapport des aires de deux triangles qui ont deux angles égaux ou supplémentaires; 4 autres se rapportent à certains systèmes de droites que nous définirons plus loin; et enfin le dernier est un cas du problème de la section de l'espace.

Nous allons essayer de faire connaître dans l'analyse suivante le caractère particulier de chacun de ces XXXVIII Lemmes, qui tous, plus ou moins, nous seront utiles.

Les Lemmes I, II, IV, V, VI et VII (propositions 127, 128, 130, 131, 132 et 133 du VII Livres des Collections mathématiques de Pappus), qui ont pour objet le quadrilatère coupé par une transversale, contiennent chacun une relation entre les segments que les quatre côtés et les deux diagonales du quadrilatère forment sur cette transversale considérée dans des positions différentes.

Dans le Lemme IV (proposition 130), la transversale



a une position quelconque, et la relation démontrée par

une même droite, comme l'indique le segment mm';

$$\frac{(a + \lambda \cdot \mathbf{A} \, \mathbf{m}) \, \mathbf{B}' \, \mathbf{m}' + \mathbf{A} \, \mathbf{m}}{m \mathbf{m}'} = \mu,$$

$$\frac{(a + \lambda \cdot \mathbf{A} \, \mathbf{m}) \, \mathbf{B}' \, \mathbf{m}'}{m \mathbf{m}'} = \mu.$$

Ces diverses équations donneraient lieu, si l'on voulait, à des Porismes qui, par la nature des matières, feraient suite aux trois Livres d'Euclide.

Tous ces Porismes sont très-propres à saire le sujet d'exercices pour les jeunes géomètres, d'autant plus qu'ils appartiennent aux théories qui forment les bases de la géométrie moderne. Euclide n'a traité que de la ligne droite et du cercle; mais la plupart de ses Porismes s'étendent avec la même facilité à la théorie des sections coniques (1) et à des spéculations ultérieures.

On ne peut se refuser, je crois, à reconnaître ici combien Pappus avait raison de dire que l'ouvrage d'Enclide renfermait les germes d'une foule de choses d'une invention ingénieuse et d'une étude agréable et nécessaire.

§ XII. - Analyse des XXXVIII Lemmes de Pappus relatifs aux Porismes (2). - Corollaires des Lemmes III et XI.

Les XXXVIII Lemmes de Pappus se peuvent classer en

(1) Après avoir donné, dans l'Aperça historique (p. 279), deux Porismes généraux qui comprennent parmi leurs conséquences multiples un trèsgrand nombre de Perismes d'Euclide sur les figures rectilignes, j'ai fait voir qu'il existe aussi dans la théorie des coniques, et du cercle par suite, deux propositions toutes semblables, qui constituent les propriétés les plus fécondes de ces courbes. (Aperçu; Notes XV et XVI; p. 334-344.)

(2) Nous donnerons plus join, dans le § XIV, les enonces de ces Lemmes, que le lecteur aura souvent à consulter. Nous n'y joignons pas les démonstrations faciles de Pappus. On les trouvers, accompagnées des Commentaires de Commandie, dans ses deux éditions des Collections mathématiques. Simson les a ausai Jonnées, avec quelques échaircissements, dans son Traité des Parismes; mais ce géomètre a placé les XXXVIII Lemmes dans un ordre tout différent de celui de Pappus, et sans s'astreindre toujours à reproduire le texte exact des énoncés originaux qu'il généralise parfois

(75)

Pappus est une des équations à six segments par lesquelles on exprime l'involution de six points. Soient a, a'; b, b' et c, c', les points dans lesquels la transversale rencontre les couples de côtés opposés et les diagonales du quadrilatère. La relation est

$$\frac{ab \cdot b' c}{a' b' \cdot bc'} = \frac{ca}{c'a'} (1).$$

Les Lemmes I, II, V et VI sout des cas particuliers de cette proposition générale.

Dans le Ier et le He, la transversale est parallèle à un côté du quadrilatère.

Dans le Ve, la transversale passe par les points de concours des côtés opposés, et la proposition revient à celle-ci : les deux diagonales divisent en parties proportionnelles la droite qui joint les points de concours des côtés opposés.

Le Lemme VI peut être considéré comme un cas particulier du Ve, la droite qui joint les points de concours des côtés opposés est parallèle à une diagonale.

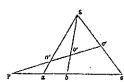
Ensiu, dans le Lemme VII, la transversale passe par un seul point de concours des côtés opposés, et est parallèle à une diagonale. La relation démontrée est un cas particulier des relations d'involution à huit segments, savoir :

$$\overline{ca} := cb \cdot cb'$$
.

Les Lemmes III, X, XI, XIV, XVI et XIX (propositions 129, 136, 137, 140, 142, 145) sont ceux qui établissent l'égalité des rapports anharmoniques que quatre droites issues d'un même point déterminent sur deux droites transversales : mais il faut supposer que ces deux transversales partent d'un même point de l'une des quatre droites. En réalité, on considère trois droites concourantes en un même point, conpées en deux systèmes de trois points $a,\ b,\ c_{\tau}$

$$\frac{Pa}{Pc}: \frac{ba}{bc} = \frac{Pa'}{Pc'}: \frac{b'a'}{b'c'} \quad \text{ou} \quad \frac{Pa.bc}{Pc.ab} = \frac{Pa'.b'c'}{Pc'.a'b'},$$

que Pappus énonce ainsi : Le rectangle Pa. be est au rec-



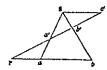
tangle Pc.ab, comme le rectangle Pa'.b'c' est au rectangle Pc'.a'b'.

C'est là le Lemme III.

Le Lemme X (proposition 136) en est la réciproque. Il prouve que quand l'équation a lieu, les deux points c, c' sont en ligne droite avec le point de rencontre des deux droites aa', bb'; ou que les trois droites aa', bb', cc' concourent en un même point.

Le Lemme XVI (proposition 142) est le même que le X. démontré différenment.

Le Lemme XI (proposition 137) est un cas particulier du



HF. L'une des transversales est parallèle à l'une des trois droites, et l'équation devient

$$\frac{\mathbf{P}a}{ba} = \frac{\mathbf{P}a'}{b'a'} : \frac{\mathbf{P}c'}{b'c'} \quad \text{on} \quad \frac{\mathbf{P}a',b'c'}{\mathbf{P}c',b'a'} = \frac{\mathbf{P}a}{ba}$$

(78)

Le Lemme VIII (proposition 134) a un énoncé très-bref, qui en laisse difficilement apercevoir le sens; cependant on reconnaît qu'il peut signifier que :

Quand deux angles out leurs côtés parallèles deux à deux, si par le sommet de chacun d'eux on mêne une droite quelconque qui coupe les deux côtes de l'autre, les quatre points d'intersection sont deux à deux sur deux droites parallèles.

Cela est un cas particulier d'une propriété relative à deux angles quelconques, qu'on peut aussi envisager d'un autre point de vue, et énoncer de cette manière :

Si par les points de concours des côtés opposés d'un quadrilatère on mène deux droites quelconques qui rencontrent les quatre côtés en quatre points, ces points sont deux à deux sur quatre autres droites qui se coupent deux à deux sur les deux diagonales du quadrilatère (1).

Le Lemme IX (proposition 135) peut exprimer que:

Si par les commets d'un trapèze on mène quatre droites concourantes en un mêmes point, et par le point de rencontre S des deux côtés non parallèles une transversale parallèle aux deux autres côtés, laquelle rencontre les quatre droites en quatre points, la produit des distances du point S à deux de ces points est égal au produit des distances du même point S aux deux autres points.

C'est-à-dire que les quatre points déterminent une involution dont le point S est le point central (2).

Cette proposition est un cas particulier d'une propriété d'un quadrilatère quelconque, savoir, que:

Les trois couples de droites menées d'un même point aux sommets opposés et aux points de concours des côtés opposés d'un quadrilatère sont en involution (3).

(22)

Le Lemme XIV (proposition 140) est la réciproque de celui-là : il exprime que quand l'équation précédente a lieu, les deux droites aa', bb' et la parallèle à Pab, menée par le point c', concourent en un même point.

Ensin, le Lemme XIX (proposition 145) est encore un cas particulier du Lemme III. Quand trois droites issues d'un même point sont coupées par deux autres, menées par un point P, en a, b, c et a', b', c', si l'on a

$$\frac{Pa}{ba} = \frac{Pc}{bc}$$

il s'ensuit que $\frac{P a'}{b'a'} = \frac{P c'}{b'c'}$.

Les quatre Lemmes XII, XIII, XV et XVII (propositions 138, 139, 141, 143) peuvent être considérés comme exprimant la propriété de l'hexagone inscrit à deux droites, savoir que, quand les sommets d'un hexagone sont situés trois à trois sur deux droites, les points de concours des côtés opposés sont en ligne droite.

Dans les Lemmes XII et XV, les deux droites sont parallèles, et dans les Lemmes XIII et XVII elles ont une direction quelconque.

Il est à remarquer qu'ici, dans les démonstrations, Pappus se sert des Lemmes III, X, XI et XIV, c'est-a-dire de la proposition de l'égalité des rapports anharmoniques des deux systèmes de quatre points déterminés sur deux droites par trois autres droites issues d'un même point : savoir, des Lemmes XI et X pour le Lemme XII; des Lemmes III et X pour le Lemme XIII; des Lemmes XI, III et XIV pour le Lemme XV, et ensin des Lemmes III et XVI pour le Lemme XVII.

Les Lemmes XX et XXI (propositions 146 et 147) disent que quand deux triangles ont deux angles égaux ou supplémentaires, leurs surfaces sont dans le même rapport que les rectangles des côtés qui comprennent ces angles.

- (79)

On peut voir dans le Lemme XVIII un lieu à la droite, construit dans un triangle. Pappus emploie dans la démonstration les Lemmes X, XI et XVI.

Le Lemme XXXII (proposition 158) concerne deux triangles qui ont un angle commun. Le côté de l'un, opposé à cet angle, fait sur le côté de l'autre, aussi opposé à l'angle commun, et sur la droite qui va du sommet au milieu de ce côté, des segments qui ont entre cux une certaine relation.

Le Lemme XXXVIII et dernier (proposition 164), qui est aussi le dernier des 23 Lemmes consacrés aux figures rectilignes, est un problème. Il s'agit, dans un parallélogramme, de mener par un point donné sur un côté une droite qui forme avec deux autres côtés un triangle de même surface que le parallélogramme.

Nous arrivons aux sept Lemmes XXII, XXIII, XXIV, XXV, XXVI, XXVII, XXXIV (propositions 148 à 157 et 160) qui se rattachent au rapport harmonique de quatre points. Ils ont pour bat de déduire les unes des antres certaines relations qui appartiennent à ces quatre points situés sur une même droite. Une relation étant donnée, on en conclut une autre. Mais ces relations n'ont pas lieu précisément entre les quatre points, car, hormis une seule, il y entre toujours le point milieu de deux points conjugués, qui remplace l'un des deux points.

Ces sept Lemmes n'en font en réalité que quatre, parce que trois sont les mêmes que trois autres, n'en dissérant que par la position relative des points donnés.

Appelons a, a' et e, f les deux systèmes de points conjugués, qui sont en rapport harmonique, a le milien du segment aa' et O le milieu de ef; nous exprimerons les sept Lemmes brièvement ainsi :

Lemmes XXII et XXIV. Si l'on a $\overline{ae} = 2 \circ a \cdot e\alpha$, il s'ensuit

$$\overline{Oz}^1 = \overline{az}^2 + \overline{Oz}^2$$

⁽¹⁾ V. Géom. sup., art. 404.

⁽²⁾ Ibid., p. 139.

⁽³⁾ Hid., p. 2/9.

Lemmes XXIII et XXV. Si Oa. Oa' = Oe', il s'ensuit ea.ea' = 2e0.ea $\overline{ea'} = 0a' \cdot 2e\alpha$ $\overline{ea} = 0a.2ea.$

Lemmes XXVI et XXVII. Si $\frac{0a}{0a'} = \frac{aa'}{a}$, il s'ensuit

$$0a.0a' = \overline{0e}$$

Lemme XXXIV. Si $\frac{ca}{ca'} = \frac{fa}{fa'}$, il s'ensuit $\alpha e.\alpha f = \overline{\alpha a},$ $ef.e\alpha = ea.ea',$

Enfin les huit Lemmes qui concernent le cercle sont les XXVIII, XXIX, XXX, XXXII, XXXIII, XXXV, XXXVI et XXXVII (propositions 154-157, 159 et 161-163).

Du Lemme XXVIII (proposition 154) il résulte que si d'un point P on mêne deux tangentes à un cercle, et une transversale quelconque qui rencontre le cercle en deux points a, a' et la corde de contact en un point α, ce point et le point P divisent en parties proportionnelles le segment au', c'est-à-dire que l'on a

$$\frac{\mathbf{p}_{a}}{\mathbf{p}_{a'}} = \frac{a\alpha}{\alpha a'}$$

Dans le Lemme XXXV (proposition 161) le point P est intérieur au cercle; on démontre que le lieu du point a, déterminé par cette même proportion, est une droite.

Ces deux propositions, qui n'en font récliement qu'une, renferment, on le voit, la propriété principale de la théorie des pôles et polaires dans le cercle.

Corollaires des Lemmes III et XI.

Nous placerons ici trois corollaires immédiats des Lemmes III et XL Formulés une fois pour toutes, ces corollaires évidents rendront inutile la répétition du court raisonnement qu'on pourrait faire directement sur les Lemmes. Nous les invoquerons sans autre explication, et nous abrégerons par la les démonstrations dans le cours de notre long travail.

Le Lemme III, dont le XI^e n'est qu'un cas particulier, est certainement la proposition la plus importante de toute cette vaste théorie des Porismes d'Euclide, ainsi que nous avons en occasion de le dire il y a longtemps, en présentant une courte analyse du VII. Livre des Collections mathematiques de Pappus, dans l'Apercu historique (1).

Corollaire I. Quand quatre droites A, B, C, D conconrantes en un même point S sont coupées par deux autres quelconques dans les deux séries de points a, b, c, d et a', b', c', d', on a l'équation

$$\frac{ac}{ad} : \frac{bc}{bd} = \frac{a'c'}{a'd'} : \frac{b'c'}{b'd'}, \quad \text{on } \frac{ac.bd}{ad.bc} = \frac{a'c'.b'd'}{a'd'.b'c'}.$$

En effet, que par le point a on mène une parallèle à la droite a'b'; elle rencontre les droites B, C, D en b", c", d", et l'on a, d'après le Lemme III.

$$\frac{ac.bd}{ad.bc} = \frac{ac''.b''d''}{ad''.b''c''}$$

Le Lemme XXIX (proposition 155) est un problème. On demande d'inscrire dans un segment de cercle ACB deux cordes AC, CB qui soient dans un rapport donné E. La solution se réduit à faire voir que la tangente au point C rencontre la corde AB en un point D, pour lequel on a

$$\frac{DA}{DB} = \frac{\overline{CA}}{\overline{CB}}, = \frac{E^2}{F^2}$$

Le Lemme XXX (proposition 156) démontre que les droites menées des extrémités d'une corde à un point de la circonférence divisent harmoniquement le diamètre perpendiculaire à cette corde.

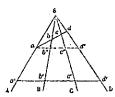
D'après le Lemme XXXI (proposition 157), si d'un point P donné sur le diamètre AB d'un cercle, on mène une droite à un point de la circonférence, et par ce point une corde perpendiculaire à cette droite, cette corde intercepte sur les tangentes aux extrémités du diamètre AB deux segments Am, Bm', dont le rectangle est égal au rectangle constant PA.PB.

Le Lemme XXXIII (proposition 159) exprime qu'un point P étant donné sur le diamètre AB d'un cercle, si l'on prend sur le prolongement du diamètre le point Q tel, qu'on ait QA.QB = QP, et que par ce point ou élève la perpendiculaire au diamètre, toute droite menée par le point Prencontre le cercle en deux points et la perpendiculaire en un troisième point tel, que le carré de sa distance au point P est égal au rectangle de ses distances aux deux points du cercle.

Le dernier de ces huit Lemmes relatifs au cercle, le Lemme XXXVI, n'a d'autre hut que cette vérité élémentaire : Quand une corde d'un cercle est parallèle à un diamètre, les pieds des perpendiculaires abaissées des extrémités de la corde sur le diamètre sont à égale distance des extrémités du diamètre.

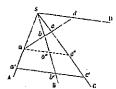
(83)

Mais les segments ac'', b''d'',... sont proportionnels à $a'c', b'd', \dots$, à cause des parallèles ab'', a'b'; cette équa-



tion donne donc celle qu'il s'agit de démontrer.

Corollaire II. Quand quatre droites SA, SB, SC, SD concourent en un même point S, si l'on mène une droite qui les rencontre en quatre points a, b, c, d, et une parallèle à SD, qui rencontre les trois autres en a', b', c', on



aura, entre ces deux séries de points, la relation

$$\frac{ab}{ac}$$
: $\frac{db}{dc} = \frac{a'b'}{a'c'}$

En esset, que par le point a on mêne à la droite a'b' une parallèle qui rencontre SB et SC en b" et c". On a, d'après le Lemme XI,

$$\frac{ab}{ac}$$
: $\frac{db}{dc} = \frac{ab''}{ac''}$

Mais, à cause des parallèles, $\frac{ab''}{ac'} = \frac{a'b'}{a'c'}$. Donc, etc.

⁽¹⁾ Aperçu, etc., p. 33-35 et 38-39. • Ici se présente naturellement une observation qui pourra justifier l'importance que nous avons déjà cherchi à donner à la proposition 129 de Pappus et à la notion du rapport anhar-

[»] monique.... En prenant la proposition dont il s'agit pour point de départ dans un essui de divination des Portimes, nons avons obtenu divers

a theorèmes qui nous out paru repondro aux énonces en question. . - Voir aussi la note (3) de la page 11 ci-dessus,

Corollaire III. Quand on a quatre droites A, B, C, D, partant d'un même point, et quatre autres droites A', B', C, D' partant aussi de ce point ou d'un autre quelconque, en faisant entre elles, deux à deux, des angles egaux aux angles des premières, si l'on niène deux transversales quelconques qui rencontrent respectivement ces deux systèmes de quatre droites dans les points a, b, c, d et a', b', e', d', on aura l'équation

$$\frac{ac}{ad} : \frac{bc}{bd} = \frac{a'c'}{a'd} : \frac{b'c'}{b'd'} \text{ ou } \frac{ac.bd}{ad.bc} = \frac{a'c'.b'd'}{a'd'.b'c'}$$

En effet, si les angles des droites A', B', C', D' sont formés dans le même sens de rotation que ceux des droîtes A, B, C, D, on pourra, à cause de l'égalité des angles des deux faisceaux de droites, superposer le second sur le premier, c'est-à-dire le placer de manière que les quatre droites A', B', C', D' coïncident respectivement avec les quatre A, B, C, D. Alors l'équation qu'il s'agit de démontrer sera celle du Corollaire I.

Si les angles des droites A', B', C', D' ne sont pas dans le même seus que ceux des droites A, B, C, D, il est clair que l'équation a encore lieu, car on ramène ce cas au précédent, en supposant qu'on fasse tourner le plan du second faisceau autour d'une droite fixe quelconque de ce plan, jusqu'à ce que, après une rotation de 180 degrés, il revienne coïncider avec le plan du premier faisceau.

Done, etc.

§ XIII. — Usage des XXXVIII Lemmes de Pappus pour le rétablissement des trois Livres de Porismes.

Nous avons dit (§§ II et XI) que la plupart des Porismes transmis par Pappus expriment des relations de segments qui se rapportent aux divisions homographiques sur deux droites on sur une scule.

(86)

positions que l'on pût regarder comme familières à Eu-

Nous avions sans doute à craindre d'entreprendre un travail qui ne fût pas sans difficultés. Mais heureusement les Lemmes de Pappus, qui déjà dans l'origine avaient servi puissamment à nous dévoiler le caractère général des Porismes d'Euclide, nous ont encore été ici d'un grand secours. Non-seulement chaque Lemme nous a fourni le sujet d'un ou de plusieurs Porismes qui s'en pouvaient conclure sans autre démonstration, mais nous avous reconnu dans plusieurs de ces propositions des éléments de démonstrations propres à presque tous les autres Porismes. Il nous a sussi d'ajouter aux trente-huit Lemmes de Pappus les trois corollaires qui terminent le paragraphe précé-

Sans autre secours que ces trente-huit Lemmes et ces trois corollaires, et en nous renfermant strictement dans les XXIX genres décrits par Pappus, nous avons obtenu deux cents et quelques Porismes, dont le très-grand nombre, sinon tous, pouvaient entrer dans l'ouvrage d'Euclide. Nous nous proposions d'abord d'en écarter une quarantaine, pour en réduire le nombre aux 171 aunoncés par Pappus. Mais nous avons éprouvé quelque embarras quand il s'est agi de faire cette exclusion, et nous avous préféré en laisser le soin aux géomètres qui nons liront, nous réservant de profiter de leur jugement.

Qu'on ôte, ou non, de ces propositions, nous espérons qu'on reconnaîtra que les démonstrations de toutes ne s'écartent pas des éléments contenus dans les Lemmes de Pappus, et ne dépassent pas les connaissances qu'Euclide pouvait supposer à ses lecteurs. Nous devous prévenir toutefois que quelques Porismes seront présentés sous un énoncé plus général que celui qui devait probablement se trouver dans l'ouvrage gree. Car on conçoit que pour éviter certaines dif-

Après avoir reconnu ce caractère général, nous câmes à soumettre chaque énoncé énigmatique à différentes hypothèses pour en tirer les propositions ou Porismes qu'il pouvait renfermer : il fallait y distinguer surtout les choses variables de celles qui restent fixes et constantes ; les choses données de fait, des données virtuelles ou à trouver; les cas divers où les segments que l'on considère sont formés tantôt sur deux droites, tantôt sur une seule; où ils out une origine fixe, et où les deux extrémités sont variables, etc. C'est après de nombreux essais, que nous sommes parvenu à nous lixer sur le sens précis que nous devions donner à chaque énoncé de Pappus et sur les diverses propositions ou Porismes qui découlaient de cette interprétation ou pouvaient s'y rattacher. Puis il fallait une démonstration de chacune de ces propositions. Cette démonstration eut été facile pour le trèsgrand nombre de celles qui se rattachent aux divisions liomographiques; car il suffisait d'exposer d'abord, comme nous l'avons fait dans le Traité de Géométrie supérieure, une théorie générale de ces divisions. C'est ainsi que nous avions procédé quand nous avons écrit la Note de l'Apercu historique sur les Porismes (1). Mais depuis, en nous préparant à mettre au jour cet essai de rétablissement conjectural de l'ouvrage d'Euclide, nous avons craint que ces démonstrations faciles, fondées sur des théories modernes, ne donnassent lieu à quelques dontes sur la coïncidence de nos idées avec celles du géomètre grec, et ne fussent le sujet d'objections spécienses contre les probabilités de notre réussite dans ce travail de divination. Cette considération nous a décidé à ne plus invoquer la théorie générale des divisions homographiques, et nous nous sommes astreint à refaire pour chaque Porisme de nouvelles démonstrations directes et spéciales, ne reposant que sur des principes et des pro-

(i) Aperçu, etc., p. 274-284

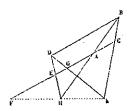
(87)

ficultés, provenant principalement de la direction des segments dans les figures, difficultés dont la Géométrie moderne est asfranchie, à son grand avantage, Euclide a dú souvent adapter les énoncés de ses propositions à des figures spéciales ou particulières. Mais le caractère propre de ces propositions n'en était nullement altéré.

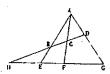
§ XIV. — Énoncés des trente-huit Lemmes de Pappus sur les Porismes d'Euclide.

I. Lemme pour le premier Porisme du les Livre. Soit la figure ABCDEFG; et soit $\frac{AF}{FG} = \frac{AD}{DC}$. Qu'on joigne HK; je dis que HK est parallèle à AC.

II. Lemme pour le deuxième Porisme. Soit la figure ABCDEFGH; que AF soit parallèle à DB, et qu'on ait $\frac{AE}{EF} = \frac{CG}{GF}$: les trois points H, K, F seront en ligne droite.



III. Si les trois droites AB, AC, AD sont coupées par



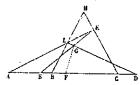
C'est-à-dire que

$$\frac{\text{HE.GF}}{\text{HG.FE}} = \frac{\text{HB.DC}}{\text{HD.BC}}, \quad \text{ou} \quad \frac{\text{HB}}{\text{HD}} : \frac{\text{CB}}{\text{CD}} = \frac{\text{HE}}{\text{HG}} : \frac{\text{FE}}{\text{FG}}.$$

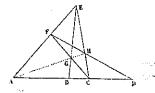
IV. Soit, dans la figure ABCDEFGHKL,

$$\frac{AF.BC}{AB.FC} = \frac{AF.DE}{AD.EF}$$

Je dis que les trois points H, G, F sont en ligne droite



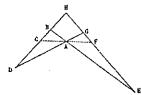
V. Soit la figure ABCDEFGH, dans laquelle on a $\frac{AB}{DC} = \frac{AB}{EC}$. Je dis que les trois points A, G, H sont en ligne droite.



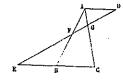
(90)

et la droite FG parallèle à BC, puis les droites FH, GH. Si $\frac{BH}{HE} = \frac{DH}{HE}$, je dis que KL est parallèle à BC.

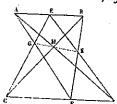
X. On coupe les deux droites BAE, DAG par les deux BD, HE (sur lesquelles on prend les deux points C, F). Si l'on a DH.BC HG.FE HE.FG, je dis que les trois points C, A, F sont en ligne droite.



XI. Soit le triangle ABC; on mène AD parallèle à BC, et une droite DE qui rencontre BC en un point E. Je dis que l'on a $\frac{DE.FG}{EF.GD} = \frac{CB}{BE}$.

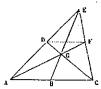


XII. Ces choses étant démontrées, il faut faire voir que

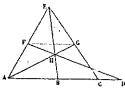


(-89)

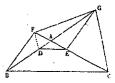
VI. Que, dans la même figure, DF soit parallèle à AC; je dis que AB = BC. Et si AB = BC, je dis que DF est parallèle à AC.



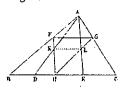
VII. Que, dans la meme figure encore, BD soit troisième proportionnelle aux deux CB, BA; je dis que FG est parallèle à AC.



VIII. Si, dans la figure ABCDEFG, DE est parallèle à BC, et EG parallèle à BF, DF sera parallèle à CG.



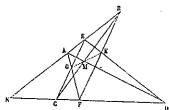
IX. Dans le triangle ABC on mène les droites AD, AE



(91)

si deux droites parallèles AB, CD sont coupées par d'autres AD, AF, BC, BF, puis, qu'on mène les deux ED, EC, les trois points G, M, K seront en ligne droite.

XIII. Mais que les droites AB, CD ne soient pas parallèles et qu'elles concourent en un point N: je dis que les trois points G, M, K seront encore en ligne droite.

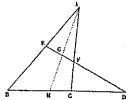


XIV. Soit AB parallèle à CD, et que l'on mène AE, BC; si l'on prend sur BC le point F tel, qu'on ait EC = CB.GF ; je dis que les trois points A, F, D sont en ligne droite.

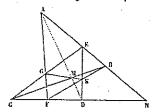
XV. Cela étant admis, soit AB parallèle à CD, et que (des points E, F pris sur ces droites) l'on mêne les droites

FA, FB, EC, ED, puis, qu'on joigne les deux BC, GK; je dis que les trois points A, M, D sont en ligne droite.

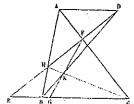
XVI. Quand deux droites AB, AC sont coupées par deux autres DB, DE menées d'un point D, si sur celles-ci on prend deux points G, H tels, que l'on ait EG.FD BH.CD, je dis que les trois points A, G, H sont en ligne droite.



XVII. Mais que CD ne soit pas parallèle à AB, et que ces droites concourent en un point N (je dis que les points A, M, D seront encore en ligne droite).



XVIII. Soit le triangle ABC; AD parallèle à BC, et que



(94)

angles droits, je dis que le rapport des rectangles AB.AC, DE.DF est encore égal au rapport des (aires des) deux triangles.

XXII. Soit une droite AB sur laquelle on prend deux points C, D, tels, que l'on ait 2 AB. $CD = \overline{CB}$, je dis que l'on a $\overline{AD} = \overline{AC} + \overline{DB}$.

XXIII. Si BA.BC = \overline{BD} , je dis que l'on a ces trois égalités :

$$(AD + DC) \cdot BD = DA \cdot DC, \quad (AD + DC) \cdot CB = \overline{DC},$$

$$(AD + DC) \cdot AB = \overline{AD}.$$

XXIV. Soit la droite AB, et deux points C, D, tels, que l'on ait $\overline{\text{CD}} = 2$ AC.DB, je dis que l'on aura

$$\overline{AB} = \overline{AD} + \overline{CB}'.$$

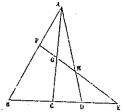
XXV. Soit BA.BC = BD; je dis qu'on a les trois égu-

$$(AD - DC) \cdot BD = DA \cdot DC;$$
 $(AD - DC) \cdot CB = \overline{DC};$ $(AD - DC) \cdot BA = \overline{AD}.$

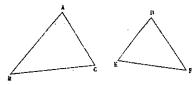
XXVI. Si l'on a
$$\frac{AB}{BC} = \frac{\overline{AD}^{1}}{\overline{DC}}$$
, je dis que l'on aura BA.BC = \overline{BD}^{2} .

l'on mène DE, FG, de manière que l'on ait $\frac{\overline{EB}'}{\overline{CE}.\overline{CB}} = \frac{\overline{BG}'}{\overline{GC}}$; je dis que si l'on mène BD, les trois points H, K, C seront en ligne droite.

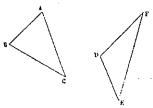
XIX. Quand trois droites AB, AC, AD sont coupées par deux autres EF, EB menées par un point quelconque E, si l'on a $\frac{EF}{FG} = \frac{EH}{HG}$, je dis que l'on aura $\frac{EB}{BC} = \frac{ED}{DC}$.



XX. Soient deux triangles ABC, DEF dont les angles A, D sont égaux; je dis que le rapport des rectangles AB.AC, DE. DF est égal à celui (des aires) des triangles.



XXI. Que les angles A et D fassent ensemble deux



(95)

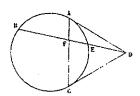
XXVII. Soit encore $\frac{AB}{BC} = \frac{\overrightarrow{AD}}{\overrightarrow{DC}}$; je dis que l'on aura

$$BA.BC = \overline{BD}'.$$

A D C E

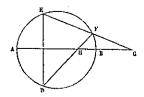
XXVIII. Si les droites DA, DC touchent le cercle ABC, et que l'on mène AC (et DEB), je dis que l'on aura

$$\frac{BD}{DE} = \frac{BF}{FE}$$



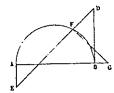
XXIX. Problème. Un arc de cercle étant décrit sur la ligne AB, y inscrire les cordes AC, CB qui soient entre elles dans un rapport donné.

XXX. Soit un cercle dont le diamètre est AB; qu'on mène une corde DE perpendiculaire au diamètre, et une



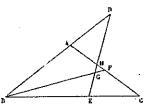
antre corde DF; qu'on joigne EF qui prolongée rencontre le diamètre en G; je dis qu'on aura $\frac{AG}{GB} = \frac{AH}{HB}$.

XXXI. Soit un demi-cercle décrit sur AB; qu'on mène par les points A, B les droites BD, AE perpendiculaires sur AB; puis la droite DE, et en son point F (situé sur le cercle) la perpendiculaire FG qui rencontre le diamètre AB en G; je dis que l'on aura AE.BD=GA.GB.



XXXII. Soit le triangle ABC, dont le côté AB est égal à AC; si par un point D, pris sur le prolongement de AB on mène DE faisant le triangle BDE égal en surface au triangle ABC; puis, qu'on divise en deux parties égales le côté AC par la droite BF: je dis que l'on aura

$$\frac{FB+BG}{FG}=\frac{\overline{AF}'}{\overline{FB}'}, (1).$$



(1) Simson remarque (Opera quedam..., p. 523) que dans la démonstration de ce Lantone, que donne Pappus, il n'y a rien qui exige que la triangle ABC soit isocèle comme la prescrit l'énoncé. Il pense que la texte a été altéré par l'introduction de cette condition restrictive. Et en effet, le Porisme que nons tierrons de ce Lemme est général, quel que soit le triangle.

(o8)

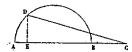
point quelconque de DE, comme de E, on mêne EG prolongée jusqu'en H, on aura

$$\frac{HE}{EK} = \frac{HG}{GK}$$

XXXVI. Soit un demi-cercle décrit sur AB, et (la corde) CD parallèle à AB; qu'on mone les perpendiculaires

CE, DG; je dis que AE = GB.

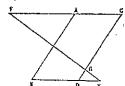
XXXVII. Soit un demi-cercle décrit sur AB; que l'on mène CD d'un point C quelconque (pris sur AB prolongé),



puis la perpendiculaire DE; je dis que l'on aura

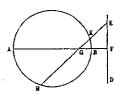
$$\overline{AC} = \overline{CD} + (AC + CB) AE$$
.

XXXVIII. Un parallèlogramme AD étant donné de position, mener d'un point donné E (de la base BD du parallèlogramme) la droite EF qui fasse le triangle FCG égal au parallèlogramme.



XXXIII. Soit un vercle et une droite DE perpendiculaire au diamètre AB prolongé; que l'on prenne le point G tel, que l'on ait FA.FB = FG; je dis que si d'un point quelconque E (de la droite DE) on mène la droite EG prolongée jusqu'en H, on aura

$$EH.EK = \overline{EG}'.$$

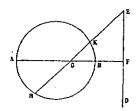


XXXIV. Si l'on a (entre les quatre points A, B, C, D) $\frac{AB}{BC} = \frac{AD}{DC}, \text{ et que le point E soit le milieu de AC, je dis$

que l'on aura les trois égalités

 $EB.ED = \overline{EC}$; DB.DE = DA.DC; BA.BC = BE.BD.

XXXV. Cela étant, soit un cercle et une droite DE perpendiculaire au diamètre AB prolongé, et que l'on prenne



le point G tel, que l'on ait $\frac{AF}{FB} = \frac{AG}{GB}$; je dis que si d'un

7

(99)

I" LIVRE DES PORISMES.

Les dix cas de la proposition des quatre droites.

Porisme I. — Lorsque deux droites SA, SB sont coupées par une troisième en A et B, si l'on prend sur celle-ci deux points P, Q situés, respectivement, du même côté des points A et B, et un troisième point p, situé en dehors

3 79

du segment PQ, et déterminé par la relation

 $\frac{\rho}{PA} = \frac{\rho Q}{OB};$

tour de ce point une transversale qui rencontre les droites données SA, SB en a et b; et qu'on mène les droites Pa, Qb qui se coupent en m: ce point est situé sur une droite donnée de position.

En effet, le Lemme I (proposition 127) exprime précisément que la droite qui joint le point S au point m est parallèle à AB; d'où résulte l'énoncé du Porisme.

Nota. Les lettres S, A, B, ρ , P, Q, α , b, m de notre figure et la proportion $\frac{\rho P}{PA} = \frac{\rho Q}{QB}$ correspondent aux lettres H, G, C, A, F, D, E, B, K et à la proportion $\frac{AF}{FG} = \frac{AD}{DC}$ de la traduction de Pappus par Commandin (que nous citons toujours, à défaut du texte resté manuscrit).

Nous ferons observer que le Porisme subsisterait, c'est-à-

lèle à AH, si les points P, Q se trouvaient respectivement de côtés différents de A et B, pourvu qu'alors on prit sur le segment PQ, et non en dehors, le point p satisfaisant toujours, bien entendu, à la proportion.

Si nous n'avons pas fait mention de ce cas, qui compléterait l'énoncé dont le Porisme est susceptible, c'est qu'il n'est pas indiqué dans les figures du Lemme de Pappus, qui toutes (au nombre de cinq) présentent les points P, Q du même côté de A et B respectivement.

Il est à croire qu'Euclide, qui se bornait à répandre dans ses Porismes le germe de propositions fécondes, n'a donné qu'un des deux cas que comporte le sujet, parce que l'autre ·cas ne demandait aucun changement à la démonstration.

Dans la Géométrie moderne, il n'y a pas lieu de distinguer les deux cas dont il s'agit : on les renferme tacitement dans la seule proportion $\frac{\rho P}{\rho Q} = \frac{PA}{QB}$ en attribuant des signes aux segments : car il résulte de cette simple convention (en supposant la proportion écrite comme on la voit), que le point p, qui à défaut des signes aurait toujours deux positions, n'en a plus qu'une, savoir : en dehors des points P et Q quand les segments PA et QB sont dirigés dans le même sens, et entre les points P et Q quand ces segments sont dirigés en sens contraire.

On conçoit combien les géomètres grecs ont dû souvent être embarrassés de difficultés que ce principe des signes fait disparaltre dans la Géométrie moderne.

Porisme II. - On donne deux droites SA, SB et deux points P, Q; une parallèle quelconque à la droite qui joint ces deux points, rencontre les deux droites données en a et b; on mene les droites Pa, Qb qui se coupent en m : ce point m est situé sur une droite donnée de position.

(102)

ott

$$\frac{QR}{BR} = \frac{\rho A \cdot QP}{\rho P \cdot BA}$$

Ce qui prouve que le point R est indépendant de la direction de la transversale p ab. Donc, etc.

PORISME IV. - Étant donnés deux droites SA, SB et trois points p, P, Q situés en ligne droite; si autour

du preniier p on fait tourner une transversale qui rencontre les deux droites en u et b; puis, qu'on mène les droites Pa, Qb qui se rencontrent en m : ce point m est situé sur une droite donnée de position.

Ce Porisme est le cas général de la question des quatre droites. Il se conclut immédiatement du Lemme IV (proposition 130), qui exprime une des relations à six segments existantes entre les six points de section des côtés et des diagonales d'un quadrilatère, tel que a Sbm, par une transversale. Ici cette relation devient

$$QP \cdot B \rho \cdot RA = AB \cdot PR \cdot \rho Q$$

Pappus l'écrit sous forme d'égalité de deux rapports de rectangles faits sur les segments, en y introduisant le facteur PR, ainsi:

$$\frac{\rho R \cdot QP}{\rho Q \cdot RP} = \frac{\rho R \cdot BA}{\rho B \cdot AR}$$

Le point m se trouve donc toujours sur la droite SR dont la position est déterminée par cette égolité. c. Q. F. D.

Nota. Le quadrilatère a S bm et les points A, B, Q, P, p, R sont dans Pappus KGLH, et E, D, B, C, A, F, et la relation de segments est

$$\frac{AF \cdot BC}{AB \cdot FC} = \frac{AF \cdot DE}{AD \cdot EF}$$

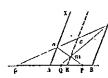
La démonstration se trouve dans le Lemme II (proposition 128). Car, d'après ce Lemme, la droite Sm rencontre la droite AB en un point R déterminé par la proportion

$$\frac{BA}{AR} = \frac{QP}{PR}$$

et qui par conséquent est fixe. Le point m se trouve donc sur une droite SR déterminée de position. c. Q. F. D.

Nota. Le quadrilatère a S bm de notre sigure, et les points A, B, Q, P, R, sont dans Pappus DHBK et E, A, C, G, F; et la proportion ci-dessus est $\frac{AE}{EF} = \frac{CG}{GF}$

Porisme III. — Étant donnés deux droites parallèles



AX, BY et trois points p, P, Q situés en ligna droite; si autour du point p on fait tourner une transversale qui rencontre les deux droites en a et b, et qu'on mene les deux Pa, Qb qui se

coupent en m : ce point m est situé sur une droite donnée

Conséquence du Lemme III (proposition 129). En esset, qu'on mêne par le point m une parallèle aux deux droites AX, BY, qui rencontre la droite PQ en R, et la transversale pab en e; on a, d'après le Lemme III, appliqué aux trois droites m Q, m R, m P coupées par les deux droites p PQ, p ab,

$$\frac{\rho P}{\rho R}: \frac{QP}{QR} = \frac{\rho a}{\rho c}: \frac{ba}{bc}.$$

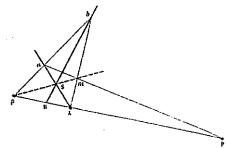
Mais, à cause des parallèles, le deuxième membre est égal

$$\frac{\rho P}{\rho R}: \frac{QP}{QR} = \frac{\rho A}{\rho R}: \frac{BA}{BR},$$

Porishie V. - Lorsque doux droites SA, SB en rencontrent une troisième en A et B, si l'on prend sur celle-ci deux points p, P, tels, que l'on ait

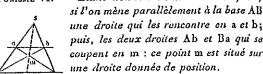
$$\frac{\rho P}{PA} = \frac{\rho B}{BA};$$

qu'autour du point p on fasse tourner une droite qui rencontre SA, SB, en a, b, et qu'on mene les deux droites Pa, Ab qui se coupent en m : ce point sera sur une droite donnée de position,



En effet, d'après le Lemme V (proposition 131), les trois points p, S, m sout sur une même droite; c'est-à-dire que le point m est situé sur la droite pS donnée de position.

Porisme VI. - Etant données doux droites SA, SB,



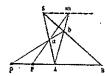
Ce cas est la conséquence immédiate du Lemme VI (proposition 132) qui exprime que quand les côtés d'un triangle sont coupés par une parallèle à la base,

Observation. Quelque simple et élémentaire que soit ce cas particulier, il n'y a pas de raison de croire qu'il ne figurait pas dans l'ouvrage d'Euclide, puisque Pappus a jugé à propos de donner un Lemme non moins simple, qui en est l'expression évidente.

De plus, il est à considérer qu'au temps d'Euclide on ne regardait pas deux droites parallèles comme présentant un cas particulier de deux droites concourantes en un point, ni comme donnant lieu, dans une proposition de Géométrie, aux mêmes conséquences que ces dernières. Il fallait toujours une démonstration spéciale, qui pouvait dissérer de la démonstration du cas des droites concourantes; et c'est ce qui a lieu dans ce Porisme.

Il parait que ce fut Desargues, qui, vers le premier tiers du xvii siècle, introduisit, à cet égard, dans la Géométrie des idées de généralisation si heureuses et si conformes à l'esprit des Mathématiques (1).

Porisme VII. - Deux droites SA, SB sont données, et sur une transversale AB on prend deux points p, P, tels, que l'on ait



 $\overline{\rho A} = \rho P \cdot \rho B;$

si autour du point p on fait tourner une droite qui rencontre SA, SB en a et b; puis, qu'on mène les

deux droites Pa, Ab qui se coupent en m : ce point m sera situé sur une droite donnée de position.

Ce Porisme est la conséquence immédiate du Lemme VII

Ainsi la droite Sm passe toujours par un même point R déterminé par cette proportion; et le point m se trouve sur une droite donnée de position. C. O. F. D.

Autrement. La démonstration du Porisme se peut encore conclure de la réciproque du Ier Lemme de Pappus; la proportion qui vient d'être démontrée résulte du parallélisme des lignes pQ et am, d'après cette réciproque.

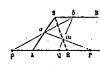
Nota. Le quadrilatère a Sbm et les points A, B, Q, ρ, R sont indiqués dans Pappus, KEBH et F, A, C, D, G; et la proportion est

$$\frac{AF}{FG} = \frac{AD}{DC}.$$

Elle répond, lettre pour lettre, à la précédente renversée $\frac{BA}{AR} = \frac{B\,\rho}{Q\,\rho}.$

$$\frac{BA}{AR} = \frac{B\rho}{Q\rho}$$

Ponisme IX. - Étant donnés deux droites SA, SB et trois points p, P, Q situés sur une troisième droite parallèle à l'une des premières SB, autour du point p on fait



tourner une droite qui rencontre SA, SB en a et h; par ces points on mène les droites aP, bQ qui se coupent en un point m; ce point est sur une droite donnée de position.

En esset, menous la droite Sm qui rencontre PQ en R. On a dans le triangle ASR coupé par la droite Pma,

$$\frac{PA}{PR} \cdot \frac{mR}{mS} \cdot \frac{aS}{aA} = 1.$$

Or, en vertu des triangles semblables,
$$\frac{mR}{mS} = \frac{QR}{Sb}, \quad \text{et} \quad \frac{aS}{aA} = \frac{Sb}{Ab}$$

L'équation précédente devient donc

$$\frac{PA}{\frac{N}{N}} \cdot \frac{QR}{\frac{N}{N}} \cdot \frac{Sb}{m} = 1$$

(proposition 133), d'après lequel la droite Sin est parallèle à la base AB.

Nota. Les lettres S, A, B, P, p, a, b, m de la présente figure sont F, A, D, C, B, E, H et G dans Pappus.

Observation. En s'appuyant sur la réciproque de ce Lemme VII, on en conclurait le Porisme suivant :

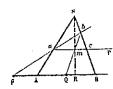
Étant données deux droites SA, SB, et sur la droite

- AB un point P, on mène à AB, des parallèles dont chacune rencontre SA, SB en a et b; puis, on joint les points A et b, P et a, par des droites qui se coupent en m : ce point est situé sur une droite donnée de position.

Eu effet, d'après la réciproque du Lemme, la droite Sm rencontre la base AB en un point fixe R que détermine la relation

$$\overline{RA}' = RB . RP.$$

Ponisme VIII. - Quand doux droites SA, SB, sont données, ainsi que deux points ρ, Q; si autour du point ρ on fait tourner une transversale qui rencontre les deux



Done

droites en deux points a, b; que par le premier on mène une parallèle aP à la droite ρQ, et par le deuxième la droite bQ qui coupe la parallèle en m : ce point m est situé sur une droite donnée de position.

Soit R le point d'intersection des droîtes Sm et AB, et c celui de aP et SB: on a, par les triangles semblables,

$$\frac{AR}{AB} = \frac{am}{ac}, \quad \text{et} \quad \frac{\rho Q}{\rho B} = \frac{am}{ac}.$$

$$\frac{AR}{AB} = \frac{Q \rho}{B \rho}.$$

Ainsi le point R est donné, c'est-à-dire que sa position est fixée par les conditions seules de l'énoncé: ce qui démontre le Porisme.

Observation. Le théorème cité sur le triangle coupé par une transversale, était bien connudes Anciens. On le trouvé, comme on sait, dans les Sphériques de Ménélaus et dans l'Almageste de Ptolémée. Pappus le démontre dans son VIII. Livre (1); il s'en sert pour la démonstration du I^{ar} Lemme sur les Porismes; et, de plus, dans le cours de celle du IV Lemme, il établit la réciproque, en faisant voir que si trois points pris sur les côtés d'un triangle satisfont à la relation de segments qui constitue le théorême en question, ces trois points sont en ligne droite (2). Il y a lieu de penser qu'Euclide lui-même faisait usage du théorème, et que c'est par cette raison que Pappus ne fait pas difficulté de l'employer dans ses Lemmes sans le démontrer.

Porisme X. — Étant donnés deux droites parallèles AX, BY, et trois points p, P, Q situés sur une même droite parallèle aux premières, autour du point p on fait

position.

tourner une droite qui rencontre AX, BY en a et b; par ces points on mene les deux - droites a P, hQ qui se coupent en m: le lieu de ce point est une droite donnée de

En effet, on a dans le triangle p b Q coupé par la droite Pma

$$\frac{mb}{mQ} = \frac{ab}{ab} \cdot \frac{P\rho}{PQ}.$$

⁽¹⁾ V. Traité des propriétés projectives des figures, de M. Poncelet, p. 38 et 39. — Aperçu historique, p. 76.

⁽¹⁾ Aperçu historique, p. 291.

⁽³⁾ M. Breton (do Champ) a fait cutte remarque; Y. Journal de Mathéma-

Le deuxième membre de cette égalité est constant. Donc le rapport de mb à m Q est constant. Donc le point m est sur une droite parallèle à BY, et déterminée de position.

Observations relatives aux dix Porismes précédents.

Tels nous paraissent être, parmi les cas très-multipliés de la question des quatre droites, les dix cas qui se sont trouvés dans les Porismes d'Euclide. Les sept premiers se concluent si naturellement des sept premiers Lemmes de Pappus, que nous avons du voir dans ce fait une raison décisive pour fixer notre choix et adopter l'ordre dans lequel nous les avons placés; d'autant plus que les Lemmes qui viennent ensuite dounent lieu, dans l'ordre même de Pappus, à des Porismes qui appartiennent aux genres qu'il a décrits subséquemment, comme nous l'avons déjà

Mais il ne suffisait pas, selon nous, d'avoir rétabli d'unc manière très-probable ces dix Porismes. Pourquoi Euclide avait-il choisi ces propositions scules? Pourquoi avait-il exclu les autres? C'est ce qu'il fallait examiner. Cette étude sur la pensée et l'œuvre d'Euclide n'était pas sans intérêt. Voici les considérations auxquelles elle nous a conduit.

On remarque qu'il existe, dans toutes les figures des propositions dont il s'agit, d'une part, un quadrilatère Samb (sauf le nombre relativement petit des cas où les deux droites données SA, SB sont parallèles, ce dont nous parlerous plus tard); et d'autre part, trois points p, P, Q situés toujours en ligne droite, et que, pour abréger, nous appellerons pôles. La diversité des Porismes auxquels donne lieu la question doit donc provenir des différentes positions que la droite des pôles peut proudre par rapport au quadrila-

(110)

lisme de la droite des pôles avec l'un des côtés ou l'une des diagonales du quadrilatère.

Trois Porismes se rapportent aux deux autres positions indiquées.

Dans le Porisme V, la droite des pôles contient à la fois le point de concours des deux diagonales Sm, ab et celui des deux côtés Sa, bm; il en résulte que la droite lieu du point m, passe par le point ρ , en même temps que le point Q coïncide avec le point A.

Dans le Porisme VI, la droite des pôles passe par les points de concours des côtés opposés du quadrilatère Samb, et est, en même temps, parallèle à la diagonale ab; en d'autres termes, les pôles Q et P coïncident, respectivement, avec les points A et B, et le point p est à l'infini.

Dans le Porisme VII, enfin, la droite des pôles passe par le point de concours des côtés Sa, bm (de sorte que Q coïncide avec A), et elle est parallèle à la diagonale Sm.

Ces huit Porismes dérivent, comme on le voit, de la considération du quadrilatère Samb. Les Porismes III et X, qui complètent le nombre des dix cas annoncés par Pappus, se rapportent aux cas dans lesquels le quadrilatère cesse d'exister parce que les deux droites SA, SB sont parallèles. C'est ce que nous pouvons exprimer simplement aujourd'hui en disant que le sommet S du quadrilatère se trouve à l'infini.

Revenons au quadrilatère pour rechercher les cas omis par Euclide. Ce sont tous ceux qui résultent des positions suivantes de la droite des pôles : 1º quand cette ligue passe simplement par un scul des trois points de concours des côtés opposés ou des diagonales du quadrilatère, sans qu'on l'assujettisse à être parallèle à aucun côté; 2º quand elle passe par les deux points de concours des côtés opposés, sans condition de parallélisme; 3° lorsqu'enfin elle passe par le sommet S du quadrilatère, avec ou sans condition de parallélisme.

Euclide paraît s'être proposé de présenter, outre le cas général, trois classes de cas particuliers bien distingués par les positions de cette droite. Premièrement, la droite des pôles est parallèle aux côtés et aux diagonales du quadrilatère Samb; secondement, cette droite passe par un ou par deux des trois points de concours soit des côtés opposés, soit des diagonales du quadrilatère; et troisièmement, ces deux conditions sont simultanées, c'est-à-dire que la droite des pôles passe par un ou par deux de ces trois points de concours, et est en même temps parallèle à un côté ou à une diagonale.

Ajoutons que dans l'énumération des cas auxquels donnent lieu ces trois hypothèses, l'auteur des Porismes a écarté tous ceux dont la démonstration serait la même que celle d'un cas déjà donné.

Ce sont, je ne puis en douter, ces motifs qui ont dirigé Euclide dans le choix de ses dix Porismes.

En esfet, le cas général est le Porisme IV qui repose sur la relation générale à six segments entre les six points de section des côtés et des deux diagonales du quadrilatère par la ligne des pôles.

Dans le Porisme I, la diagonale Sm, c'est-à-dire la droite lieu du point m, se trouve parallèle à la ligne des pôles. Pour que cela arrive, il faut qu'il y ait entre les trois pôles une certaine relation qui sait le sujet du Lemme I.

Dans le Porisme II, la droite des pôles est parallèle à l'autre diagonale ab du quadrilatère; ou, ce qui revient au même, le point e est à l'infini.

Dans le Porisme VIII, la droite des pôles est parallèle au côté am du quadrilatère, auquel cas le point P est à l'infini.

Dans le Porisme IX, la droite des pôles est parallèle à la

Tels sont les quatre cas auxquels donne lieu la première des positions caractérisées ci-dessus, c'est-à-dire le parallé-

(111)

Telles sont les trois espèces de positions omises par Euclide. Voici les raisons de cette omission.

Pour la première espèce, la démonstration est absolument la même que pour le cas général (Porisme IV) ; car l'équation à six segments sur laquelle repose la démonstration, subsiste entre les six mêmes segments, quand la transversale qui coupe le quadrilatère passe par un point de concours, soit de deux côtés opposés, soit des deux diagonales. Aussi voyons-nous que Pappus a compris ce cas particulier dans son Lemme IV, en le représentant par une des huit figures auxquelles la démonstration s'applique.

Dans la deuxième espèce la démonstration subsiste encore; seulement la relation à six segments se réduit à quatre, parce que deux segments deviennent égaux (sans être infinis).

Ensin, si Euclide n'a pas considéré les positions qui feraient passer la droite des pôles par le sommet S du quadrilatère, c'est que les Porismes qui peuvent en résulter ne seraient, à l'égard du point p, que des cas particuliers d'un Porisme général qui devait se trouver plus loin; car il est indiqué, d'une manière non douteuse, par les Lemmes XII et XIII de Pappus. Dans ce Porisme les données sont les mêmes quant aux deux droites SA, SB et aux pôles P, Q pris en ligne droite avec le point S : mais le point p, au lien de se trouver nécessairement sur cette droite, a une position quelconque, qui peut être sur la droite comme au dehors (1). Et puisque Euclide a omis, ainsi que nous l'avons dit, les Porismes dont la démonstration n'aurait été que la répétition de celle d'un cas plus général, nous devons penser que c'est par la même raison qu'il a passé sons silence les cas de la proposition des quatre droites dont il s'agit.

On reconnaîtra que ces omissions et les motifs qui nous

paraissent les justifier, se pouvaient prévoir d'après certains passages de Pappus, notamment celui dans lequel il dit qu'Euclide ne donne jamais qu'une démonstration des choses que renserme son ouvrage; ce qui veut dire qu'Euclide ne donne jamais deux fois la même démonstration. Car c'est dans ce sens que nous devons entendre ce passage : « Bien » que chacune de ces propositions soit susceptible d'un cer-» tain nombre de démonstrations, comme nous le faisons » voir, Euclide n'en donne qu'une, qui est toujours la plus » claire. »

Pappus dit, « comme nous le faisons voir », parce que dans plusieurs Lemmes il donne les figures qui se rapportent à des cas d'une même proposition dont les différences ne dépendent que des positions relatives des diverses parties de la sigure. C'est ce qu'Euclide ne faisait pas.

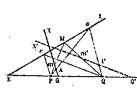
Il est à croire que les propositions que ces « géomètres peu expérimentés », dont parle Pappus, ont ajoutées à celles d'Euclide, étaient du nombre de ces cas particuliers omis à dessein par l'auteur des Porismes, comme susceptibles de la même démonstration qu'une proposition déjà démontrée.

A ce sujet, nous ajouterous que, si, conformément au langage et aux doctrines de la Géométrie moderne, nous avons parlé des dix Porismes des quatre droites comme de dix cas d'une même proposition, ce n'est pas ainsi qu'Euclide et Pappus les considéraient. Dans plusieurs de ces propositions des points disparaissaient en passant à l'infini, ce qui constituait, au temps d'Euclide, des propositions distinctes, et toutes, par suite, demandaient une démonstration différente : c'est ce qu'on peut remarquer dans les Lemmes de Pappus. Aussi cet auteur en annonçant qu'il a reconnu que ces dix Porismes peuvent être renfermés dans un seul énoncé, ne dit pas que ce sont dix cas d'une même proposition, mais bien dix Porismes analogues entre eux, ou de même espèce. Et, en effet, pour les rensermer

tant plus, que ce Porisme, qui forme notre XXIIIª ciaprès, est une conséquence naturelle du Lemme XI de Pappus.

I' des Genres distingués par Pappus.

Porisme XI. - Si de deux points donnés P, Q on mène deux droites PM, QM se coupant sur une droite LM donnée de position, dont l'une PM intercepte sur une



droite donnée de position AX; un segment Am comptë à partir d'un point donnë $\Lambda: on pourra trouver una$ autre droite A'X' et sur cette droite un point A', tels, que le segment A'm' fait par la

droite QM sur A'X', sera an segment Am dans une raison donnée à.

Puisqu'on doit avoir $\frac{Am}{A'm'} = \lambda$, les deux droites AX, A'X' seront divisées en parties proportionnelles par les deux points m, m'; et deux points de division homologues seront à l'infini. Il s'ensuit que les deux droites AX, A'X' sont parallèles aux droites menées des deux points P, Q à un certain point de la droite LM. Menant donc Pc parallèle à AX, puis Qc, la droite cherchée A'X' sera parallèle n Oc.

Ensuite, les deux points A et A' seront deux points homologues dans les deux divisions formées par les points m, m'. Par conséquent les droites PA, QA' se croisent sur la droite LM. Menant done PA qui rencontre LM en a, puis la droite Qa, le point A' sera sur cette droite.

Enfin, on doit avoir $\frac{Am}{A'm'} = \lambda$. Or les points G et G' où la droite AX et la droite cherchée A'X' rencontrent la base ainsi dans un seul énoncé, il a dû réunir deux hypothèses différentes, l'une où figurent trois points, et celle où il n'y en a plus que deux et une condition de parallélisme.

Notre restitution des dix Porismes d'Euclide dissère à beaucoup d'égards de celle de Simson. La cause principale du désaccord nous paraît provenir de ce que ce géomètre, dans son travail, n'a pas pris pour base les Lemmes de Pappus, et par conséquent n'a pas cherché à faire choix des propositions qui se pouvaient conclure naturellement de ces Lemmes. Aussi ne s'est-il servi des Lemmes que pour la démonstration de trois de ses dix propositions, et même, pour ainsi dire, incidemment, et sans qu'il y cût une connexion marquée entre les Lemmes et les proposi-

Cinq seulement des dix propositions de Simson se retrouvent parmi les nôtres; ce sont : les 2º, 4º, 5º, 9º et 10º : elles coïncident avec nos 8°, 10°, 9°, 3° et 4°. Mais le plus souvent, dans ces propositions identiques, les démonstrations sont différentes de part et d'autre.

Parmi les cinq autres propositions du géomètre anglais, il s'en trouve une, la 3', que nous croyons n'avoir pas pu faire partie de la proposition des quatre droites. C'est le cas dans lequel l'une des deux droites données SA, SB est située à l'infini. Car si les Anciens ne regardaient pas un point situé à l'infini, comme un cas particulier d'un point considéré d'ahord à distance sinie, ainsi que nous l'avons dit précédemment, on conçoit qu'à plus forte raison ils n'ont point dù regarder l'infini comme une droite, ni même comme donnant lieu à des propriétés analogues aux propriétés des droites.

Mais si la proposition de Simson n'a pu se trouver parmi les cas de la proposition des quatre droites, néanmoins elle constitue, sous un énoncé différent, un Porisme qui certainement n'a point échappé à Euclide. Nous le croyons d'au-

PQ sont deux points homologues dans les deux divisions de ces droites; donc $\frac{AG}{A'G'} = \lambda$. Ce qui détermine A'G' en

Il suffit des lors d'inscrire dans l'angle des deux droites PQ et Qa une droite parallèle à Qc et égale à AG. Cette droite satisfera à la question.

En effet, considérant les quatre droites PE, Pc, PM, Pa, coupées par les droites LM et AG, on a, par le Corollaire II des Lemmes III et XI (1),

$$\frac{Am}{AG} = \frac{aM}{aE} : \frac{cM}{cE}$$

On a de même, à l'égard des quatre droites issues du point Q,

$$\frac{A'm'}{A'G'} = \frac{aM}{aE} : \frac{cM}{cE}.$$

Ainsi

$$\frac{A\,m}{A\,G} = \frac{A'\,m'}{A'\,G'}, \quad \text{ou} \quad \frac{A\,m}{A'\,m'} = \frac{A\,G}{A'\,G'} = \lambda.$$

Le Porisme est donc démontré.

Ce Porisme a été rétabli par Simson et forme la 23° proposition du Traité De Porismatibus (p. 400).

Porisme XII. - De chaque point M d'une droite LM donnée de position, on abaisse une oblique Mm sous un angle donné, sur une droite donnée de position AX, sur laquelle le point A est donné, et du même point M on mène une droite à un point fixe Q: une raison λ étant don-

née, on pourra déterminer une

(1) Voir ci-dessus, p. 83.

droite A'X' et sur cette droite le point A', de manière que le segment A'm' fait par la droite MQ sur A'X', sera au segment Am dans la raison à.

Que par le point A on mêne la droite Aa parallèle aux obliques abaissées sur AX, et par le point a où cette droite rencontre LM, la droite aQ. Le point A' sera situé sur cette droite. Que par le point Q on mêne la droite QG' parallèle aux obliques, qui rencontre AX en G, et que dans l'angle aQG' on inscrive la droite A'G' parallèle à LM et égale à l.AG. Cette droite et son point A' situé sur aQ satisferont à la question.

En esset, on a, par les triangles semblables,

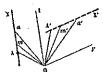
$$\frac{Am}{AG} = \frac{aM}{ag}$$
 et $\frac{A^tm'}{A'G'} = \frac{aM}{ag}$

Done

$$\frac{A m}{AG} = \frac{A' m'}{A'G'}; \quad \text{d'où} \quad \frac{A' m'}{A m} = \frac{A' G'}{AG} = \lambda.$$

Done, etc.

Porisme XIII. - Si l'on fait tourner un angle m'Om' autour de son sommet, et que ses côtés rencontrent, respectivement, deux droites AX, A'X' en deux points m, m'; la première droite et le point A étant donnés, ainsi qu'une



raison à : on pourra déterminer de r position la deuxième droite A'X' et sur cette droite le point A', de manière que les deux segments A'm' et Am soient toujours entre eux dans la

Qu'on fasse passer par le point A le premier côté de l'angle, et soit OA' la direction du second côté; le point demandé A' sera sur cette droite. Oa et Oa' étant les directions des deux côtés de l'angle dans une de ses positions, que l'on inscrive dans l'angle A'Oa' une droite À'a' parallèle au second côté de l'angle considéré dans sa position IOJ' où son

soit s le point où elle rencontre la droite SA; les deux triangles sac, sa'd sont semblables; par conséquent, on a

$$\frac{sc}{sc'} = \frac{ac}{a'c'}$$

On a, pareillement, en appelant s, le point où la droite cc' rencontre SB,

$$\frac{s_i c}{s_i c'} = \frac{bc}{b' c'}$$

Mais $\frac{bc}{b'c'} = \frac{ac}{a'c'}$. Donc $\frac{sc}{sc'} = \frac{s_1c}{s_1c'}$

$$\frac{sc}{sc'} == \frac{s_i c}{s_i c'}$$

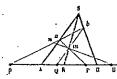
d'où

$$\frac{sc}{sc'} = \frac{s_i c}{cc'}, \quad sc = s_i c.$$

Ce qui prouve que les deux points s, s, n'en font qu'un, qui ne peutêtre que le point S, intersection des deux droites SA, SB. Ainsi le sommet c' de chaque nouveau triangle a'b'c' est situé sur la droite Sc qui est donnée de position. Ce qui démontre le Porisme.

COROLLAIRE. On conclut de là que : Quand deux triangles semblables ont leurs côtés parallèles deux à deux, les trois droites qui joignent, deux à deux, les sommets homologues, concourent en un même point.

Porisme XVI. - Étant donnés deux droites SA, SB et quatre points P, Q, p et U situés sur une autre droite, on fait tourner autour du point p une droite qui rencontre



SA, SB en a et b; et l'on mène les deux droites Pa, Qb qui se coupent on un point m; la droite qui passe par ce point et par le quatrième point donné U rencontre la droite tournante pab

en un point u : le lieu de ce point est une droite donnée de position.

premier côté est parallèle à la droite AX, et que cette droite A'a' soit égale à A. A a. Cette droite et le point A' satisferont à la question.

En esset, les deux triangles AOm et A'Om' sont semblables; et de même les deux AOa, A'Oa'. Par conséquent

$$\frac{Am}{Aa} = \frac{A'm'}{A'a'}$$
, ou $\frac{A'm'}{Am} = \frac{A'a'}{Aa} = \lambda$.

Done, etc.

H' Genre.

Tel point est situé sur une droite donnée de position.

Porisme XIV. - Quand dans un triangle on mêne des parallèles à la base, et qu'on prend sur chacune d'elles le point m qui les divise dans un rapport donné à, ces points m sont sur une droite donnée de position. Soit ab une des parallèles à la base AB

du triangle ACB; on prend le point m tel,

qu'on ait $\frac{am}{mb} = \lambda$. Qu'on mène la droite Cm qui rencontre AB en R; on a

$$\frac{AR}{RR} = \frac{mb}{am} = \lambda.$$

Ainsi le point R est fixe, et par conséquent la droite Cm est déterminée de position. Ce qui démontre le Porisme.

Porisme XV. - Quand un triangle abc a ses deux sommets a, b sur deux droites SA, SB données de position, si l'on construit un autre triangle a'b'c' ayant ses côtés parallèles à ceux du triangle abc, et ses deux sommets a', b' sur les deux droites SA, SB, le troisième sommet c' sera sur une droite donnée de position.

En effet, qu'on mène la droite cc', et

Cette proposition est une conséquence de celle des quatre droites exprimée d'une manière générale par le Porisme IV. En effet, d'une part, d'après ce Porisme, le point m décrit une droite SR; et d'autre part, si l'on considère les deux droites SA, SR coupées en a et m par une transversale Pma, et les deux droites pa, Um tournant autour des deux points ρ et U et se coupant en un point n, ce point, d'après le même Porisme IV, est sur une droite fixe passant par le point S. Ce qui démontre le Porisme énoncé.

Porisme XVII. - Étant donnés deux droites SA, SB et un point P, on mêne des droites ab, parallèles entre

olles, dans une direction donnée, dont chacune rencontre SA et SB en deux points a et b; puis, on mene par le point a la droite a P, et par le point b une parallèle à SP, laquelle rencontre aP en un point m : ce point est situé sur une droite donnée de position.

Qu'on mène par le point P une parallèle aux droites ab, qui rencontrera SB en un point D, et par le point D la droite DM parallèle à SA, c'est sur cette droite DM que se trouve le point m.

Ce Porisme n'est autre que le Lemme VIII (proposition 134); car ce Lemme établit que la droite Dm qui joint les points met D, déterminés comme il vient d'être dit, est parallèle à SA.

Done, etc.

Nota. Les lettres D, P, S, a, b, m de notre figure correspondent aux lettres F, B, C, G, E, D de Pappus.

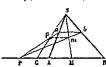
Porisme XVIII. - Étant donnés trois droites SA, SB 🖍 et SC issues d'un méme point S, et deux points A, B sur les deux premières ; par cas points on mêne deux droites parallèles Aa, Bb, qui rencontront la droite SC en a et bij et par ces derniers points,

des parallèles aux deux droites SB, SA, respectivement : le point d'intersection m de ces parallèles est situé sur une droite donnée de position.

Ce Porisme se conclut du Lemme VIII; car la réciproque de ce Lemme fait voir que le point *ni* est situé sur la droite AB.

Nota. Les lettres A, S, B, a, m, b de notre figure sont dans Pappus F, B, C, D, E, G.

Ponisme XIX. — Étant donnés un triangle ASB et un point p, on mène par ce point une droite qui rencontre



SA en a et AB en P; par le point a une purallèle à AB, qui rencontre SB en b; par le point b la droite bP; et enfin par le sommet S du triangle la droite SM qui ren-

contre la base AB en un point M déterminé par la proportion suivante, dans laquelle C est le point où la droite Sp rencontre AB,

$$\frac{PA}{PC} = \frac{PB}{PM}$$
:

les deux droites bP et SM se coupent en un point m situé sur une droite donnée de position.

En esset, d'après le Lemme IX (proposition 135), cette droite est la parallèle à AB, meuée par le point p.

Porisme XX. — Étant donnés trois droites SA, SB, SC issues d'un même point S, et un point P, on mène des

droites parallèles entre elles, dans une direction donnée, chacune desquelles rencontre les deux droites SA, SB en a et b; on joint ces points au point P par les droites Pa, Ph dont la première rencontre SC en c, et par ce point on mène à

ab, une parallèle qui coupe Pb en m : ce point est sur une droite donnée de position.

nent d'après le Lemme III, 🛒

$$\frac{eP}{ea}:\frac{qP}{qa}=\frac{mP}{mb}:\frac{q'P}{q'b}.$$

De même, les trois droites SA, SC, SQ coupées par les deux Pa, PA, donnent

$$\frac{cP}{ca}: \frac{qP}{qa} = \frac{CP}{CA}: \frac{QP}{QA}$$

et les trois droites SM, SB, SQ coupées par les deux Pb, PB,

$$\frac{mP}{mb}: \frac{q'P}{q'b} = \frac{MP}{MB}: \frac{QP}{QB}$$

Done

$$\frac{CP}{CA}$$
: $\frac{QP}{QA}$ = $\frac{MP}{MB}$: $\frac{QP}{QB}$

ou

$$\frac{MP}{MB} = \frac{CP.QA}{CA.QB}$$

Ce qui prouve que le point M est fixe, et par conséquent que le point m se trouve sur une droite SM déterminée de position.

c. Q. F. D.

Porisme XXII. — Étant donnés un triangle SAB et une raison \(\lambda\), si autour d'un point \(\rho\) pris sur la base AB du triangle on fait tourner une transversale qui rencontre les deux côtés SA, SB en \(\alpha\) et \(\rho\), et qu'on prenne sur cette

droite le point m déterminé par la relation

$$\frac{\rho a}{\rho b}$$
: $\frac{ma}{mb} = \lambda$:

le point m sera sur une droite donnée de position.

Cela résulte du Lemme X (proposition 136). Car si l'ou

(121)

Ce Porisme est une seconde interprétation du LemmelX; car si l'on mêne la droite Sm, et par le point P une parallèle aux droites ab, laquelle rencontre les quatre droites issues du point S, en A, B, C et M, on a, d'après le Lemme, l'égalité

$$PA.PM = PC.PB.$$

Ce qui prouve que la droite Sm est déterminée de position. Donc, etc.

Remarque. Cette équation, comme nous l'avons dit dans l'analyse des Lemmes de Pappus (ci-dessus, p. 78), exprime que les deux couples de points A, M et B, C et le point P forment une involution dans laquelle le point P est le point central, ou, en d'autres termes, dans laquelle le conjugué du point P est à l'insini (1).

Ponisme XXI. — Si on déforme un quadrilatère en faisant tourner ses quatre côtes autour des deux points de concours des côtés opposés, de manière que trois sommets du quadrilatère glissent sur trois droites fixes concourant en un même point, le quatrième sommet décrit une droite donnée de position.

Ce Porisme est

une généralisation du précédent, dont il fait bien comprendre le sens. La démonstration résulte du Lemme III.

Le quadrilatère est abmc; les points de concours des côtés opposés sont P et Q; les trois sommets a, b, c glissent sur les trois droites SA, SB, SC. La droite SQ rencontre les côtés ac, bm en q et q'. Les trois droites issues du point Q, Qmc, Q ba, Q q'q coupées par les deux Pa, Pb don-

(1) Géom. 10p., p. 13g.

galité

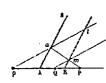
$$\frac{\rho A}{\rho B}: \frac{CA}{CB} = \lambda,$$

on aura

$$\frac{\rho a.mb}{\rho b.ma} = \frac{\rho A.CB}{\rho B.CA}.$$

Or, d'après le Lemme, quand cette égalité a lieu, la droite Cm passe par le point de concours des deux Aa, Ab, c'està-dire par le point S. Dono, etc.

Ponisme XXIII. - Étant donnés une droite SA et trois



points p, P, Q en ligne droite, si autour des deux p et P on fait tourner deux droites se coupant sur la droite SA; et que par le point Q on mène à la première pa une parallèle qui rencontrera

· la deuxième Pa en un point m : ce point sera sur une droite donnée de position.

Cette proposition se démontre sur-le-champ au moyen du Lemme XI (proposition 137). En esset, que l'on mène la droite mR parallèle à la droite donnée SA, on aura d'après le Lemme, en considérant les trois droites mP, mQ, mR coupées par les transversales ρ P et ρa ,

$$\frac{\rho R}{PR}: \frac{\rho Q}{PQ} = \frac{\rho I}{\alpha I} = \frac{\rho R}{AR}.$$

Done

$$\frac{AR}{PR} = \frac{\rho Q}{PQ}.$$

Donc le point R est fixe; et par suite, le lieu du point m est la droite fixe RI parallèle à SA. c. q. F. n.

Observation. C'est ce Porisme qu'on peut regarder, dans la Géométrie moderne, ainsi que nous l'avons dit ci-dessus nérale des quatre droites, celui où l'une des droites données SA, SB sur lesquelles se coupent les droites tournantes est à l'infini.

Porissie XXIV. — Étant donnés un angle ASB et deux points P, Q en ligne droite avec le sommet S; si autour

d'un autre point donné p on fait tourner une droite qui rencontre les deux côtés de l'angle en a et b, et qu'on mène les deux droites Pa, Qb qui se coupent en un point m: ce point sera situé sur une droite donnée de position.

Qu'on mêne des droites du point p aux deux points P, Q: elles rencontrent les deux côtés de l'angle SB, SA, respectivement en C et D; c'est sur la droite CD que se trouve toujours le point m.

Cela ressort immédiatement des Lemmes XII et XIII (propositions 138 et 139, où le point E représente le point ρ de la figure actuelle); du Lemme XII quand la transversale menée par le point ρ est parallèle à la base PSQ; et du Lemme XIII quand cette droite a une direction quelconque.

Corollaire I. Considérous trois transversales ρab , $\rho a'b'$, $\rho a''b''$ menées par le point ρ . On a, d'après le Lemme III, l'équation

$$\frac{Sa}{Sa'}:\frac{a''a}{a''a'}=\frac{Sb}{Sb'}:\frac{b''b}{b''b'}, \quad \text{ou} \quad \frac{Sa.a''a'}{Sa'.a''a}=\frac{Sb.b''b'}{Sb'.b''b}.$$

Et réciproquement, d'après le Lemme X, quand cette équation a lieu, les trois droites ab, a'b', a"b" concourent toujours en un même point. On conclut donc, du Porisme précédent, ce théorème:

Étant pris sur deux droites SA, SB deux systèmes de trois points a, a', a" et b, b', b", ayant entre eux la

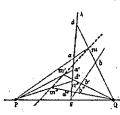
L'équation du Corollaire I devient donc

$$\frac{\mathbf{S}a.a''a'}{\mathbf{S}a'.a''a} = \frac{\mathbf{S}d.d''d'}{\mathbf{S}d'.d''d}$$

On en conclut que:

Si l'on prend sur une droite SA, deux systèmes de trois points a, a', a", et d, d', d", entre lesquels ait lieu l'équation

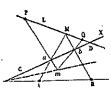
$$\frac{\operatorname{S} a, a'' a'}{\operatorname{S} a', a'' a} = \frac{\operatorname{S} d, d'' a''}{\operatorname{S} d', d'' d} \quad \left(\operatorname{on} \quad \frac{\operatorname{S} a}{\operatorname{S} a'}, \frac{a'' a}{a'' a'} = \frac{\operatorname{S} d}{\operatorname{S} d'}; \frac{d'' d'}{d'' d'} \right);$$



puis, que de deux points quelconques P, Q en ligne droite avec le point S, on mène les droites Pa, Pa', Pa'' et Qd, Qd', Qd'': les trois premières de ces droites rencontrent, respectivement, les trois autres en trois points situés en

ligne droite.

PONISME XXV. — Autour de deux points fixes A, B on fait tourner deux droites dont le point de concours M



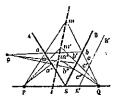
est toujours sur une droite fixe LM; ces droites rencontrent une autre droite fixe CX en deux points P, Q donnés sur la droite LM, on mène les droites Pa, Qb qui so coupent en un point m: ce point

est situé sur une droite donnée de position.

En effet, concevons qu'on ait mené par les points A et B trois couples de droites se coupant, deux à deux, en M, M' et M'' sur la droite LM, et rencontrant la droite CX en a, a', a'' et b, b', b''. Soit D le point de rencontre des deux droites I M et CX; on a, par le I emme III, entre M. M', M''

relation

$$\frac{Sa.a''a'}{Sa'.a''a} = \frac{Sb.b''b'}{Sb'.b''b};$$



si de deux points P, Q, en ligne droite avec le point S, on mêne les droites Pa, Qb qui se coupent en m; Pa', Qb' qui se coupent en m', et Pa'', Qb'' qui se coupent en m'': ces trois points m, m', m'' seront en ligne droite.

Corollaire II. Si l'on conçoit une droite S'B' parallèle à SB, qui rencontre les droites QS, Qb, Qb', Qb'', en S', c, c', c'', les segments Sb, $b''b'_1$... sont proportionnels à S'c, $c''c'_1$...; de sorte qu'on a l'équation

$$\frac{Sa.a''a'}{Sa'.a''a} = \frac{S'c.c''c'}{S'c'.c''c}.$$

De là ce théorème, qui présente, dans l'hypothèse, quelque chose de plus général que le précédent énoncé :

Étant pris sur deux droites deux systèmes de quatre points S, a, a', a'' et S', c, d', c'' entre lesquels a lieu l'équation

$$\frac{Sa,a''a'}{Sa',a''a} = \frac{S'c,c''c'}{S'c',c''c};$$

si de deux points P, Q pris arbitrairement sur la droite SS' on mêne les droites Pa, Pa', Pa'' et Qe, Qe', Qe'' les premières rencontreront, respectivement, les secondes en trois points m, m', m'' situés en ligne droite.

Corollaire III. Les droites Qb, Qb', Qb'', dans le Corollaire I, rencontrent la droite SA en trois points d, d', d''. On a par le Lemme III, entre ces points et b, b', b'',

$$\frac{\operatorname{S} b \cdot b'' b'}{\operatorname{S} b' \cdot b'' b} = \frac{\operatorname{S} d \cdot d'' d'}{\operatorname{S} d' \cdot d'' d'}$$

(127)

et a, a', a",

$$\frac{DM'}{DM''}; \frac{MM'}{MM''} = \frac{D\,a'}{D\,a''}; \frac{a\,a''}{a\,a''};$$

et de même, pour les trois points b, b', b",

$$\frac{\mathrm{DM'}}{\mathrm{DM''}}; \frac{\mathrm{MM'}}{\mathrm{MM''}} = \frac{\mathrm{D}\,b'}{\mathrm{D}\,b''}; \frac{b\,b'}{b\,b''};$$

Done

$$\frac{\operatorname{D} a'}{\operatorname{D} a''} : \frac{aa'}{aa''} = \frac{\operatorname{D} b''}{\operatorname{D} b''} : \frac{bb'}{bb''}.$$

Cette équation prouve, d'après le corollaire III du Porisme précédent, que les points de section des trois droites issues du point P par les trois issues du point Q, une à une respectivement, sont en ligne droite. Ce qui démontre le Porisme.

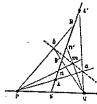
En d'autres termes. Les deux points a, b forment sur CX deux divisions homographiques, puisque les deux droites Aa, Bb se coupent toujours sur la droite LM (1). Par conséquent les deux droites Pa, Qb forment deux faisceaux homographiques. Or ces deux faisceaux ont deux rayons correspondants coïncidents suivant la droite PQ, parce que les deux points a, b coïncident en D sur la droite LM. Donc le point m décrit une droite (2).

c. Q. F. D.

Observation. Ce Porisme est, sous un énoncé plus général, du même genre que le Porisme XVIII, qui s'en conclut, si l'on suppose que la troisième droite CX passe par le point de concours des deux AQ, BP et que la droite PQ soit à l'infini.

Ponisme XXVI. — Étant données deux droites AA', PQ qui se coupent en S, les points A, A' et P, Q étant donnés sur ces droites, et une raison à étant aussi don-

nee; si l'on prend sur AA' deux points variables n, n' lies par la relation



$$\frac{A^{n}}{S^{n}} = \lambda \frac{A^{\prime n'}}{S^{n'}},$$

le point de rencontre m des deux droites Pn, Qu' est situé sur une droite donnée de position.

En esset, qu'on prenne deux points B, B' ayant entre eux la

relation

$$\frac{AB}{SB} = \lambda \frac{A'B'}{SB'}$$
:

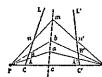
on en conclut, en la rapprochant de la première,

$$\frac{An.SB}{Sn.AB} = \frac{A'n'.SB'}{Sn'.A'B'}$$

Et cette équation prouve, d'après le corollaire III du Porisme XXIV, que le point m est situé sur la droite qui joint le point d'intersection des deux droites PA, QA' au point d'intersection des deux PB, QB'.

Ce qui démontre le Porisme.

Porisme XXVII. — Étant donnés deux droites LC, I.'C', et sur ces droites deux systèmes de trois points: A, B,



C sur la première et A', B', C', sur la seconde; si autour de deux points P, Q situés sur la droite CC', on fait tourner deux droites rencontrant, respectivement, les droites LC, L'C' en deux points

'n, n', tels, qu'on ait toujours l'égalité

$$\frac{nA.CB}{nB.CA} = \frac{n'A'.C'B'}{n'B'.C'A'}$$

se trouve sur la droite, lieu du point m; et il en est de même du point a'.

Ainsi le Porisme est démontré.

Plus brièvement. Les deux rayons PM, QM forment deux faisceaux homographiques (1); par suite, les deux points n, n' forment deux divisions homographiques; et les deux rayons Pn', Qn forment deux faisceaux homographiques: leur point d'intersection décrit une droite, parce que les deux rayons coïncidents PC et QC se correspondent (2).

Ponishe XXIX. — Étant donnés deux angles ABF,
ADF, si par leurs sommets B et D

ADF, si par leurs sommets B et D on mène deux droites quelconques, dont la première rencontre les deux côtés de l'angle D en M et C, et la deuxième les côtés de l'angle B en K et E: les deux droites MK et CE concourent en un point G situé sur

une droite déterminée de position.

Ce Porisme résulte immédiatement, de même que le Porisme XXIV, des Lemmes XII et XIII; savoir : du Lemme XII quand les côtés BA et DF des deux augles sont parallèles; et du Lemme XIII quand la position des deux augles est tout à fait arbitraire.

Porisme XXX. — Théorème général de Pappus (3). Soient ρ , P, Q, ..., R les pôles lixes et en ligne droite autour desquels tournent n droites variables, de manière que (n-1) de leurs points d'intersection glissent sur autant de droites fixes.

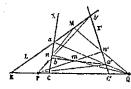
Dans l'hypothèse particulière par laquelle Pappus com-

(129)

le point d'intersection de ces deux droites sera sur une droite donnée de position.

Ce Porisme est une conséquence manifeste du Corollaire II du Porisme XXIV.

Porisme XXVIII. — Si autour de deux points P et Q on fait tourner deux droites qui se coupent sur une droite LM



et qui rencontrent deux autres droites fixes CX, C'X' en deux points n, n', respectivement; puis, qu'on mène les deux droites Qn, Pn': le point m d'intersection de ces dernières sera sur une droite

donnée de position.

Qu'on mène les deux droites Pb', Qa aux points où la droite LM rencontre C'X' et CX: ces droites Pb', Qa coupent, respectivement, CX et C'X' aux points b et a', et c'est sur la droite ba' que se trouvent les points m.

En esset, en a, d'après le Lemme III, entre les deux séries de quatre points a, n, b, C et a, M, b', E,

$$\frac{an}{aC}: \frac{bn}{bC} = \frac{aM}{aE}: \frac{b'M}{b'E}$$

On a pareillemen

$$\frac{a'a'}{a'C}:\frac{b'a'}{b'C}=\frac{aM}{aE}:\frac{b'M}{b'E}$$

Done

$$\frac{an}{aC}: \frac{bn}{bC} = \frac{a'n'}{a'C'}: \frac{b'n'}{b'C'} \quad \text{ou} \quad \frac{Cb, na}{Ca, nb} = \frac{C'b', n'a'}{C'a', n'b'}.$$

Donc le point d'intersection des deux droites Pn', Qn décrit une droite (Porisme XXIV).

Cette droite est évidemment a'b. Car si le point n coïncide avec b, n' coïncide avec b'. Par conséquent le point d'intersection des deux droites Pb' et Qb, c'est-à-dire b,

G

mence l'énoncé de la proposition, ces (n-1) points appartiennent à une même droite tournante, par exemple à celle qui lourne autour du point ρ . Alors il est évident que la proposition ne dit rien de plus que celle d'Euclide.

Passons donc au cas général, où les (n-1) points qui glissent sur les droites fixes, sont pris d'une manière quelconque parmi le nombre total $\frac{n(n-1)}{2}$ des points d'intersection des droites tournantes, pourvu toutefois que chaque droite ait toujours au moins un de ses points de concours avec les autres droites mobiles, sur une des droites fixes.

Concevons, indépendamment des droites tournantes et des droites fixes, un axe L mené arbitrairement, et qui rencontre la droite des pôles en un point S. Considérons deux droites tournantes, dont le point de concours soit sur une des droites fixes, les deux qui tournent autour des deux points ρ et P; soient α , α' , α'' les points où elles se coupent sur la droite fixe, dans trois de leurs positions successives; ces droites rencontrent l'axe L en des couples de points que nous appellerons α , b dans la première position; a', b' dans la seconde position; et α'' , b'' dans la troisième position.

Soit A le point où la droite fixe rencontre la droite des pôles; on a, d'après le Corollaire I du Lemme III (p. 82),

$$\frac{Sa}{Sa'} : \frac{a''a}{a''a'} = \frac{\Lambda x}{\Lambda x'} : \frac{\alpha''\alpha}{\alpha''\alpha'}$$

۴٠Ł

$$\frac{Sb}{Sb'}: \frac{b''b}{b''b'} = \frac{A\alpha}{A\alpha'}: \frac{\alpha''\alpha}{\alpha''\alpha'}$$

Done

$$\frac{\mathbb{S}u}{\mathbb{S}u'}:\frac{a''u}{a''a'}=\frac{\mathbb{S}b}{\mathbb{S}b'}:\frac{b'''b}{b'''b'}.$$

La droite qui tourne autour du point p détermine les positions successives de celle qui tourne autour du point p

⁽¹⁾ Géom. sup., art. 104.

⁽²⁾ Ibid., art. 105.

^{.(3)} Voir ci-desaus p. 17 et 23

$$\frac{\mathbf{S}\,b}{\mathbf{S}\,b'}:\frac{b''\,b}{b''\,b'}=\frac{\mathbf{S}\,c}{\mathbf{S}\,c'}:\frac{c''\,c}{c''\,c'}.$$

Et de même, à l'égard de la quatrième droite tournante dont les positions sont déterminées par la troisième,

$$\frac{\operatorname{S}c}{\operatorname{S}c'} : \frac{c''c}{c''c'} = \frac{\operatorname{S}d}{\operatorname{S}d'} : \frac{d''d}{d''d'}.$$

Il existe donc autant d'équations moins une que de droites tournantes. Or, on voit que tous les membres de ces équations sont égaux entre eux. Par conséquent, on a une équation semblable entre les points marqués sur l'axe L par deux quelconques des n droites tournantes, par exemple l'équation

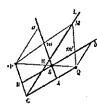
$$\frac{\$_{a}}{\$_{a'}} : \frac{a''a}{a''a'} = \frac{\$_{d}}{\$_{d'}} : \frac{d''d}{d''d'},$$

relativement à la première et à la quatrième droite tour-

Mais cette équation prouve, d'après le Corollaire III du Porisme XXIV, que les points d'intersection des deux droites tournantes considérées dans leurs trois positions respectives sont en ligne droite. Ce qui démontre le Porisme.

Plus brièvement. Deux droites tournantes, dont le point d'intersection glisse sur une des droites données, forment deux faisceaux homographiques qui ont deux rayons homologues coïncidents suivant la droite des pôles (1); il s'ensuit que les faisceaux formés par deux droites tour-

(134)



Porisme XXXII. - Si de deux points fixes P, Q pris sur les côtés CB, CA d'un parallélogramme CASB, en ligne droite avec le sommet S, on mêne des droites à chaque point M d'une droite fixe LC passant par le sommet C du parallélogramme : ces droites formeront, respectivement, sur les deux côtés SA, SB, deux

segments Sm, Sm', dont le rapport est déterminé.

Menons par les points P et Q les parallèles à la droite LC, lesquelles rencontrent les deux droites SA, SB en a et en b.

Les quatre droites PC, PS, PM, Pa, partant du point P, et coupées par LC et AS donnent, d'après le Corollaire I du Lemme III (p. 82),

$$\frac{Sm}{Sa} = \frac{RM}{CM}.$$

On a de même, en considérant les quatre droites qui aboutissent à l'autre point Q, et les transversales LC, BS,

$$\frac{\mathbf{S}\,m'}{\mathbf{S}\,b} = \frac{\mathbf{R}\,\mathbf{M}}{\mathbf{C}\mathbf{N}}$$

Done

$$\frac{Sm}{Sa} = \frac{Sm'}{Sb}$$
, ou $\frac{Sm}{Sm'} = \frac{Sa}{Sb}$

Le second membre est constant. Ce qui démontre le Porisme.

IV Genre.

Le rapport de telle droite à telle abscisse est donné.

Porisme XXXIII. - Si de chaque point M d'une droite LE on abaisse sur une autre droite AX des obliques Mm, M m' sous des angles donnés, il existe sur cette droite AX

(133)

names quelconques, non consécutives, sont aussi homographiques entre eux, et ont deux rayons homologues coïncidents suivant la droite des pôles. Par conséquent le point d'intersection de ces deux droites décrit une droite (1). Ce qui démontre le théorème.

III' Genre.

Le rapport de telle droite à telle autre droite est donné.

Porisme XXXI. — Si de chaque point M d'une droite LM donnée de position, on abaisse sur deux autres droites AX, A'X' des obliques Mm, Mm' sous des angles donnés; le point A étant donné sur AX : on peut trouver le point

A' sur A'X' et une raison à, tels, que le rapport des segments Am, A'm' soit toujours égal à la raison).

Soit a le point de la droite L dont l'oblique abaissée sur AX tombe en A, et soit A' le pied de l'oblique abaissée de ce point a sur A'X': A' est le point cherché. Quant à la raison à, soit E le

point où la droite L rencontre la droite AX, et EE' l'oblique abaissée de ce point sur A' X', on aura

$$\lambda = \frac{AE}{A'E'}$$
.

En effet,

$$\frac{Am}{AE} = \frac{aM}{aE} = \frac{A'm'}{A'E'}.$$

D'où

$$\frac{A'm'}{A'm'} = \frac{AE}{A'V'}$$

Done etc.

un point E tel, que l'on a la relation

$$\frac{Em}{mm'} = const.$$

Ce point E est celui où la droite LE rencontre AX. En esset, d'un point B, qui avec le

point E détermine la droite LE, menons les obliques Bb, Bb'. On a par les triangles semblables

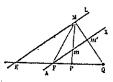
$$\frac{\mathbf{E}\,\mathbf{m}}{\mathbf{E}\,\mathbf{b}} = \frac{\mathbf{M}\,\mathbf{m}}{\mathbf{B}\,\mathbf{b}} = \frac{m\mathbf{m'}}{\mathbf{b}\,\mathbf{b'}}.$$

Done

$$\frac{\mathbf{E}\,m}{mm'} = \frac{\mathbf{E}\,b}{b\,b'}$$

Ce qui démontre le Porisme.

Portsme XXXIV. - Si autour de deux points P, Q on



fait tourner deux droites se coupant sur une droite donnée de position LE, ces droites rencontrent une deuxième droite fixe AX parallèle à la droite donnée LE, en deux points m, m'; et il existe sur

la droite AX un point F tel, qu'on a la relation constante

$$\frac{\mathbf{F}m}{mm'} = \text{const.} = \lambda.$$

Cela résulte du Lemme XI (proposition 140); car les quatre droites ME, MF, MP, MQ coupées par les deux FPQ, FX, donnent, d'après ce Lemnie,

$$\frac{Fm}{mm'} = \frac{FP}{FE} : \frac{QP}{QE}$$

Donc, etc.

Porisme XXXV. — Si autour de deux points fixes P, Q on fait tourner deux droites qui se coupent sur une droite

⁽¹⁾ Geom. sup., p. 71, art. 104.

⁽¹⁾ Géom. sup., art, 105

A P M MI Y

m': il existe un point F sur AX et une raison \(\lambda\), tels, que l'on a

$$\frac{mm'}{F_m} = \lambda.$$

Le point demandé F est le point d'intersection des deux droites données LE, AX. Et la raison λ est égale au rapport $\frac{QE}{EP}$, E étant le point où la droite LE rencontre la base PQ.

En effet, on a par les triangles semblables $\frac{\mathbf{F} m}{mm'} = \frac{\mathbf{EP}}{\mathbf{PQ}}$

V. Genre.

Telle droite est donnée de position.

Porisme XXXVI. — Si autour d'un point p on fait tourner une transversale qui rencontre deux droites données



SA, SA' en deux points a, a', et que d'un point P donné sur la droite pS, on mène les deux droites Pa, Pa': on pourra déterminer de position une droite L telle, que le segment intercepté par les droites variables Pa, Pa' sur cette droite L, soit

de longueur donnée u.

Que l'on inscrive dans l'angle a P a' une droite aa' de la longueur donnée μ , parallèle à ρ S: cette droite satisfera à la question.

Il faut prouver que si par le point ρ on mêne une droite quelconque $\rho bb'$, les deux droites Pb, Pb' intercepteront sur la droite qu'on vient de déterminer un segment 66' égal à $\alpha\alpha'$; ou bien que l'on aura $6\alpha = 6'\alpha'$.

(138)

Porisme XXXVII. — Quand deux droites tournent autour de deux points fixes P, Q en se coupant toujours sur

une droite donnée LM, et que la première rencontre une droite donnée LM, et que la première rencontre une droite donnée de position AX en un point m: on peut déterminer une autre droite fixe BY que lu droite tournant autour du point Q rencontrera en un point m', et qui soit telle, que le

rapport des segments Am, Bm', comptés à partir des points où les deux droites AX, BY coupent la base PQ, ait une valeur constante.

Qu'on mêne parallèlement à AX la droite $P\alpha$, qui rencontre la droite LM en α , puis la droite $Q\alpha$, et par le point F où AX rencontre LM, la droite FB parallèle à $Q\alpha$; ce sera la droite demandée.

Cela résulte du Lemme XI d'après lequel on a

$$\frac{Am}{AF} = \frac{EM}{EF} : \frac{aM}{aF}$$

eŧ

$$\frac{Bm'}{BF} = \frac{EM}{EF} : \frac{\alpha M}{\alpha F}.$$

Done

$$\frac{Am}{AF} = \frac{Bm'}{BF}$$
: $\frac{Am}{Bm'} = \frac{AF}{BF} = \text{const.}$

Ce qui démontre le Porisme.

Porisme XXXVIII. — Étant donnés deux droites AX,

BY, deux points A, B sur ces droites et une raison \(\lambda\): il existe une droite LD telle, que si dechacun deses points on abaisse sur les deux droites AX, BY des obliques M\(\mathbf{m}\), M\(\mathbf{m}'\), sous des angles donnés, on aura la relation

Prouvons que cette égalité a lieu sur toute droite AA' parallèle à ρ S, quelle que soit la longueur du segment $\alpha\alpha'$. On a dans le triangle $A\alpha\alpha$ coupé par 6b P

$$\frac{6 A}{6 a} \cdot \frac{b a}{b A} \cdot \frac{P \alpha}{P a} = 1.$$

Or, à cause des triangles semblables,

$$\frac{6 \text{ A}}{b \text{ A}} = \frac{\text{PS}}{\text{S} b}$$
 et $\frac{\text{P} \alpha}{\text{P} a} = \frac{\rho \text{ R}}{\rho a}$;

par conséquent

$$\frac{\text{PS}}{\text{S}b} \cdot \frac{ba}{6a} \cdot \frac{\rho \, \text{R}}{\rho \, a} = 1.$$

De même

$$\frac{PS}{S b'} \cdot \frac{b'a'}{b'a'} \cdot \frac{\rho R}{\rho a'} = 1.$$

1)onc

$$\frac{ba}{Sb.6x.pa} = \frac{b'a'}{Sb'.6a'.pa'}$$

Mais on a dans le triangle Saa', coupé par pbb',

$$\frac{\rho \, a}{\rho \, a'} \cdot \frac{b'a'}{b' \, S} \cdot \frac{b \, S}{ba} = 1.$$

Donc $6\alpha = 6'\alpha'$. Ce que nous nous proposions Je prouver. Donc etc.

Autrement. Les deux droites Pa, Pa' sont les rayons homologues de deux faisceaux homographiques dont les rayons doubles coïncident suivant la droite PS. Donc les deux rayons Pa, Pa' interceptent sur une droite quelconque parallèle à PS, un segment de grandeur constante (1). Donc on peut mener cette parallèle de manière que le segment soit de grandeur donnée.

(139)

constante

$$\frac{Am}{Bm'} = \lambda.$$

En esset, si par les points donnés A et B on mêne des parallèles aux obliques abaissées sur AX et BY respectivement, et que ces parallèles se rencontrent en D; qu'on prenne le point m arbitrairement, et le point m', déterminé par la relation $\frac{Am}{Bm'} = \lambda$; puis, que par les points m, m' on mène les obliques, qui se rencontrent en un point M: la droite DM satisfait à la question. C'est-à-dire que si d'un point N de cette droite on abaisse les obliques Nn, Nn', on aura

$$\frac{\lambda n}{B n'} = \lambda.$$

Car, il est évident que

$$\frac{An}{Am} = \frac{DN}{DM} = \frac{Bn'}{Bm'}$$

D'où

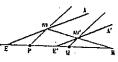
$$\frac{An}{Bn'} = \frac{Am}{Bm'} = \lambda.$$

Done, etc.

VI* Genre.

Telle droite passe par un point donné.

Porisme XXXIX. — Étant donnés deux droites parallèles EA, E'A' et deux points P, Q, si autour de ces



points on fait tourner deux droites parallèles qui rencontrent les deux droites EA, F'A', respectivement, en deux points m, in': la droite qui joint ces

points passe par un point donné.

⁽¹⁾ Géom 10p., art. 170.

En effet, on a par les triangles semblables,

$$\frac{Rm}{mm'} = \frac{RP}{PQ} = \frac{RE}{EE'}.$$

Done

$$\frac{RP}{RE} = \frac{PQ}{EE'}.$$

Done le point R est déterminé.

Done, etc.

Ponissie XL. — On donne deux points A, B sur une droite et deux points a, b sur une autre droite qui rencontre la première en C; autour de ce point C on fait tour-

ner la droite ab, et l'on mène les deux droites Aa, Bb qui se rencontrent en un point S; par ce point on mène une parallèle SO à la droite ab: cette parallèle passera par un

point donné.

Cela résulte du lemme XI (proposition 137), d'après lequel les trois droites SA, SB, SO, coupées par les deux CAB, Cab, donnent l'égalité,

$$\frac{BA}{BC}: \frac{OA}{OC} = \frac{ba}{bC},$$

Ott

$$\frac{\text{OA}}{\text{OC}} = \frac{\text{BA}}{\text{BC}} : \frac{ba}{bC}$$

Ce qui détermine le point O.

Done, etc.

Remarque. On a dans les triangles semblables SAO, aAC,

$$\frac{\text{OS}}{\text{OA}} = \frac{\text{C}a}{\text{CA}}, \quad \text{OS} = \frac{\text{OA.C}a}{\text{CA}} = \text{const.}$$

Ce qui montre que : Quand la droite Cab tourne autour

(142)

Porisme XLII. — Si sur deux droites AB, A'B' qui se coupent en S, on prend deux points m, m' liés entre eux par la relation

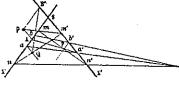
$$\frac{mA}{mB}: \frac{m'A'}{m'B'} = \frac{SA}{SB}: \frac{SA'}{SB'},$$

$$\frac{m \, A \cdot m' \, B'}{m \, B \cdot m' \, A'} = \frac{S \, A \cdot S \, B'}{S \, B \cdot S \, A'}$$

la droite mm' passera par un point donné.

Ce point est à l'intersection des deux droites AA', BB'. C'est un résultat direct du Lemme XVI (proposition 142).

Porisme XIII. — Étant données deux droites fixes SX, SX', autour d'un point fixe p on fait tourner une droite qui les rencontre en deux points m, m'; et de deux



autres points donnés P, Q on mène les droites Pm, Qm'

géométriques. (Voir Journal de Mathématiques de Crelle; t. VIII, p. 408, année 1832. — Aperçu historique, p. 655.)

Nous ajouterons lei, puisque l'occasion s'en présente si naturellement, que le Porisme d'Euclide a son analogue dans l'espace. En voici l'énoncé:

Étant donnés un anglo trièdre dont les arcies sont Sa, Sb, So et trois droitos P, Q, M situées dans un même plan passant par le sommet S de l'angle trièdre; si de chaque point M, d'un plan donné dans l'espace on même trois plans passant par les droites P, Q, R et rencontrant, respectivement, les droites Sa, Sb, So en a, b, c: le plan ahe pussera toujours par un même point p.

Réciproquement: Si un plan transversal tourne autour d'un point p donné dans l'espace et rencourse, ilans chueune de ses positions, les trois arêtes de l'angle trièdre, en a, b, c: les plans menés par ces points et les droites P, Q, R, respectivement, se couperont en un point situé sur un plan donné de position. (Voir Aperçu historique, p. 654.)

du point C, le point S décrit une circonférence de cercle dont le centre est en O.

Porisme XI.I. — Étant donnés deux droites SA, SB et deux points fixes P, Q en ligne droite avec le point de concours S de ces droites; si de ces deux points fixes on mène à chaque point M d'une droite LM donnée de position, des droites qui rencontrent, respectivement, SA, SB en m et m': la droite mm' passera par un point donné.

Soient a, b les points d'intersection de la droite LM par les deux droites données SA, SB; les droites Pb, Qa se rencontrent en un point p qui est le point cherché.

C'est une suite naturelle du Lemme XV (proposition 141) quand la droite LM est parallèle à la base PQ; et du Lemme XVII quand LM a une direction quelconque.

Ce Porisme est un de ceux que Simson a rétablis (1).

(1) Prop. XXXIV. • Quæ est Porisma, unum scilicet ex iis inter Poris-» mats Lib. I Euclidis, quæ Pappus tradit hisce verbis: Quod hac ad » datum punctum vergit. »

Co Porisme donna lieu à une observation qui fait ressortir un nouveau point de contact entre la Géomètrie moderne et le Traité des Porismes d'Eucilde, ouvrage si original à tous égards, et qui se distingue si profondément des antres traités mathématiques des Grocs, par sa conception comme par les matières fécondes qu'il renformali.

A chaque droite LM correspond un point p, d'après le Porisme. Mais une conséquence qui s'offre, à la simple vue, c'est que si ces droites passent toutes par un même point M, les points p sont tous sur une même droite mm'. De sorte qu'il y a centre deux figures qui seraient formées, l'une par des droites quel-conques LM, et l'autro par les points p qui correspondent à cet droites, des relations de réciprocité analogues à celles des poles et polaires dans la théorie des conlques. C'est-à-dire que ce Porisme d'Euclide fournit un mode de transformation des figures analogue à la méthode des polaires réciproques.

Catto remarque curiense est due à l'auteur même de cette célèbre méthode. N. le général Poncclet l'a Insérée dans son Mémoire sur l'Analyse des Transversales appliquée à la recherche des propriétés projectives des lignes et surfaces

qui coupent les droites fixes SX, SX' en n et n' : la droite nn' passera par un point donné.

Qu'on forme le parallélogramme SA o B', on aura, par les triangles semblables,

$$\frac{Am}{AS} = \frac{\rho m}{\rho m'} = \frac{B'S}{B'm'}.$$

Qu'on mène PA qui rencontre SX' en a', et par le point Q une parallèle à SX', qui coupe SX en a. Puis, qu'on mène QR' qui rencontre SX en b, et par le point P une parallèle à SX, qui coupe SX' en b'. La droite nn' passera par le point de concours des deux droites aa', bb'.

En effet, les trois droites, menées par le point P, savoir, Pa', Pb' et Pn' coupées par les deux SX et SX', donnent, d'après le Lemme XI,

$$\frac{Am}{AS} = \frac{a'n'}{a'S} : \frac{b'n'}{b'S}.$$

Ou a de même, à l'égard des trois droites Qa, Qb, Qu menées par le point Q,

$$\frac{B'm'}{B'S} = \frac{bn}{bS} : \frac{an}{aS}.$$

Qr

$$\frac{Am}{AS} = \frac{B'S}{B'm'}$$

done

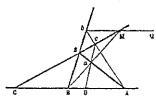
$$\frac{aa.bS}{ba.aS} = \frac{a'a'b'S}{b'a'.a'S}$$

Ce qui prouve, d'après le Lemme XVI, que les trois droites aa', bb' et nn' passent par un même point.

Donc, etc.

Porisme XLIV. — Trois droites SA, SB et SC, issues d'un même point S, sont données de position, et rencontrent une autre droite, aussi donnée de position, en

trois points A, B et C; par chaque point M de la droite



SC, on mène la droite
MB qui rencontre SA en
a, et une parallèle à AB
qui rencontre SB en b;
la droite menée de ce
point au point A rencontre SC en c: la droite

ac passe par un point donné.

Cela résulte du Lemme XVIII (proposition 144); car ce Lemme prouve que la droite ca rencontre AB en un point U déterminé par l'équation

$$\frac{\overline{CB}^{1}}{AC,AB} = \frac{UB}{UA}.$$

VIII Genre.

Telle droite a un rapport donné avec le segment compris entre tel point et un point donné.

Porisme XLV. - Etant donnés trois droites parallèles

I.M., AX, A'Y et le point A sur l'une d'elles AX; si autour de deux points P, Q on fait tourner deux droites qui se coupent sur la droite LM, et rencontrent, respectivement, les deux autres en

deux points m, m': on pourra trouver un point A' sur A'Y et une constante \(\lambda\), tels, que l'on aura toujours

$$\frac{\mathbf{A}m}{\mathbf{A}'m'} = \lambda$$

Qu'on mêne PA qui rencontre la droite LM en a; la droite Qa coupe la troisième droite au point demandé A', et la raison λ est égale à $\frac{AE}{A'E'}$.

(146)

déterminer le point A' sur A'X', et trouver une raison le tels, que l'on aura toujours

$$\frac{\lambda m}{\lambda' m'} = \lambda$$

Par le point donné A on mêne une parallèle aux obliques, abaissées sur AX, et par le point a où cette pa-

rallèle rencontre la droite donnée LM on abaisse l'oblique a A' sur A'X' : le pied A' de cette oblique est le point cherché.

Pour déterminer la raison \(\lambda\), on peut abaisser du point E où la droite LM rencontre AX, l'oblique EE' sur A'X': on aura

$$\lambda = \frac{AE}{A'E'}$$

En esset, par les triangles semblables,

$$\frac{Am}{AE} = \frac{aM}{aE} = \frac{A'm'}{A'E'}.$$

Done

$$\frac{Am}{A'm'} = \frac{AE}{A'E'}$$

C. Q. F. D

Portsme XLVIII. — Étant donnés deux droites SA, SB, le point A sur la première et un point O hors de ces droites : on pourra déterminer un angle Ω , une raison λ

et le point A' sur la deuxième droite, da manière que si l'on fait tourner l'angle \(\) autour du point O comme sommet, ses côtés rencontreront, respectivement, les deux droites en deux points m, m', tels, que le rapport des deux segments Am, A'm' sera toujours égal à la raison \(\).

Que du point O on abaisse les perpendiculaires Oa, O a

(145)

En effet, on a, par les triangles semblables,

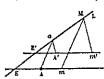
$$\frac{aM}{aF} = \frac{Am}{AE}$$
 et $\frac{aM}{aF} = \frac{A'm'}{A'E'}$

Done

$$\frac{Am}{A'm'} = \frac{AE}{A'E'}$$

Done, etc.

Ponisme XLVI. — Si de chaque point d'une droite LE on abaisse des obliques, sous des angles donnés, sur deux



droites parallèles, les pieds de ces obliques étant m et m'; et qu'un point A soit donné sur la première parallèle: on pourra trouver un point A' sur la deuxième, et une raison l, tels, que les deux seg-

ments Am, A'm' scront toujours dans cette raison.

Que par le point A on mène la parallèle aux obliques abaissées sur la première des deux droites parallèles; et par le point a où cette droite coupe la droite LE, la parallèle aux obliques abaissées sur la deuxième : le point A' de rencontre de ces deux dernières droites et la raison

 $\lambda = \frac{AE. aE'}{aE. A'E'}$ satisfont à la question.

Car on a

$$\frac{Am}{AE} = \frac{aM}{aE}$$
, et $\frac{A'm'}{A'E'} = \frac{aM}{aE'}$

D'où

$$\frac{Am}{A'm'} = \frac{AE}{aE} : \frac{A'E'}{aE'} = \frac{AE \cdot aE'}{aE \cdot A'E'}.$$

Done, etc.

Porisme XLVII. — Si de chaque point M d'une droite LM on abaisse sur deux autres droites AX, A'X' et sons des angles donnés, des obliques dont les pieds soient m et m': le point A étant donné sur la droite AX, on peut

(147)

sur les deux droites, l'angle $a\Omega a'$ formé par ces deux perpendiculaires est l'angle cherché Ω ; la raison λ est le rapport des deux perpendiculaires; et pour trouver le point A' il sussit de faire tourner l'angle Ω ou $a\Omega a'$ autour de son sommet O, de manière que le premier côté Ωa passe par le point A; le deuxième côté $\Omega a'$ détermine le point A'. Si donc m et m' sont les points où l'angle tournant $a\Omega a'$, dans une de ses positions, rencontre les deux droites, on aura $\frac{Am}{A'm'} = \frac{\Omega a}{\Omega a'}$.

En esset, les deux triangles O am; O a'm' sont semblables parce qu'ils sont rectangles et que leurs angles en O sont égaux. Donc

De même
$$\frac{am}{a'm'} = \frac{Oa}{Oa'}.$$
De même
$$\frac{aA}{a'A'} = \frac{Oa}{Oa'}.$$

$$\frac{Am}{A'm'} = \frac{Oa}{Oa'}.$$

C. Q. F. D.

Ville Genre.

Telle droite a un rapport donné avec une autre droite abalssée de tel point.

Pontsme XLIX. — Étant données deux droites SA, SA' et un point O, si de ce point on mène une droite On à un point m de la droite SA et une autre droite faisant avec celle-là un certain angle \Omega et rencontrant la droite SA' en un point m': on pourra déterminer cet angle \Omega et trouver une raison \(\lambda\), tels, que le rapport des deux ligues Om, Ont soit toujours égal

Que du point O on abaisse sur les deux droites les per-

à cette raison.

pendiculaires O a, O a': l'angle Ω qui satisfait à la question, est l'angle a O a' de ces deux perpendiculaires; et la raison λ est égale à leur rapport $\frac{Oa}{Oa'}$.

En esset, les deux triangles rectangles maO, m'a'O out leurs angles m O a, m' O a' égaux, et par conséquent sont semblables : d'où résulte

$$\frac{0m}{0m'} = \frac{0n}{0n'} = \lambda.$$

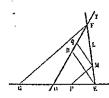
Done, etc.

Observation. Quand Euclide dit qu'une droite est abaissée d'un point, on doit entendre, abaissée sur une droite donnée de position et sous un angle donné. C'est ce que montre la définition XIII du Livre des Données, savoir : « Une droite est abaissée, quand on la mène par un point donné sur une droite donnée de position et sous nu angle donné, »

Cela justifie le sens que nous attribuons au VIII Genre, en proposant le Porisme ci-dessus.

Une autre considération peut encore nons autoriser à penser que ce Porisme satisfait à l'énoncé laconique de Pappus. C'est qu'il correspond à une proposition connue des Anciens, à un des cas de la première proposition des Lieux plans d'Apollonius rapportée par Pappus.

Porisme L. - Si de chaque point M d'une droite LM on abaisse sur deux droites fixes OX, OY deux obliques Mp, Mq sous des angles donnés : on pourra trouver un



point B sur la deuxième droite OY et une raison λ, tels, que l'oblique Mp abaissée sur la première droite sera au segment Bq compris entre le point Bet le pied de l'oblique abaissée sur la deuxième droite, dans la raison).

et par conséquent l'équation

$$\frac{am \cdot bC}{bm \cdot aC} = \frac{a'm' \cdot b'C'}{b'm' \cdot a'C'}$$

Qu'on approche l'une des droites de l'autre pour saire coïncider les deux points a, a'; soit alors S le point de concours des deux droites bb', CC'; il résulte de l'équation (1) que la droite mm' passera toujours par ce point, d'après le Porisme XLIII (ou, si l'on veut, d'après le Lemme XVI de

> Pappus). Si maintenant on mène la droite SI parallèle à la deuxième droite a'b'm',

on aura, d'après le Lemme XIV, les deux équations

$$\frac{a1}{b1}: \frac{aC}{bC} = \frac{b'C'}{a'C'},$$
In La C'a'

$$\frac{\operatorname{I} m}{\operatorname{C} m} : \frac{\operatorname{I} a}{\operatorname{C} a} = \frac{\operatorname{C}' a'}{\operatorname{C}' m'}$$

La première donne

$$\frac{a\,\mathbf{I}}{b\,\mathbf{I}} = \frac{a\,\mathbf{C}\,.\,b'\,\mathbf{C}'}{b\,\mathbf{C}\,.\,a'\,\mathbf{C}'} \quad \text{ou} \quad \frac{a\,\mathbf{I}}{b\,\mathbf{I}} = \lambda\,, \quad a\,\mathbf{I} = \frac{\lambda\,.\,a\,b}{\lambda\,-\,1}\,;$$

ce qui détermine le point I.

La deuxième équation s'écrit :

$$\frac{\operatorname{Im} \cdot \operatorname{C}' n'}{\operatorname{C} m} = \frac{\operatorname{Ia} \cdot \operatorname{C}' a'}{\operatorname{C} a} \quad \text{ou} \quad \frac{\operatorname{Im} \cdot \operatorname{C}' m'}{\operatorname{C} m \cdot \alpha} = \frac{\operatorname{Ia} \cdot \operatorname{C}' a'}{\operatorname{C} a \cdot \alpha} = \operatorname{const.} = \mu;$$

ce qui est l'équation qu'il fallait obtenir.

La valeur cherchée de µ est donc

$$\mu = \frac{\mathrm{I} a.\mathrm{C}'a'}{\mathrm{C} a.a} = \frac{\lambda \ ab.\mathrm{C}'a'}{(\lambda - 1).\mathrm{C} a.a}$$

Ainsi le l'orisme est démontre,

La droite donnée LM rencontre OX, OY en E et F respectivement.

 ${
m Qu'}$ on mêne par le point ${
m E}$ une ${
m parallèle}$ aux obliques ${
m M} q_s$ laquelle rencontre OY en B, et par le point F une parallèle aux obliques M p, laquelle rencontre OX en G; le point B et la raison $\frac{FG}{BF} = \lambda$ satisfont à la question.

En effet, on a par les triangles semblables,

$$\frac{Mp}{FG} = \frac{ME}{FE}$$
, et $\frac{Bq}{BF} = \frac{ME}{FE}$.

Done

$$\frac{Mp}{FG} = \frac{Bq}{BF}$$
, on $\frac{Mp}{Bq} = \frac{FG}{BF}$.

Tel rectangle a un rapport donné avec le rectangle construit sur telle droite

Ponisme LI. - Quand doux points variables in, m' sur deux droites ab, a'b', sont lies par la relation

$$\frac{am}{bm} = \lambda \frac{a'm'}{b'm'},$$

il exista entre ces points cette autre relation.

$$\frac{\operatorname{I} m \cdot \operatorname{C}' m'}{\operatorname{C} m \cdot \alpha} = \mu;$$

c'est-à-dire que, si l'on prend arbitrairement un point C sur la première droite, et une ligne α : on peut trouver un second point I sur cette droite, un point C' sur la deuxième, et une raison µ, tels, que cette relation ait tou-

Prenons pour C' le point qui sur la deuxième droite correspond au point C de la première, de sorte qu'on ait

$$\frac{a C}{b C} = \lambda \cdot \frac{a' C'}{b' C'}$$

On pent donner à la raison µ, cette expression plus simple $\mu = \frac{C'1'}{r}$: de sorte qu'on a

$$\frac{\operatorname{I} m \cdot \operatorname{C}' m'}{\operatorname{C} m} = \frac{\operatorname{I} a \cdot \operatorname{C}' a'}{\operatorname{C} a} = \operatorname{C}' \operatorname{J}';$$

J' étant le point déterminé par l'équation $\frac{a'J'}{b'P'} = \frac{1}{\lambda}$. Car si l'on mene la droite SJ' parallèle à ab, les trois droites Sb, SC et SJ' coupées par les deux ab, a'b', donnent, d'après le Lemme XI,

$$\frac{aC}{bC} = \frac{a'C'}{b'C'} : \frac{a'J'}{b'J'}, \quad \text{ou} \quad \frac{a'J'}{b'J'} = \frac{a'C'}{b'C'} : \frac{aC}{bC} = \frac{1}{\lambda}.$$

$$\frac{Ia}{Ca} = \frac{SC'}{CC'} = \frac{C'I'}{C'a'}; \quad d'où \quad \frac{Ia.C'a'}{Ca} = C'J'.$$

on

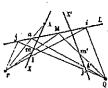
Remarque. En considérant les trois droites Sb, Sm, SI, on trouve

$$\frac{\operatorname{I} m}{bm}$$
: $\frac{\operatorname{I} a}{ba} = \frac{b'a'}{b'm'}$

$$\frac{\frac{1}{bm} : \frac{1}{ba} = \frac{b'a'}{b'm'},}{\frac{1}{bm \cdot \alpha} = \frac{1}{a \cdot b'a'} = \frac{b'J'}{\alpha}.}$$

Ce qui montre que le Porisme subsiste quand, au lieu de prendre les points C, C', on conserve les deux b, b'.

Ponisme LII. - Quand deux droites tournent autour de deux points P, Q en se coupant toujours sur une droite



LM, et rencontrant, respectivament, deux autres droites AX, A'X' en m et en m'; le point A étant donné sur la première de ces droites et une ligne a étant aussi donnée : on peut trouver un second point I sur la première

$$\frac{\mathrm{I}_{m,A'm'}}{\mathrm{A}_{m,\alpha}}=\lambda.$$

Qu'on mêne la droite PA qui rencontre la droite LM en a; la droite Qa rencontrera la droite A'X' au point cherché A'. Puis, que par les points P et Q on mêne aux droites AX, A'X', respectivement, des parallèles qui rencontrent la droite LM en j et i; la droite Pi marque sur AX le point cherché I; et la droite Qj rencontre la droite A'X' en un point J', qui fait connaître la raison à: car il faut prendre

$$\lambda = \frac{A'J'}{\alpha}$$

De sorte qu'il reste à prouver qu'on a toujours

$$\frac{\mathrm{I}\,m\,,\,\mathrm{A}'\,m'}{\mathrm{A}\,m\,,\,\alpha}=\frac{\mathrm{A}'\mathrm{J}'}{\alpha},$$

En esset, les quatre droites menées par le point P, et coupées par LM et AX, donnent l'équation

$$\frac{\text{I } m}{\text{A } m} = \frac{i \text{ M}}{a \text{ M}} : \frac{i j}{a j}.$$

Les quatre droites menées par le point Q, donnent pareillement

$$\frac{A'J'}{A'm'} = \frac{aj}{aM} : \frac{ij}{iM}$$

Done,

$$\frac{\operatorname{I} m}{\operatorname{A} m} = \frac{\operatorname{A}'\operatorname{J}'}{\operatorname{A}'m'}, \quad \text{ou} \quad \frac{\operatorname{I} m \cdot \operatorname{A}'m'}{\operatorname{A} m} = \operatorname{A}'\operatorname{J}'.$$

Portsme LIII. - De chaque point M d'une droite LM on mène à un point fixe P une droite PM qui rencontre une

(154)

Et par conséquent

$$\frac{\operatorname{I} m \cdot \operatorname{A}' m'}{\operatorname{A} m \cdot a} = \frac{\operatorname{A}' \operatorname{J}'}{a}.$$

Porisme LIV. - Si autour d'un point p on sait tourner une droite qui rencontre deux droites données SA,

SA', en deux points m, m'; qu'on donne aussi la longueur d'une ligne a et une raison \(\lambda\): on peut déterminer deux points A et I sur la prémière droite donnée et un point A' sur la deuxième, tels, qu'on aura

$$\frac{\mathrm{I}m\cdot\mathrm{A}'m'}{\alpha\cdot\mathrm{A}m}=\lambda.$$

Une parallèle à SA', menée par le point p, rencontre SA au point demandé I. Pour les points A et A' il suffit de mener par le point ρ la droite ρ AA' déterminée par la re-lation $\frac{AS}{A'S} = \frac{IS}{\alpha . \lambda}$. (Ce qui est un des cas du problème bien connu de la section de raison.)

En effet, par le Lemme XI, appliqué aux lignes el, o A, om coupées par les deux droites dounées SA, SA', on obtient l'égalité

$$\frac{Im.AS}{IS.Am} = \frac{A'S}{A'm'}.$$

Mais nous supposons que $\frac{AS}{A'S} = \frac{IS}{\alpha \cdot 1}$, l'équation devient done

$$\frac{\operatorname{Im} A'm'}{a \cdot Am} = \lambda.$$

Ce qui démontre le Porisme.

Quant à la construction de la droite p A A', si l'on vent ne point invoquer le problème de la section de raison, on l'effectuera bien simplement ainsi ; on monera par le point

(153)

droite AX en un point m; et du même point M on abaisse une perpendiculaire Mm' sur une autre droite A'X'; le point A' étant donné sur cette droite, et une ligne a étant aussi donnée en longueur : on peut déterminer le point A et un point I sur la droite AX, et une raison \, tels, que l'on aura toujours l'équation

$$\frac{\mathrm{I}\,m\cdot \mathrm{A}'\,m'}{\mathrm{A}\,m\cdot\alpha}=\lambda.$$

Élevons sur A'X' une perpendiculaire qui rencontrera la droite LM en a; la droite Pa coupera la droite AX au point cherché A. Menons parallèlement à LM la droite PI qui rencontre AX en I: ce point I sera l'autre point cherché. Enfin conduisons la droîte Pj parallèle à $\hat{\Lambda}\hat{X}_i$ et par le point j, commun à cette parallèle et à la droite LM, abaissons une perpendiculaire jJ' à la droite A'X': le pied de cette perpendiculaire déterminera la raison à.

$$\lambda = \frac{\mathbf{A}'\mathbf{J}'}{\alpha} = \frac{\mathbf{I}\,m\cdot\mathbf{A}'m'}{\mathbf{A}\,m\cdot\alpha}.$$

De sorte que les points A et I et la raison $\lambda = \frac{A'J'}{a}$ résolvent la question.

En esset, les quatre droites PA, Pm, PI et Pj coupées par les deux AX et LM donnent

$$\frac{Im}{Am} = \frac{aj}{aM}$$

Mais

$$\frac{aj}{aM} = \frac{A'J'}{Am'}$$

Done

$$\frac{\mathrm{I}\,m}{\mathrm{A}\,m} = \frac{\mathrm{A}'\mathrm{J}'}{\mathrm{A}'m'}, \quad \text{ou} \quad \frac{\mathrm{I}\,m\cdot\mathrm{A}'\,m'}{\mathrm{A}\,m} = \mathrm{A}'\mathrm{J}'.$$

ρ et parallèlement à SA une droite qui rencontrera SA' en J'; puis on prendra le point A', tel, que l'on ait

$$A'J' = \lambda \cdot \alpha$$
.

Le point A s'ensuivra.

La démonstration de cette construction résulte encore du Lemme XI.

En esset, concevons qu'une droite menée arbitrairement par le point S rencoutre les trois lignes pA, pI et pJ' aux points a, i et j; on aura, en considérant les trois lignes coupées par SA et Sa,

$$\frac{SA}{IS} = \frac{Sa.ij}{iS.aj}$$
. (Lemme XI.)

Et, pareillement, en considérant ces trois mêmes lignes coupées par SA', Sa,

$$\frac{SA'}{A'J'} = \frac{Sa.ij}{iS.aij}$$

Done

$$\frac{SA}{IS} = \frac{SA'}{A'J'}$$
, ou $\frac{SA}{SA'} = \frac{IS}{A'J'}$

Mais on a pris $A'J' = \lambda.\alpha$; il vient done

$$\frac{SA}{SA'} = \frac{1S}{\alpha \cdot \lambda}$$

C. Q. F. D.

Observation. On peut donner l'un des deux points A, A', et demander de déterminer la raison à. C'est ce que l'on fera an moyen de la relation, ci-dessus, $A'J' == \lambda . \alpha$.

Porisme LV. - Étant données deux droites LM et XX' dont e est le point d'intersection, si autour de deux points fixes P, Q on fait tourner deux autres droites qui se coupent sur la droite IM et rencontrent la droite XX en deux points m, m': on pourra trouver un point I sur

XX' et une ligne p, tels, qu'on aura toujours

$$\frac{1m \cdot cm'}{em} = \mu.$$

En effet, que par les points P, Q on mêne à la droite

XX' des parallèles qui rencontrent LM en R et S; les deux droites PS et QR coupent XX' en deux points I et J'. Le premier est le point demandé, et le segment eJ' est la ligne demandée \(\mu\), c'est-à-dire que l'on a

$$\frac{\mathrm{I}\,m\,.\,em'}{em}=e\,\mathrm{J'}.$$

Cela résulte du Porisme LII, dans lequel on suppose que les deux droites AX, A'X' coïncident et que le point A soit en e sur la droite LM.

Xº Genre.

Tel rectangle equivant à un rectangle donné plus le rectangle formé sur telle abscisse et sur une droite donnée.

Pontsme LVI. — Si l'on prend sur une droite IJ' un point sixe e et à partir du point I deux points consécutifs m, m' liés par la relation Im.en! = em.eJ',

il existera entre ces points une autre relation de la forme

$$y_m.y_{m'}=y+\mu.mm'$$

C'est-à-dire qu'on pourra trouver un rectangle ν et une ligne μ , tels, qu'on ait toujours cette équation.

En esset, les deux segments I'm, Ind empiètent l'un sur l'autre : par conséquent leur rectangle est égal à la somme

I et J' seront les points demandés, le rectangle ν sera égal à IA. J'A, et la ligue μ , à J'1; de sorte qu'on aura toujours

$$J'm.Im' = J'A.IA + J'I.mm'.$$

Il nous suffit de prouver que l'ou a $\frac{Im \cdot Am'}{Am} = AJ'$, car de cette équation résultera, d'après le Porisme précédent, celle qu'il s'agit de démontrer.

Or, menant la droite Bni parallèle à AC et qui rencontre PM et PI en n et i, on a, à cause des parallèles,

$$\frac{AJ'}{Am'} = \frac{BK}{BM} = \frac{nP}{nM} = \frac{ni}{nB} = \frac{mI}{mA},$$

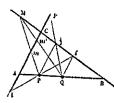
θij

$$\frac{\operatorname{I} m \cdot \operatorname{A} m'}{\operatorname{A} m} := \operatorname{AJ}',$$

c. Q. F. D.

Donc, etc.

Porisme LVIII. — Étant donné un triangle ABC, si autour de deux points fixes P, Q pris sur la base AB on



fait tourner deux droites dont le point de concours M soit toujours sur le prolongement du côté BC, ces droites couperont le côté AC en m et m', et l'on pourra trouver deux points I, J' sur ce côté, un rectangle v et une droite µ, tels, que l'on aura

toujours

$$J'm.Im' = v + \mu.nim'$$
.

En esset, qu'on mène par les points P et Q des parallèles à AC, qui rencontreront BC en i et j; les droites Pi, Qj conperont AC aux points cherchés I et J'; et l'on aura, d'après le Porisme LV,

$$\frac{\operatorname{I} m \cdot \operatorname{C} m'}{\operatorname{C} m} = \operatorname{CJ}'.$$

(157)

des deux rectangles J'I. mm' et Im. J'm'; ainsi,

$$\mathbf{J}'m.\mathbf{I}m' = \mathbf{J}'\mathbf{I}.mm' + \mathbf{I}m.\mathbf{J}'m' \{1\}.$$

Mais la relation donnée s'écrit aussi

$$\operatorname{Im} (J'm'-J'e) = (\operatorname{Ie} - \operatorname{Im}) e J',$$

011

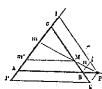
$$Im J'm' = Ie \cdot e J'$$

Done

$$\mathbf{J}'m.\mathbf{I}m' = \mathbf{I}e.\mathbf{J}'e + \mathbf{J}'\mathbf{I}.nm' \ (2).$$

Il suffit dès lors de prendre $\nu = Ie.J'e$, et $\mu = J'I$ pour obteuir la relation demandée.

Porisme LVII. — On donne un triangle CAB et un point P situé sur le prolongement de la base AB; de cha-



que point M du côté BC on mêne la droite MP et une parallèle à AB; ces droites rencontrent le côté AC en deux points m et m'; on peut trouver deux points I et J' sur ce côté, un rectangle v et une droite µ, tels, que le rectangle

I'm.Im' sera égal à la somme des deux rectangles v et µ.mm'.

Menous par le point P, parallèlement à BC, la droite PI qui rencontre AC en I; et parallèlement à AC, la droite PK qui rencontre BC en K; puis, par le point K parallèlement à AB la droite KJ qui rencontre le côté AC en J': les points

(1) Cette équation à laquelle donneut lien quatre points quelconques en ligne droite, fait le sujet du Porisme LIX ci-après.

(2) Pour nous conformer à la Geométrie des Grees, nous ne supposons pas, dans cotto démonstration, que les segments aient des signes; mois dans l'équation finale ainsi que dans l'équation donnée, nous écrivons les segments de manière que la règle des signes soit applicable, et que le Porisme démontre dans l'hypothèse où les points J', c, m', m, l ont les positions relatives qu'indique la figure, conserve un sens déterminé dans tous les autres cas.

(159)

Or, d'après le Porisme LVI, cette équation donne lien à la suivante :

J'm.Im' = J'C.IC + J'I.mm'

On a done

$$\nu = J'C.IC$$
 et $\mu = J'I$.

Ce qui démontre le Porisme.

Observation. La figure présente le point M sur le prolongement du côté BC au delà du point C; mais il pourrait être pris aussi sur le prolongement au delà de B.

L'équation démontrée aurait encore lieu, si le point M était pris entre les deux i et j; parce que le segment mm' serait toujours dirigé dans le même sens que IJ'.

Mais pour d'autres positions du point M, soit sur le segment Cj, soit sur Bi, le segment mm' aurait une direction contraire, et alors on démontrerait que le rectangle J'm.Im' devient égal à la différence des deux rectangles J'C.IC et J'I. num'.

Tel rectangle seul ou avec un espace donné est...., l'autre a un rapport donné avec telle abscisse.

Une lacune qui existe dans les manuscrits rend cet énonce défectueux. Il nous parait inutile de chercher à le rétablir, puisque les autres énoncés de Pappus nons suffisent amplement pour faire connaître le caractère général des Porismes d'Euclide.

Telle droite, plus une autre avec laquelle telle autre droite est dans une raison donnée, a un rapport donné avec un segment formé par tel point à partir d'un point donné.

Chacune des équations suivantes satisfait à cet énoncé.

$$1. \quad \frac{Am + \lambda.Bm}{Cm} = \mu,$$

11.
$$\frac{Am + \lambda \cdot Bm}{C'm'} = \mu$$
11.
$$\frac{Am + \lambda \cdot B'm'}{C'm'} = \mu$$
11.
$$\frac{Am + \lambda \cdot B'm'}{C'm'} = \mu$$
11.
$$\frac{Am + \lambda \cdot B'm'}{C''m'} = \mu$$

Pontsons LIX. - Étant donnés deux points A, B sur une droite et une raison à, on peut trouver un troisième point C et une raison u, tels, que pour tout point m, pris sur la droite, entre A et B, on aura toujours

$$\frac{Am+\lambda Bm}{Cm} = \mu.$$

Et si le point variable m est pris dans le prolongement de la droite AB (au delà de A ou de B, indifféremment), on pourra trouver un autre point C et une autre raison u, tels, que la même équation subsistera.

Considérons le cas où le point m est sur le prolongement de AB. Si l'on détermine le point C sur cette droite même, c'est-à-dire entre A et B, par l'expression $\frac{CA}{BC} = \lambda$, et la raison $\mu = \frac{BA}{BC}$, la relation à démontrer devient

$$Am + \frac{CA}{BC}$$
, $Bm = \frac{BA!}{BC}$, Cm ,

οu

$$Am.BC + CA.Bm = BA.Cm.$$

Écrivons

$$Am(Cm - Bm) + Bm(Am - Cm) = Cm(Am - Bm).$$

En effet, appelons C le point qui dans la première division correspondra au point cherché C' de la seconde division, et soit α le rapport de deux droites homolognes dans les deux divisions, de sorte qu'on ait

$$\frac{Cm}{C'm'} = \alpha.$$

Ou a, par le Porisme précédent,

$$Am + \frac{CA}{BC}Bm = \frac{BA}{BC}Cm.$$

Par conséquent

$$Am + \frac{CA}{BC}Bm = \alpha \cdot \frac{BA}{BC}C'm'$$
.

Qu'on fasse $\frac{CA}{BC} = \lambda$, ce qui détermine le point C, et par suite le point correspondant C' de la seconde division. Puis, qu'on prenne $\mu = \alpha \cdot \frac{BA}{BC}$, on aura

$$\frac{Am + \lambda .Bm}{C'm'} = \alpha . \frac{BA}{BC} = \mu.$$

Ce qui résont le Porisme énoncé.

Portshe LXI. — Quand deux points variables m, m' divisent deux droites en parties proportionnelles, deux

points A et B étant donnés sur la première droite et un point C' sur la seconde : on peut trouver deux raisons à et p, telles, que pour tous les points m situés entre A

et B, ou bien pour tous les points situés en dehors du segment AB, on aura toujours la relation

$$\frac{\mathbf{A}m + \lambda, \mathbf{B}m}{\mathbf{C}'m'} = \mu.$$

En esset, le rapport de deux parties homologues sur les deux droites étant a, on a, comme il est dit dans le Porisme (161)

Les termes de cette équation se détruisent deux à deux. Ce qui démontre le Porisme.

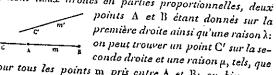
Observation. L'équation

$$Am.BC + CA.Bm = BA.Cm$$
,

exprime une relation entre trois des quinze rectangles qu'on peut former avec les six segments auxquels donnent licu quatre points quelconques en ligne droite. Ces trois rectangles sont les seuls qui soient formés de deux segments n'ayant pas d'extrémisé commune. Ils se distinguent entre eux en ce que, dans le premier Am. CB, l'un des segments est placé entièrement sur l'autre; dans le deuxième CA. Bm, les deux segments n'ont point de partie commune; et enfin dans le troisième AB. Cm, les deux segments empietent l'un sur l'autre. C'est celui-ci qui toujours est égal à la somme des deux antres.

On voit, d'après cela, que si le point variable m doit être pris entre A et B, au lien de l'être sur le prolongement de AB, il saut que le point sixe C vienne se placer sur ce prolongement, au delà de A ou de B, selon que la raison à est plus petite ou plus grande que l'unité.

Porisme LX. - Quand deux points variables m, m' divisent deux droites en parties proportionnelles, deux



pour tous les points m pris entre A et B; ou bien pour tous les points pris en dehors du segment AB, aura toujours l'équation

$$\frac{\mathbf{A}\,m+\lambda.\,\mathbf{B}\,m}{\mathbf{C}'m'}=\mu.$$

(163)

précédent,

(i)
$$Am + \frac{CA}{BC}Bm = \alpha \frac{BA}{BC}C'm'.$$

Il sustit donc de faire

$$\lambda = \frac{CA}{BC}$$
 et $\mu = \alpha \cdot \frac{BA}{BC}$

Ainsi le Porisme est démontré.

Observation. L'équation (1) donne, comme conséquence, en supposant que le point B soit à l'infini, celle-ri :

$$Am + CA == \alpha \cdot C'm'$$

Et, en ellet,

$$\mathbf{A}m + \mathbf{C}\mathbf{A} = \mathbf{C}m.$$

Done

$$Cm = \alpha C'm'$$
.

Ce qui est l'hypothèse.

m.

Polisme LXII. - Quand deux points variables m, m' divisent deux droites en parties proportionnelles, un point A étant donné sur la première, un point l' sur la seconde, et une raison à étant aussi donnée : on pourra trouver un

point C' sur la deuxième droite et une raison u, tels, que pour tous les points m situés entre le point A et un certain point B qu'on saura déterminer, ou bien pour tous les points pris hors du segment formé par ces deux

memes points A et B, on aura toujours la relation

$$\frac{\mathbf{A}\,\mathbf{m}\,+\,\boldsymbol{\lambda}\,.\,\mathbf{B}'\,\mathbf{m}'}{\mathbf{C}'\,\mathbf{m}'}=\mu.$$

En effet, soient A'le point qui sur la seconde droite correspond au point A de la première, et a le rapport entre

$$\alpha A'm' + \lambda .B'm' = \mu .C'm';$$

ou

$$A'm' + \frac{\lambda}{\alpha} \cdot B'm' = \frac{\mu}{\alpha} \cdot C'm'$$

Mais la relation déjà signalée entre les rectangles des segments formés par quatre points donne

$$\frac{\lambda}{\alpha} = \frac{C'A'}{B'C'}$$
, et $\frac{B'A'}{B'C'} = \frac{\alpha}{\alpha}$.

La première de ces deux équations fait connaître la position du point C', et ensuite la seconde donne la valeur de la raison μ, dans le cas où le point m' doit être pris entre A' et B', de même que dans le cas où ce point doit être pris en dehors du segment A'B.

Il est clair que le point B qui fixe les régions du point m sur la première droite Am, correspond au point donné B' de la seconde droite A'm'.

Ainsi le Porisme est démontré.

Porisme LXIII. - Quand deux points variables m, m' divisent deux droites en parties proportionnelles, un point A étant donné sur la première et deux points B' et C' sur la seconde : on peut trouver un troisième point A' sur cette

droite et deux raisons à et u, tels, que pour tous les points m' situés entre A' et B' quand le point C' se trouve au dehors du segment A'B', ou bien pour tous les

points m' situés hors du segment A'B' quand le point C' est entre A' et B', on aura toujours la relation

$$\frac{\mathbf{A}\,\mathbf{m}\,+\,\mathbf{k}\,\mathbf{,}\,\mathbf{B}'\mathbf{m}'}{\mathbf{C}'\,\mathbf{m}'}=\boldsymbol{\mu}.$$

En effet, le rapport de deux divisions étant a, on déter-

tombent entre A' et B' quand le point C' est hors du segment A'B'; ou bien, pour tous les points de LM dont les perpendiculaires tombent dehors du segment A'B', quand le point C' se trouve sur ce segment, on aura toujours la relation

$$\frac{Am + \lambda . B'm'}{C'm'} = \mu.$$

C'est une conséquence du Porisme LXIII.

Porisme LXVI. - Étant donnés deux droites parallèles AX, B'Y, deux points A et B' sur ces droites, et une

raison k; si autour d'un point donné p on fait tourner une transversale qui rencon-tre les deux droites en m et m': on pourra trouver un point C' sur B'Y et une raison u, tels, que pour tous les points m situés

sur le segment compris entre le point A et la droite pB'; ou bien, pour tous les points m pris au dehors de ce segment, on aura toujours

$$\frac{Am + \lambda . B'm'}{C'm'} = \mu.$$

En ellet, les droites menées par le point p divisent les lignes AX, BY en parties proportionnelles : la proposition se déduit donc du Porisme général LXII.

Observation. Il est permis de supposer que les trois points A, B', C' soient donnés : alors on peut déterminer les deux raisons à et \u03c4 de manière que l'équation ait toujours lieu. Ce qui se conclut du Porisme LXIII.

Porisme LXVII. - Si de chaque point d'une droite LM on abaisse sur trois droites sixes des perpendiculaires dont les pieds sont m, m', m"; deux points A et B' étant donnés sur doux de ces trois droites, et une raison à étant

minera les deux raisons à et µ par les expressions

$$\lambda = \alpha \cdot \frac{C' \Lambda'}{B' C'}, \quad \mu = \alpha \cdot \frac{B' \Lambda'}{B' C'};$$

A' étant le point qui correspond sur la seconde droite au point donné A sur la première. Ce qui résulte du Porisme précédent.

Porisme LXIV. - Si de chaque point M d'une droite LM on abaisse des perpendiculaires Mm, Mm' sur deux

autres droites Am, B'm', A et B' étant deux points donnés sur ces droites, et à étant une raison aussi donnée : on pourra trouver un point C' sur la droite B'm', et une raison u, tels, que pour tous les points de la droite LM répondant à des

perpendiculaires dont le pied in tombe entre le point A et un certain point B qu'on saura déterminer, ou bien pour tous les points LM qui répondent à des perpendiculaires dont le pied m est situé hors du segment AB, on aura toujours la relation

$$\frac{\mathbf{A}\,\mathbf{m}+\lambda_{*}\mathbf{B}'\,\mathbf{m}'}{\mathbf{C}'\,\mathbf{m}'}=\mu_{*}$$

En effet, les deux points m, m' forment sur les deux droites fixes deux divisions semblables : donc la proposition actuelle résulte du Porisme LXII. Il est clair que le point B de la droite Am correspond au point donné B' sur la droite

Porisme LXV. - Si de chaque point d'une droite LM on abaisse sur deux autres droites fixes des perpendiculaires dont les pieds sont m et m'; un point A étant donné sur l'une de ces deux droites, et deux points B', C' sur l'autre : on pourra trouver un troisième point Λ' sur cette droite, et deux raisons à et p, telles, que pour tous les points de la droite LM dont les perpendiculaires sur WC

aussi donnée: ou pourra trouver un point C" sur la troisième droite et une raison u, tels, que pour tous les points de la droite LM dont les perpendiculaires Mm ont le pied-

m situé entre le point A et un certain point B qu'on saura déterminer; ou bien pour tous les points de LM, dont les perpendiculaires tombent en dehors du segment formé par les mêmes points A

et B, on aura toujours entre les trois segments Am, B'm', C"m" la relation

$$\frac{Am + \lambda . B'm'}{C''m''} = \mu.$$

En effet, d'après le Porisme LXIV, on peut trouver un point G' sur la seconde droite l'm' et une raison \(\mu_1\), tels, qu'on aura

$$\frac{\mathbf{A} m + \mathbf{\hat{\lambda}} \cdot \mathbf{B}' m'}{\mathbf{C}' m'} = \mu_1.$$

Or, on sait trouver un point C" sur la troisième droite et une ligne µ satisfaisant à la condition

$$\mu_1 C' m' = \mu_1 C'' m''$$
.

On aura done

$$\frac{\mathbf{A}m + \lambda \cdot \mathbf{B}'m'}{\mathbf{C}''m''} = \mu.$$

C. Q. F. D.

Ponisme LXVIII. - Si de chaque point d'une droite LM on abaisse sur trois droites fixes quelconques des perpendiculaires dont les pieds sont m, m', m'; un point A étant donné sur la première de ces droites, un point 🗹 sur la seconde, et un point C" sur la troisième : on pourra trouver deux raisons à et p, telles, que pour tous les points de la droite LM dont les perpendiculaires Mm ont le pied m situé entre le point A et un certain point B qu'an saura déterminer; ou bien, pour tous les points de LM dont les

perpendiculaires tombent en dehors du segment, formé par les mêmes points A et B, on aura toujours la relation

$$\frac{Am + \lambda . B'm'}{C''m''} = \mu.$$

En effet, soit C'le point qui sur la seconde droite correspond au point C" de la troisième; on peut trouver (d'après le Porisme LXII) une raison λ et une raison μ_1 , qui entraînent, quel que soit m', l'égalité

$$\frac{\Lambda m + \lambda . B'm'}{C'm'} = \mu_1.$$

Or on sait que

$$C'm' = \alpha' \cdot C''m''$$
;

a' étant un rapport counu. Donc

$$\frac{\mathbf{A}\,\mathbf{m} + \boldsymbol{\lambda} \cdot \mathbf{B}'\mathbf{m}'}{\mathbf{C}''\mathbf{m}''} = \boldsymbol{\alpha}' \cdot \boldsymbol{\mu}_1.$$

Ainsi la raison demandée μ est égale à α' . μ_1 .

$$\mu = \alpha' \cdot \alpha \cdot \frac{B'A'}{B'C'} = \alpha' \cdot \frac{BC}{B'C'} = \frac{BA}{R''C''}$$

Porisme LXIX. — Étant donnés trois droites parallèles, deux points A et B' sur les deux premières, et une raison h; si autour d'un point fixe, on fait tourner une transversale qui rencontre les droites fixes en trois points

m, m', m'': on pourra trouver un point C" sur la troisième et une raison \u03c4, tels, que pour toutes les positions de la transversale comprises dans l'angle ApP'; ou
bien, pour toutes les autres positions de cette droite, on aura toujours la relation

snivante entre les trois segments Am, B'm', C"m":

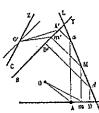
$$\frac{\mathbf{A} m + \mathbf{\lambda} \cdot \mathbf{B}' m'}{\mathbf{C}'' m''} = \mu.$$

tournante comprises dans l'angle ApB, quand la droite pC" est au dehors; ou bien, pour toutes les positions de la droite tournante hors de cet angle, quand la droite p C" y est comprise; on aura toujours entre ces distances la relation

$$\frac{p+\lambda_1q}{r}=\mu.$$

Le triangle qui a pour sommet un point donné et pour base telle droite, est équivalent au triangle qui a pour sommet un point donné et pour hase le regment compris entre tel point et un point donné.

Porisme LXXII. - Si de chaque point M d'une droite IM on abaisse des perpendiculaires Mm, Mm' sur deux



droites fixes AX, BY; le point A éjant donné sur la première, un autre point O étant donné hers de cette droite, et une troisième droite CZ étant aussi donnée : on peut déterminer un point A' sur la droite BY et un point O' sur CZ, tels, que le triangle qui aura pour sommet le point O et pour base le seg-

ment Am, sera équivalent au triangle ayant pour sommet le point O' et pour base le segment A'm'.

Que par le point A on élève la perpendiculaire Aa sur AX, et que par le point a où elle rencontre la droite donnée LM, on abaisse sur BY la perpendiculaire a A'; le pied A' est le point cherché sur cette droite.

Soit Op la distance du point donné O à la droite AX; qu'on prenne A'D' = Op sur BY et que par le point D' on mène à cette droite une perpendiculaire, qui rencontre la droite LM on d; que de ce point on abaisse sur AX, la per(169)

Mais le point C' et la raison µ seront différents dans les deux cas.

Les trois points m, m', m'' divisent évidemment les trois droites en parties proportionnelles: par conséquent, la proposition se démontre comme le Porisme LXVII.

Porisme LXX. — Étant donnés trois droites parallèles, et trois points A, B', C" sur ces droites; si autour d'un point p on fait tourner une transversale qui les rencontre en m, m' et m": on pourra trouver deux raisons à et μ, telles, que pour toutes les transversales comprises dans l'angle ApB', quand la droite pC" est au dehors de cet angle; ou bien, pour toutes les transversales menées hors de l'angle ApB', quand la droite pC" est située dans l'angle; on aura toujours entre les segments Am, U'm', et C"m" la relation

$$\frac{\mathbf{A}m + \lambda \cdot \mathbf{B}'m'}{\mathbf{C}''m''} = \mu.$$

Ce Porisme résulte, comme le LXVIIIe, de ce que les trois points m, m', m'' forment trois divisions semblables.

Remarque. Si des trois points A, B', C" on abaisse sur les transversales omm'm" des perpendiculaires p, q, r, elles seront proportionnelles aux trois segments Am, B'm', C"m". Par conséquent on aura l'équation.

$$\frac{p+\lambda\cdot q}{r}=\mu.$$

De là ce nouveau Porisme :

Pontsme LXXI. - Étant donnés trois points A, 15,

C", si autour d'un autre point p on fait tourner une droite dont les distances à ces trois points, dans chacunc de ses po-sitions, sont représentées par p, q, r : on pourra trouver deux raisons à et p, telles, que pour toutes les positions de la droite

la troisième droite CZ sera à une distance de BY égale

En effet, il suffit de prouver que l'on a toujours, quel que soit le point M pris sur LM,

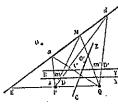
$$\Lambda m, \Lambda' D' = \Lambda' m', \Lambda D,$$
 on $\frac{\Lambda m}{\Lambda' m'} = \frac{\Lambda D}{\Lambda' D'}$

Cette proportion a lien évidemment, ear on a

$$\frac{Am}{AD} = \frac{aM}{ad} = \frac{A'm'}{A'D'}$$

Done, etc.

Porisme LXXIII. - Si autour de deux points fixes P, Q on fait tourner daux droites qui se coupent successivement en chaque point M d'une droite LE et qui rencontrent, respectivement, deux droites fixes AX, BY parallèles à la



base PQ, en deux points m, m'; le point A étant donné sur l'une AX de ces droites, et un autre point O quelconque étant aussi donné: ou pourra trouver un point A' sur la droite BY et un point O' sur une droite donnée CZ, tels,

que le triangle qui aura pour sommet ce point 0' et pour base le segment A'm', sera équivalent au triangle ayant pour sommet le point O et pour base le segment Am.

Qu'on mêne PA qui coupe la droite LE en a; puis Qa qui rencontre BY en A'. Qu'on prenne sur cette dernière droite A'I)' égal à la distance du point O et de la droite AX; qu'on mene QD' qui rencontre LE en d; puis Pd qui rencontre AX en D. Enfin qu'on prenne sur CZ le point O' à une distance de A'Y égale à AD. Les points A'et O' seront les points demandés.

En effet, les quatre droites Pa, PM, Pd, PQ coupées par

AX, EL donnent, d'après le Lemme X1,

$$\frac{Am}{AD} = \frac{aM}{nd} : \frac{EM}{Ed}$$

Pareillement

$$\frac{A'm'}{A'D'} = \frac{aM}{ad} : \frac{EM}{Ed}$$

Done

$$\frac{Am}{AD} = \frac{A'm'}{A'D'}$$
:

on, en appelant Op, O'p', les distances des deux points O, O' aux droites AX, BY respectivement,

$$\frac{\mathbf{A}m}{\mathbf{O}'p'} = \frac{\mathbf{A}'m'}{\mathbf{O}p}, \quad \text{ou} \quad \mathbf{A}m.\mathbf{O}p = \mathbf{A}'m',\mathbf{O}'p'.$$

Ce qui démontre le Porisme.

XIVª Genre.

Une droite, plus une autre, a un rapport donné avec tel segment compris entre un point donné et tel point.

Posisme LXXIV. - Quand deux points variables m, m' divisent deux droites en parties proportionnelles; deux points A et B étant donnés sur la première droite: on.peut déterminer un point G' sur la seconde, et une raison \u00e0, tels, qu'on aura toujours la re-

$$\frac{Am+Bm}{C'm'}=\lambda.$$

Qu'on prenue le point C milieu de AB, et son homologue C' sur l'autre droite : ce sera le dernier point cherché. Soit A' l'homologue du point A, on aura

$$\lambda = \frac{BA}{C'A'}$$

(174) conpées par F'L, F'X',

$$\frac{C'm'}{C'F'} = \frac{cM}{cF'} : \frac{EM}{EF'},$$

done

lation

$$\frac{Cm}{C'm'} = \frac{CF}{cF} EF : \frac{C'F'}{cF'} EF.$$

Mais

$$\frac{CF}{cF} = \frac{PE}{cE}$$
 et $\frac{C'F'}{cF'} = \frac{QE}{cE}$:

done

$$\frac{Cm}{C'm'} = \frac{PE}{QE} \cdot \frac{EF}{EF'}$$
:

et comme

$$Cm = \frac{Am + Bm}{2},$$

on obtient finalemen.

$$\frac{\mathbb{A}\,m\,+\,\mathbb{B}\,m}{\mathbb{C}'\,m'} = 2\,, \frac{\mathbb{P}\,\mathbb{E}}{\mathbb{Q}\mathbb{E}}\,\cdot\frac{\mathbb{E}\mathbb{F}}{\mathbb{E}\mathbb{F}'}\cdot$$

Tella droite forme sur deux antres droites données de position des segments dont le rectangle est donné.

Porisme LXXVI. - Étant donnés deux droites SL. SL' et un point P, si autour de ce point on fait tourner une transversale qui rencontre les deux droites en m et m' : on pourra trouver deux points A et B' sur ces droites, et un rectangle v, tels, que le rectangle des deux segments Am, B'm' sera toujours égal à ce

> Que par le point P on mêne la droite PA parallèle à SL', et la droite PB parallèle à SL. Les deux points demandés A et B' seront

(173)

En effet, puisque A' et C' correspondent sur la deuxième droite aux points A, C de la première, de même que m' à m,

$$\frac{Cm}{C'm'} = \frac{CA}{C'A'}; \quad Cm = \frac{CA}{C'A'} \cdot C'm',$$

on

$$\frac{Am + Bm}{2} = \frac{CA}{C'A'} \cdot C'm'$$
:

par conséquent

$$\frac{A m + B m}{C' m'} = \frac{2 \cdot CA}{C' A'} = \frac{BA}{C' A'} = \lambda.$$

PORISME LXXV. - Si deux droites tournent autour de deux points sixes P, Q en se coupant sur une droite LE, et rencontrent deux autres droites FX, F'X' parallèles à la base PQ, en deux points m, m'; deux points A, B étant donnés sur la droite FX: on pourra trouver un point

C' sur F'X' et une raison \(\lambda\), tels, qu'on aura toujours

$$\frac{Am + Bm}{C'm'} = \lambda.$$

Soit C le milien des deux points donnés A et B; qu'on mène la droite PC qui rencontre la droite LE en c; puis la droite Qc qui rencontre F' X' en C'. Ce point C' et la valeur $\lambda = 2 \frac{PE}{OE} \cdot \frac{EF}{EF}$, satisfont à la question.

En eflet, les trois droites PM, Pc, PE coupées par FL et FX, donnent, d'après le lemme XI,

$$\frac{\mathbf{C}m}{\mathbf{CF}} = \frac{\mathbf{c}\,\mathbf{M}}{\mathbf{c}\,\mathbf{F}} : \frac{\mathbf{E}\mathbf{M}}{\mathbf{E}\,\mathbf{F}}.$$

On a de même à l'égard des trois droites QM, Q e et QE

déterminés. Le rectangle v sera égal à SA.SB; de sorte qu'on aura

 $Am \cdot B'm' = SA \cdot SB'$.

Cela se démontre par le Lemme XI. En effet, menons par le point S une droite qui coupe les trois PA, PB' et Pa en a, 6 et u. On a par le Lemme cité

$$\frac{S\alpha}{\mu\alpha}: \frac{S6}{\mu6} = \frac{SA}{mA} = \frac{m'B'}{SB'}.$$

Done

$$mA.m'B' = SA.SB'.$$

Ce Porisme a été rétabli par Simson et sorme sa 41° proposition. « Quæ est Porisma, unum scilicet ex iis quæ » Pappus tradit inter Porismata Lib. I. Euclidis, hisce n verbis: Quod recta... aufert a positione datis segmenta » datum rectangulum comprehendentia. »

Porisme LXXVII. - Etant donnés trois points e, A, IV, on peut mener par les points A, B' deux droites fixes telles, que toute droite menée par le point p les rencontrant

en deux points m, m', le rectangle Am. B'm' ait une valeur constante.

En esset, si par le point e on mêne les deux droites pA, pl'; par le point A une droite parallèle à pB', et par le point B' une droite parallèle à pA: ces

deux droites satisferont à la question. Cola résulte du Porisme précédent.

He LIVRE DES PORISMES.

Pappus dit: « Dans le second Livre les hypothèses sont » dissertes, mais les choses cherchées sont pour la plu-

» part les mêmes que dans le Ier Livre. Il y a en outre cel-

» les-ci. »

Nous donnerons d'abord les Porismes qui appartiennent en propre au second Livre et qui y forment les genres XVI à XXI, puis, ceux qui rentrent dans les genres du I^{ee} Livre.

XVI* Genre.

Tel reclangle seul, ou tel rectangle plus un certain espace donné est dans une raison donnée avec telle abscisse.

Portsme LXXVIII. — Si deux points variables m, m' sur une même droite, sur laquelle sont donnés quatre points fixes dans l'ordre a, c, a', c', sont liés par l'équation

$$\frac{am}{cm} = \lambda \cdot \frac{m'a'}{c'm'}$$
:

on peut trouver un point b', un rectangle v et une ligne µ,

tels, que, quand les

tels, que, quand les
deux segments am,
b'm' se trouvent dirigés dans le même sens, on a toujours
aussi la relation

$$\frac{am \cdot b'm' + \nu}{am'} = \mu.$$

En esset, l'équation proposée s'écrit :

$$am \cdot c'm' = \lambda \cdot m'a' \cdot cm$$

12

Remplaçant em par (ca - ma) et m'a' par (m'c' + c'a'),

$$am.c'm' = \lambda \left[ca.m'c' + ca.c'a' - ma.m'c' - ma.c'a' \right]$$
on
$$am.c'm' + \frac{\lambda.c'a'}{\lambda + 1}.ma - \frac{\lambda.ac}{\lambda + 1}.c'm' - \frac{\lambda.ac}{\lambda + 1}.a'c' = 0.$$

Prenons les deux points I et J' déterminés par les expres-

 $aI = \frac{\lambda . ac}{\lambda + 1}$ et $c'J' = \frac{\lambda . c'a'}{\lambda + 1}$

dans le sens des segments ac, c'd', respectivement; l'équation devient

$$am.c'm'+c'J'.ma-aI.c'm'-aI.a'c'=0.$$

Introduisons le point b', au lieu de c', en remplaçant c'm' par (b'm'-b'c') dans le premier terme, et par (am'-ac') dans le troisième: on obtient, après les réductions,

$$am \cdot b'm' + am \cdot J'b' - aI \cdot am' + aI \cdot aa' = 0$$

Le point b' est queleonque. Prenons-le de manière que J'b' = aI; il sera à la même distance que le point a du milieu des deux I et J'; et l'équation deviendra

$$am.b'm' - aI(am' - am) + aI.aa' = o$$

ou

sions

$$\frac{am.b'm'+a1.aa'}{mm'}=a1.$$

En la comparant à celle que l'on s'est proposé de démontrer, on conclut

$$y = a I.aa'$$
 or $\mu = a I$,

ou

$$v = \frac{\lambda, ac, aa'}{\lambda + 1}, \quad \mu = \frac{\lambda, ac}{\lambda + 1}$$

Remarquous que le point I déterminé par l'expression

 $aI = \frac{\lambda_{-m}}{\lambda + 1}$ occupe la position que prend le point m quand m' est supposé infiniment éloigné. Car la relation donnée

$$\frac{am}{mc} = \lambda, \frac{a'm'}{c'm'}$$

se réduit alors à

$$\frac{am}{cm} = \lambda$$
, ou $am = \lambda . mc = \lambda (ac - am)$;

et, par suite,

$$am = \frac{\lambda \cdot ac}{\lambda + 1}$$
.

Ainsi le point m coïncide avec I.

Pareillement, quand le point m est infiniment éloigné, le point correspondant m' coïncide avec J' déterminé ci-lessus.

Observation. Nous avons supposé, dans l'énoncé du Porisme, que les quatre points donnés se trouvaient dans l'ordre a, c, a', c', que présente la figure, et auquel s'applique la démonstration. Mais, quel que soit l'ordre de ces points, sous la seule condition que les deux segments ac et aa' se trouvent dirigés dans le même sens, le Porisme a toujours lieu.

Il subsiste même encore, quand les deux segments ac, ac' ont des directions dissérentes; mais alors ce n'est plus à l'égard des couples de points m, m' qui tont des segments am, b'm' de même direction; c'est à l'égard des couples de points pour lesquels ces segments se trouvent de directions contraires.

Dans chaque cas la démonstration sera imitée de celle qui précède. Il est inutile d'ajouter que dans la Géométrie moderne une seule démonstration, de même qu'un seul énoncé de la proposition, suffisent pour tous les cas possibles.

Cas particulier. D'après la généralité du Porisme, quelle que soit la position relative des points donnés, on peut

supposer que les deux points a et a' se confondent; alors le rectangle v disparaît. Cela s'accordo avec l'énoncé du XVI Genre, auquel appartient le Porisme.

Il est à remarquer encore que dans ce cas, où le point a' coïncide avec son homologue a, le point b' coïncide aussi avec son homologue.

En esset, si a et a' conneident, l'équation devient, en appelant e la position de ce point,

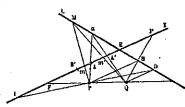
$$cm.b'm'=e1.mm'.$$

Et si l'on suppose que m' vienne en b', on a

$$a == eI.mm'$$
.

Donc mn' = 0, c'est-à-dire que les deux points homologues m, m' coïncident. Mais m' est en b'. Donc ce point b' coïncide avec son homologue.

Porisme LXXIX. — Si autour de deux points P, Q on fuit tourner deux droites qui se coupent sur une droite



donnée de position LDet qui rencontrent une autre droite aussi donnée de position AX, en deux points m, m'; le point A étant

donné sur cette droite: on pourra déterminer un second point W, un rectangle v, lequel peut être nul, et une ligne µ, tels, que, pour certaines positions du point M, en nombre infini, sur la droite AX, on aura toujours la relation

$$\frac{A m \cdot B' m' + \nu}{m m'} = \mu.$$

En effet, d'après le Porisme XXIV (Corollaire III), il existe entre les deux points m, m' que les deux droites tour-

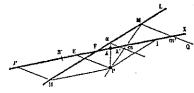
ce qui a lien en F où la droite PQ rencontre AX, L'équation devient donc

$$\frac{\mathbf{E}\,m\,\mathbf{F}\,m'}{mm'} = \mathbf{E}\mathbf{I}$$

Pareillement, quand le point A est en F sur la base PQ, B' est en E.

Ce sont les cas prévus par l'énoncé que Pappus a donné du XVI-Genre.

Porisme LXXX. — Si par chaque point M d'une droite LF on mène une droite aboutissant à un point fixe P et une autre droite MQ parallèle à une droite donnée; et si ces deux droites rencontrent une autre droite donnée AX



en deux points m, m'; le point A étant donné sur la droite AX: on peut déterminer un point B', sur

cette droite, un rectangle v et une ligne p, tels, que pour des positions du point M, en nombre infini, sur AX, on aura toujours

$$\frac{Am.B'm'+\nu}{mm'}=\mu.$$

En effet, qu'on mène à LF la parallèle PI qui rencontre AX en I; puis, à AX la parallèle PH qui rencontre LF en H; et parallèlement aux droites MQ, la droite HJ' qui rencontre AX en J'. Qu'on prenne sur AX le point B', à la même distance que le point A du milieu des deux points I, J'; et enfin qu'on mêne PA qui rencontre LF en \(\alpha \), et par ce point une parallèle aux droites MQ, qui rencontre AX en A'. On démontrera, par les considérations employées pour les Porismes précédents, que

$$\mu = \Lambda I$$
, or $\nu = \Lambda I . \Lambda \Lambda'$:

nantes déterminent sur la droite AX, une relation telle que

$$\Lambda m \cdot C'm' = \lambda \cdot \Lambda'm' \cdot Cm$$

dans laquelle A et A' sont des positions particulières des deux points variables m, m'; ainsi que C et C'.

Par conséquent, d'après le Porisme précédent, cette relation donne lieu à celle-ci:

$$Am \cdot B'm' + v = \mu \cdot mm'$$
.

Il s'agit de déterminer la position du point B', le rectangle ν et la ligne μ .

Qu'on mène QD parallèle à AX, qui rencontre la droite LD en D, et PD qui rencontre AX en I. Puis, PH parallèle à AX, qui rencontre LD en H, et QH qui rencontre AX en J'. Qu'on prenne B' sur AX, à la même distance que A du milieu des deux points I et J'. Enfin qu'on mêne PA qui rencontre LD en a, et Q a qui rencontre AX en A'. On aura

$$\mu = AI$$
 et $\nu = AI \cdot AA'$;

et, par suite,

$$\frac{Am.B'm' + AI.AA'}{mm'} = AI.$$

Car le point I qui vient d'être déterminé est évidemment la position que prend le point m quand m' est infiniment éloigué; par conséquent, cette équation est celle qui a été démontrée dans le Porisme précédent.

On vérifiera aisément que dans le premier membre de cette égalité, le signe plus aura lieu, conformément à l'énoucé du Porisme, pour les positions du point M, telles (dans lafigure ci-dessus), que les deux points m, m' se trouvent de côtés différents des points A et B', respectivement. De sorte que, sous cette condition, le Porisme sera démontré.

Quand le point A est situé en E où la droite LD rencontre ΛX , le point A' coïncide avec A, de sorte qu'on a $\Lambda A' = o$. Mais alors le point B' coïncide aussi avec son homologue;

et que l'on a dès lors

$$\frac{Am \cdot B'm' + AI \cdot AA'}{mm'} = \Delta I.$$

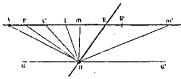
Ici (c'est-à-dire dans la figure ci-contre) le rectangle AI. AA' sera additif pour toutes les positions du point M qui scrout telles, que les deux points m, m' soient du même côté des deux points A et B', respectivement.

Si le point A se trouve en E sur PE parallèle aux droites MQ, ou en F, A' coïncide avec A (et B' avec F, ou avec E), et le rectangle v est nul : de sorte qu'on a

$$\frac{\mathbf{E}m.\mathbf{F}m'}{mm'} = \mathbf{EI}_{\frac{1}{2}}$$
 ou $\frac{\mathbf{F}m.\mathbf{E}m'}{mm'} = \mathbf{FI}$.

Le Porisme est donc complétement démontré.

Porisme LXXXI. — Par un point O donné sur une droite OE, on mêne deux droites Om, Om' faisant avec OE des angles égaux, et rencontrant une droite fixe AE



en deux points w et m'; le point A étant donné sur cette droite : on pourratrouver un autre point R', un

ractangle v et une ligne u, tels, que pour des positions des points m, m', en nombre infini, on aura toujours l'égalité

$$\frac{Am \cdot B'm' + \gamma}{mm'} = \mu.$$

Soient OF perpendiculaire à OE et I le milieu de FE; soit, en outre, l'angle FOA' égal à FOA; en prendra IB' = AI, $v = AI \cdot AA'$ et $\mu = AI$; de sorte qu'il faut démontrer que pour des positions des points m, m', on aura

$$\frac{Am \cdot B'm' + AI \cdot AA'}{mm'} = A1.$$

Supposons le point A à gauche de F. Soit la droite GOG' parallèle à AE. Les quatre droites OA, Om, OI, OG font entre elles des angles égaux à ceux des droites OA', Om', OG', OI; et l'on en conclut, par les corollaires des Lemmes III et X1 (p. 83 et 84), la relation

$$Am.Im' = A'm'.AI.$$

Ecrivons

$$Am(IB'+B'm')=A'm'.AI$$

ou, parce que lB' = AI,

$$Am.B'm' + Am.AI = A'm'.AI$$

$$Am.B'm' + (AA' + A'm)AI = A'm'.AI,$$

$$Am.B'm' + AI.AA' = AI(A'm' - Am) = AI.mm';$$

et enfin

$$\frac{Am.B'm' + AI.AA'}{mm'} = AI.$$

La démonstration se fera par le même raisonnement, dans le cas où le point A sera pris entre E et F.

Si A coincide avec un de ces deux derniers, le rectangle v sera nul évidemment, cas prévu par l'énoncé du XVI Genre.

XVII Genre.

Le rectangle compris sous telle droite et telle autre droite est dans une raison donnée avec une certaine abseisse.

Porisme LXXXII. — Si deux points variables sur une droite ef sont liés par la relation

$$\frac{cm}{mf} = \lambda \frac{cm'}{fm'};$$

(186)

Done

$$\frac{cm.fm'}{mm'} = \frac{\lambda.cf}{\lambda+1}$$

Ce qu'il fallait démontrer.

Done, etc.

Remarquous que la position du point I déterminée par l'équation $\frac{e_I}{f_I} = \lambda$, est précisément celle que prend le point m quand le point m' s'éloigne infiniment.

Car, dans ce cas, l'équation (1) se réduit à $\frac{cm}{mf} = \lambda$ et donne pour le point m la position même du point I.

Autrement, L'équation (1) s'écrit

$$em.fm' = \lambda.em'.mf.$$

Or il existe entre les quatre points e, f, m, m', d'après le Porisme LIX, l'identité

d'où mnt .ef = em .fmt + em' .mf,

cm', mf = mm', ef - em, fm'

L'équation proposée devient donc

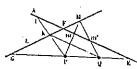
 $cm.fin' = \lambda.mm'.ef - \lambda.cm.fin';$

d'ou

$$\frac{vm.fm'}{mm'} = \frac{\lambda.vf}{\lambda + 1}.$$

Done et

Ponisme LXXXIII. — Si autour de deux points fixes



P, Q on fait tourner deux droites qui se coupent sur une droite donnée de position LF, et qui rencontrent une droite fixo AX

en deux points w, m'; E, F étant les points où la droite AX rencontre la base PQ et la droite AF; on pourra trouver

(185)

on aura aussi entre ces deux points une relation telle que

$$\frac{em.fm'}{mm'} = eI;$$

c'est-à-dire qu'il existera sur la droite ef un point I donnant lieu à cette relation.

Le point I se détermine par l'équation

$$\frac{eI}{If} = \lambda$$
, d'où $eI = \frac{\lambda \cdot ef}{\lambda + 1}$;

de sorte qu'il faut démontrer que l'on a

$$\frac{ent.\,fm'}{mm'} = \frac{\lambda.ef}{\lambda+1}.$$

En effet, que l'on mène par le point m', et dans une direction quelconque, une droite m'O égale à m'f; puis, par le point e une parallèle à cette droite, et par le point O les droites Om, Of qui rencontrent cette parallèle en i et F.

Le Lemme XI donne, en considérant les trois droites Of, Om et Om' coupées par les deux ef, eF,

$$\frac{em}{mm'}$$
: $\frac{ef}{fm'} = \frac{ei}{eF}$

ou, parce que eF = ef,

$$\frac{em \cdot fm'}{mm'} = ei.$$

Mais on a encore

$$\frac{e\,i}{iF} = \frac{em}{mf} : \frac{em'}{fm'}$$

Par conséquent, à cause de l'équation (1)

$$\frac{ei}{Fi} = \lambda$$
, d'où $ei = \frac{\lambda \cdot eF}{\lambda + 1} = \frac{\lambda \cdot ef}{\lambda + 1}$

(187)

une ligne p, telle, que l'on aura toujours

$$\frac{\mathbf{E}m.\mathbf{F}m'}{mm'} = \mu.$$

Ce Porisme est une conséquence du Lemme XVI (proposition 142), d'après lequel les quatre droites ML, MP, MQ, ME, coupées par les deux AX et LF entraînent l'équation

$$\frac{mE}{mm'}$$
: $\frac{FE}{Fm'}$ = $\frac{PE}{PQ}$: $\frac{GE}{GQ}$

Que l'on mène par le point Q une parallèle à EF, qui rencontre la droite LF en K; et qu'on mêne PK qui rencontre EF en I.

Les trois droites KQ, KP, KG, coupées par les deux EG, EF, donnent

$$\frac{PE}{PQ}: \frac{GE}{GQ} = \frac{EI}{EF}.$$
 (Lemme XI.)

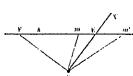
On a done

$$\frac{m \, \mathrm{E}}{m m'}$$
: $\frac{\mathrm{FE}}{\mathrm{F} \, m'} = \frac{\mathrm{EI}}{\mathrm{EF}}$, ou $\frac{\mathrm{E} \, m \, \mathrm{F} \, m'}{m m'} = \mathrm{EI}$.

Par consequent, il suffit de poser $\mu = EI$.

Done, etc.

Ponisme LXXXIV. - Si par un point P on mêne deux



droites faisant des angles éganx avec une droite fixe PX, et rencontrant une autre droite AY en deux points m, m': on pourra trouver deux points E, F

sur cette dernière at une ligne u, tels, que le rectangle Em.Fm' sera toujours égal au rectangle u.mm'.

Les deux points E, F sont ceux où la droite PX et sa perpendiculaire menée par le point P rencontrent l'autre droite donnée AY. La constante μ est égale à $\frac{EF}{n}$.

En esset, les deux droites PE, PF sont les hissectrices de l'angle mPm' et de son supplément, par conséquent les deux points m, m' divisent harmoniquement le segment EF, c'est-à-dire que l'on a

$$\frac{\mathbf{E}m}{\mathbf{F}m} = \frac{\mathbf{E}m'}{m'\mathbf{F}}.$$

On démontrera doue, comme pour le Porisme LXXXII, ou l'on conclura de ce Porisme même, que

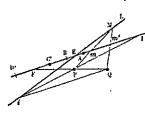
$$\frac{\operatorname{E} m \cdot \operatorname{F} m'}{mm'} = \frac{\operatorname{EF}}{2}.$$

Done, etc.

XVIII* Genre.

Tel rectongle ayant pour côtés la somme de deux droites et la somme de deux autres droites a un rapport donné avec telle abscisse.

Posisme LXXXV. — Quand deux droites tournent autour de deux points fixes P, Q en se coupant toujours sur une droite donnée de position LE, et qu'elles rencon-



trent une autre droite fixe AC, en deux points m, m'; les deux points A at C' étant donnés sur cette droite: on peut trouver deux autres points B et D, et une ligne u, tels, que pour

chaque couple de points m, m' dont le premier se trouvera hors du segment AB, et le second hors du segment CD, on aura toujours la relation

$$\frac{(Am + Bm)(C'm' + D'm')}{mm'} = \mu.$$

Soient E; F les points d'intersection de la droite AC' par les droites LE et PQ.

(190)

une ligne \(\mu\), tels, que quand les deux droites Om, Om seront au dehors des angles AOB, C'OD', respectivement, on aura tonjours l'égalité

$$\frac{(Am + Bm)(C'm' + D'm')}{mm'} = \mu.$$

La droite donnée OH et sa perpendiculaire menée par le point O rencontrent AC en deux points E et F. On aura

$$\mu = 2EF$$
.

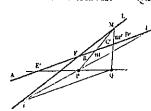
Qu'on prenne ensuite EB = AE, et FD' = C'F; les deux points demandés B et l' seront déterminés.

L'égalité proposée résulte alors du Porisme LXXXIV, en appliquant à la relation qu'il établit entre les points E, F, m, m' des transformations semblables à celles du Porisme précédent.

XIXª Genre.

Un rectangle qui a pour côtés telle droite et une autre droite augmentée d'une seconde qui a un rapport donné avec telle autre, et le rectangle construit sur telle droite et une autre qui a un rapport donné avec telle autre, ont leur somme dans un rapport donné avec une certaine abscisse.

Ponisus LXXXVII. - Quand deux droites tournent



autour de deux points fixes P, Q en se coupant sur une droite LF, et rencontrant une autre droite fixe en deux points m, m'; si quatre points A, B, C, D' sont donnés sur cette autre droite: on

peut trouver un cinquieme point E', deux raisons λ et μ , et une ligne ν , tels, qu'on aura la relation

$$\frac{Am\left(C'm'+\lambda,D'm'\right)+\mu,Bm,E'm'}{mm'}==\nu.$$

Qu'on prenne BE = EA, D'F = FC'. Les deux points B et D' sont déterminés.

Qu'on mêne par le point Q une parallèle à AC, qui rencontre LE en i; puis, qu'on mêne Pi qui rencontre AC en I; on aura $\mu = 4$ EI. De sorte que l'équation à démontrer est

$$\frac{(Am + Bm)(C'm' + D'm')}{mm'} = 4 \text{ E1}.$$

En effet, les points E, F, I satisfont aux conditions du Porisme LXXXIII: et, par suite, ils ont avec les points m, m' la relation constante

$$\frac{\mathbf{E}m.\mathbf{F}m'}{mm'} = \mathbf{E}\mathbf{I}.$$

Mais, de plus, le point E est le milieu de AB : donc

$$Em = \frac{Am + Bm}{2}.$$

Et parcillement, le point F est le milien de l'C': ainsi

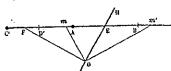
$$Fm' = \frac{C'm' + D'm'}{2}.$$

L'équation devient dès lors

$$\frac{(Am + Bm)(C'm' + D'm')}{mm'} = 4.EI.$$

c. Q. F. D.

Porisme LXXXVI. — Autour d'un point O pris sur une droite fixe OII, on fait tourner deux droites Om, Om' dont les angles avec cette droite OII sont toujours égaux, et qui rencontrent une autre droite donnée AC' en deux



points m, m'; les deux points A et C' étant donnés : on pourra trouver deux autres points B et D' sur la même droite AC', et

En esset, soient E' et F les points d'intersection de la droite AB par PQ et LF, et l le point déterminé comme dans le Porisme LXXXIII: on aura, d'après ce Porisme,

$$\frac{\mathbf{E}'m',\mathbf{F}m}{mm'}=\mathbf{FI}.$$

Mais on sait qu'il existe entre les quatre points F, m, Λ , B, la relation

$$Fm.AB = AF.Bm + FB.Am$$

Ott

$$\mathbf{F}m = \frac{\mathbf{F}\mathbf{A}}{\mathbf{A}\mathbf{B}} \cdot \mathbf{B}m + \frac{\mathbf{F}\mathbf{B}}{\mathbf{A}\mathbf{B}} \mathbf{A}m.$$

Et, pareillement, entre les quatre points E', m', C', D',

$$\mathbf{E}'m' = \frac{\mathbf{C}'\mathbf{E}'}{\mathbf{C}'\mathbf{D}'} \cdot \mathbf{D}'m' + \frac{\mathbf{E}'\mathbf{D}'}{\mathbf{C}'\mathbf{D}'}\mathbf{C}'m'.$$

Par conséquent l'équation (1) devient

$$\frac{\frac{\text{FB}}{\text{AB}} \text{A} m \cdot \left(\frac{\text{E'} \text{D'}}{\text{C'} \text{D'}} \text{C'} m' + \frac{\text{C'} \text{E'}}{\text{C'} \text{D'}} \text{D'} m'\right) + \frac{\text{AF}}{\text{AB}} \text{B} m \cdot \text{E'} m'}{n m'} = \text{F1},$$

ou

$$\frac{\operatorname{A}m.\left(\operatorname{C}'m'+\frac{\operatorname{C}'\operatorname{E}'}{\operatorname{E}'\operatorname{D}'}\operatorname{D}'m'\right)+\frac{\operatorname{A}\operatorname{F}}{\operatorname{F}\operatorname{B}}\cdot\operatorname{E}'\operatorname{D}'\cdot\operatorname{B}m.\operatorname{F}'m'}{mm'}=\frac{\operatorname{A}\operatorname{B}}{\operatorname{F}\operatorname{B}}\cdot\operatorname{C}'\operatorname{D}'\operatorname{F}\operatorname{J}.$$

Il suffit donc de prendre

$$\lambda = \frac{C' \; E'}{E' \; D'}, \quad \mu = \frac{AF}{FB} \cdot \frac{C' \; D'}{E' \; D'}, \quad \nu = \frac{AB}{FB} \cdot \frac{C' \; D'}{E' \; D'} F I,$$

pour que le Porisme soit démontré.

Observation. Cette proposition donne lieu à d'autres Porismes.

Par exemple, on peut supposer que les deux raisons λ et μ soient données ainsi que les trois points A, C', E': on déterminera la ligne ν et les deux points B et D'.

XX Genre.

La somme de ces deux rectangles est dans un repport donné avec le segment compris entre tel point et un point donné.

Porisme LXXXVIII. — Étant donnés sur une droite quatre points, placés dans l'ordre a, a', b, b' : on peut trouver un cinquière point O

trouver un cinquième point O et une ligne \(\mu\), tels, que pour tout autre point \(\mu\), pris entre

a et a' ou entre h et b' indifférenment, on aura toujours la relation

$$\frac{ma.ma' + mb.mb'}{m0} = \mu.$$

Le point O se détermine par la relation

$$0a.0a' = 0b.0b';$$

et la ligne μ est égale au double de la distance $\alpha \delta$ des milieux des deux segments aa', bb'.

En esset, soit le point m situé sur bb, on a

$$ma.ma' = (mO + Oa) (mO + Oa')$$

$$= \overline{mO}' + mO (Oa + Oa') + Oa.Oa',$$

$$mb.mb' = (mO - Ob) (Ob' - mO)$$

$$= -\overline{mO}' + mO (Ob + Ob') - Ob.Ob'.$$

Ajoutant ces équations membre à membre, ayant égard à l'égalité qui sert à déterminer le point O, et observant que si α et δ sont les milieux des segments aa', bb', il en résulte

$$0a + 0a' = 20a$$
 et $0b + 0b' = 206$;

on obtient

$$ma.md + mb.mb' = 2mO(Oa + O6) = 2mO.a6;$$

(194)

fois dans les deux angles APB, C'PB, ou située au dehors, la relation

$$\frac{\mathbf{A}\,m\,,\mathbf{B}'\,m'\,+\,\mathbf{B}\,m\,,\mathbf{C}'\,m'}{\mathbf{B}\,m}=\mu.$$

Que par le point P on mène une parallèle à SL', qui coupe SL en I; qu'on prenne BI = AI, le point B est déterminé; et la droite PB marque sur SL' le point B'. La droite PA rencontre SL' en A'; qu'on prenne $\mu = CA'$: la ligne μ est déterminée.

Supposons que la transversale soit intérieure aux angles APB, C'PB'; il faut démontrer que

$$\frac{Am.B'm'+Bm.C'm'}{Bm}=C'A'.$$

Or C'A' = C'm' + m'A'; par conséquent, il suffit de faire voir que

$$Am \cdot B'm' = Bm \cdot m'A'$$
.

En effet, les quatre droites qui partent du point P font sur les deux transversales SL, SL' des segments tels, que

$$\frac{\Lambda m}{\Pi m}$$
: $\frac{\Lambda I}{IB} = \frac{m'\Lambda'}{R'm'}$, (Lemme X1.)

ou bien, puisque AI = IB par construction,

$$\frac{\Lambda m}{Bm} = \frac{m'\Lambda'}{B'm'}$$

ou ensin

$$\Lambda m \cdot B'm' = Bm \cdot m' \Lambda'$$

C. O. F. D

Done, etc.

LEMME. — Quand doux points variables m, m' sur deux droites ah, a'ls' sont lies par la relation

$$\frac{am}{bm} \rightleftharpoons \lambda \cdot \frac{a'm'}{b'm'}$$

(193)

ou

$$\frac{ma.ma' + mb.mb'}{mO} = 2 \alpha \delta.$$

C. O. F. D

Observation. On vérifie aisément que la relation qui constitue ce Porisme, et le Porisme même, par conséquent, ont lieu quelle que soit la position relative des quatre points a, a', b, b', pourvu qu'on prenne le point m dans des régions différentes, déterminées par cette simple règle: quand les deux segments ma, ma' ont la même direction, les deux mb, mb' doivent avoir, l'un par rapport à l'autre, des directions différentes; et réciproquement.

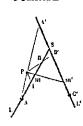
Ce Porisme se trouve, sous un tout autre énoncé, parmi les Lemmes de Pappus relatifs au second Livre de la Section déterminée d'Apollonius. Il est reproduit dans douze Lemmes consécutifs (propositions 45-56) qui répondent aux disserntes positions que peut avoir le point m, en raison des positions relatives des quatre points a, a', b, b'.

Dans la Géométrie moderne on comprend tous ces cas dans la seule formule

$$\frac{ma.ma'-mb.mb'}{mO}=26\alpha,$$

en donnant des signes aux segments (voir Traité de Géométrie supérieure, p. 154).

étrie supérieure, p. 154). Portsme LXXXIX. — Deux droites SI., SL'étant données



X.—Deux droites \$1., \$1.' étant données de position; un point A étant données la première, et un point C surla seconde: on peut trouver deux points B et B' sur ces droites, et une ligne \(\mu, \) tels, que si autour d'un point donné P on fait tourner une transversale qui rencontre les deux droites \$\mathbb{SL}, \$\mathbb{SL}'\$ en deux points \$\mathbb{m}, \, \mathbb{m}', on aura toujours pour chaque position de cette transversale comprise à lu

(195)

si l'on prend deux points arbitraires c, d sur la première
droite, et les deux points c', d' qui leur
correspondent sur la deuxième droite:
on peut déterminer une constante μ,
tellé, qu'on aura toujours

$$\frac{cm}{dm} = \mu \frac{c'm'}{d'm'}$$

La valeur de cette constante est

$$\mu = \frac{\lambda bc + ca}{\lambda bd - ad}$$

En effer, qu'on place les deux droites ab, a'b' de manière que les deux points a, a' coïncident, les quatre droites bb', cc', dd' et mm' concourent en un même point. Car on a, par hypothèse,

$$\frac{am}{bm} = \lambda \cdot \frac{a'm'}{b'm'} \quad \text{et} \quad \frac{ac}{bc} = \lambda \cdot \frac{a'c'}{b'c'}$$

Done

$$\frac{am}{bm}$$
; $\frac{ac}{bc} = \frac{a'm'}{b'm'}$; $\frac{a'c'}{b'c'}$.

Ce qui prouve (Lemme XVI) que les trois droites bb, ec' et mm' concourent en un même point. Et le même raisonnement s'applique à la droite dd'.

D'après cela, il existe entre les deux systèmes de quatre points a, c, d, m et a', c', d', m' (Lemme III ou Lemme XVI), la relation

$$\frac{cm}{dm}; \frac{ca}{da} = \frac{c'm'}{d'm'}; \frac{c'a'}{d'a'}$$

ou

$$\frac{cm}{dm} = \frac{c'm'}{d'm'} \cdot \left(\frac{ca}{da} : \frac{c'a'}{d'a'}\right).$$

Or

$$\frac{ac}{bc} = \lambda \cdot \frac{a'c'}{b'c'}$$
:

d'où

$$\lambda bc \cdot a'c' = ac \cdot b'c' = ac \cdot (b'a' - c'a'),$$

 $(\lambda bc + ca) a'c' = ac \cdot b'a'.$

Pareillement

$$(\lambda bd - ad) a'd' = ad \cdot b'a'.$$

Done

$$\frac{a'c'}{a'd'} = \frac{ac}{ad} : \frac{\lambda bc + ca}{\lambda bd - ad}, \quad \text{ou} \quad \frac{ac}{ad} : \frac{a'c'}{a'd'} = \frac{\lambda bc + ca}{\lambda bd - ad}$$

Et, par conséquent,

$$\frac{cm}{dm} = \frac{c'm'}{d'm'} \cdot \frac{\lambda bc + \epsilon a}{\lambda bd - ad'}$$

c. Q. F. D.

Corollaire I. Si l'on suppose que le point c coïncide avec a, il s'ensuit que l'équation

$$\frac{am}{bm} = \lambda \cdot \frac{a'm'}{b'm'}$$

donne lieu à celle-ci :

$$\frac{am}{dm} = \frac{a'm'}{d'm'} \cdot \frac{\lambda, ba}{\lambda, bd - ad}$$

Corollaire II. On peut prendre le point d de manière que l'équation devienne

$$\frac{um}{md} = \frac{a^t m'}{d' m'}$$

En effet, il suffit de faire

$$\frac{\lambda \cdot ab}{\lambda \cdot bd - ad} = 1, \quad \lambda \cdot ab = \lambda \cdot bd - ad,$$
$$\lambda \cdot ab = \lambda \cdot (ad - ab) - ad, \quad ad = \frac{2\lambda \cdot ab}{\lambda - 1}.$$

Cette dernière expression fait connaître la position du point d.

Il existe une autre détermination très-simple de ce point.

Écrivons:

$$am.(c'b'+b'm') = mc(a'd'-m'd'),$$

 $am.b'm'+mc.m'd'=mc.a'd'-am.c'b'.$

Introduisons un point g, en remplaçant dans le second membre am par (gm-ga), et mc par (mg-cg); il vient am.b'm'+cm.d'm'=gm(d'a'-c'b')+ga.c'b'-gc.d'a'.

Qu'on détermine le point g par l'équation

$$\frac{ga}{gc} = \frac{d'a'}{c'b'},$$

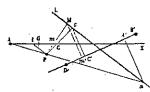
et la constante a ainsi

$$\mu = d'a' - c'b';$$

l'équation devient

$$am \cdot b'm' + cm \cdot d'm' = \mu \cdot gm$$
.

Porisme XCI. — De chaque point M d'une droite LM on mène à un point fixe P un rayon qui rencontre une droite AX en m; et du même point M on abaisse une perpendiculaire M m' sur une autre droite B'D'; le point A étant donné sur la droite AX, et les points B', D'



sur la deuxième droite B'D': on pourra trouver deux points C et G sur la droite AX, et une ligne µ, tels, que, quand les points m et m'se trouveront à la

fois entre A et C, et entre B' et D', respectivement, ou bien lorsqu'ils seront à la fois hors de AC et de B'D', la somme des deux rectangles Am. B'm' et Cm. D'm' sera au segment Gm dans le rapport de la ligne µ à l'unité.

(197)

Soit I la position que prend le point m quand m' est à l'infini; position qu'on détermine par l'équation

$$\frac{aI}{bI} = \lambda.$$

L'équation

$$\frac{am}{md} = \frac{a'm'}{d'm'}$$

devient

$$\frac{a\mathbf{I}}{\mathbf{I}d} = \mathbf{I}, \quad a\mathbf{I} = d\mathbf{I}.$$

Ainsi le point I est le milieu entre les deux points a et d; et cette considération sert à déterminer le point d.

Porisme XC. — Quand deux points variables m, m' sur deux droites ab, a'b' (qui peuvent être coïncidentes), sont liés par la relation

$$\frac{am}{bm} = \lambda \cdot \frac{a'm'}{b'm'}$$
:

on peut prendre arbitrairement un point d'et déterminer deux autres points c, g et une ligne µ, tels, que si les segments am, cm se trouvent de même direction ou de

directions contraires, et si les segments h'm' et d'm' sont aussi de même direction ou de directions contraires, on aura toujours la relation

$$\frac{am,b'm'+cm,d'm'}{gm}=\mu.$$

En esset, d'après le Corollaire II du Lemme qui vieut d'être démontré, on peut trouver deux points c et c', tels, qu'on ait toujours l'équation

$$\frac{am}{mc} = \frac{a'm'}{c'm'}, \quad \text{ou} \quad am.c'm' = mc.a'm'.$$

Il s'agit de démontrer l'égalité

$$\frac{Am.B'm'+Cm.D'm'}{Gm}=\mu.$$

Qu'on mène à la droite LM, par le point P une parallèle qui rencontrera la droite AX en I, et qu'ou prenne le point C sur le prolongement de AI, à la distance IC = AI.

La droite PC rencontre la droite LM en un point c d'où l'on abaisse la perpendiculaire c C' sur B'D'. Du point a où PA rencontre LM, on abaisse sur B'D' la perpendiculaire a A'. Le point C se détermine par la proportion

$$\frac{GA}{GC} = \frac{A'D'}{B'C'};$$

et l'on a

$$\mu = D'A' - C'B'$$
.

En effet, les quatre droites PA, PC, Pm, PI coupées par AX et LM, donnent

$$\frac{Am}{mC}$$
: $\frac{AI}{IC} = \frac{aM}{cM}$, (Lemme X1.)

ou

$$\frac{Am}{mC} = \frac{aM}{cM},$$

puisque AI == 1C.

Or, à cause des parallèles aA', Mm', cC',

$$\frac{aM}{cM} = \frac{\Lambda'm'}{C'm'}$$

Done

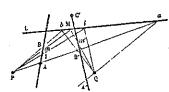
$$\frac{\mathbf{A}\,m}{m\,\mathbf{C}} = \frac{\mathbf{A}'\,m'}{\mathbf{C}'\,m'}.$$

D'après cela, la démonstration du Porisure précédent s'applique au Porisme actuel.

Douc, etc.

Porisme XCII. - Autour de deux points fixes P, Q

on fait tourner deux droites se conpant toujours sur une droite donnée de position LM, et rencontrant, respectivement, en m et m' deux autres droites données de position; si deux points L et C sont données chacun sur l'une de



ces dernières droites: on pourra trouver un point B sur Am, un point B' sur C'm', et une ligne \(\mu\), tels, que, quand les segments Am, Bin se trouveront

de même direction ou de directions contraires, si les segments l'm' et C'm' ont aussi entre eux la même direction ou des directions opposées, on aura toujours la relation

$$\frac{\lambda m.B'm'+Bm.C'm'}{Bm}=\mu.$$

Qu'on mène à la droite C'm' par le point Q une parallèle qui rencontre la droite LM en i; la droite Pi coupera Am en I: et en prenant BI = IA, le point B sera déterminé.

Qu'on mène PB qui rencontre LM en b; la droite Qb déterminera sur C'n' le point B'. Enfin, qu'on mène PA qui rencontre LM en a, et Qa qui rencontre C'n' en A'; et qu'on prenne $\mu = C'A'$.

Il faut donc démontrer que

$$\frac{Am \cdot B'm' + Rm \cdot C'm'}{Bm} = C'A'.$$

Or, en supposant avec la figure, que les points m et m' soient situés sur les segments respectifs AB, C'B', on aura

$$C'\Lambda' = C'm' + m'\Lambda'$$

Par conséquent, il reste seulement à prouver que

$$Am \cdot Bm' = Bm \cdot m'A'$$

(202)

et, par conséquent,

$$\frac{am \cdot b'm'}{bm \cdot a'm'} = \frac{ac \cdot b'c'}{bc \cdot a'c'}$$

ou

$$\frac{am \cdot bc}{bm \cdot ac} = \frac{a'm' \cdot b'c'}{b'm' \cdot a'c'}$$

Supposons qu'on place les deux droites de manière que les deux points a, a' coïncident: les deux droites bb', cc' se coupent en un point S, et la droite mm' passe toujours par ce point; ce qui résulte de l'équation ci-dessus, d'après le Lemme XVI de Pappus. Qu'on mène les droites SI, SI' parallèles aux deux droites a'b', ab, respectivement. On a, par les triangles semblables,

$$\frac{am}{SJ'} = \frac{m'a}{J'm'}$$
, ou $\frac{am}{Ia} = \frac{m'a}{J'm'}$

Écrivons

$$\frac{\mathrm{I}\,m-\mathrm{I}\,a}{\mathrm{I}\,a}=\frac{\mathrm{J}'\,a-\mathrm{J}'\,m'}{\mathrm{J}'\,m'}.$$

Cette égalité se réduit à

$$\frac{\mathrm{I}\,m}{\mathrm{I}\,a} = \frac{\mathrm{J}'\,a'}{\mathrm{J}'\,m'},$$

ou

$$Im J'm' = Ia J'a'$$

Par consequent v = 1a. J'a'. Et le Porisme est démontré. Remarque. La position du point I se détermine par l'expression

$$\frac{\mathbf{I}a}{\mathbf{I}b} = \lambda.$$

Car en considérant les quatre droites Sa, Sb, Sc, SI coupées par les deux ab, a'b', on a, d'après le Lemme XI,

$$\frac{1}{1}\frac{a}{b}:\frac{ca}{cb}=\frac{c'b'}{c'a'},$$

En effet, d'une part les segments que les quatre droites PA, PB, Pm, PI sont sur AB et LM ont entre eux, d'après le Corollaire I du Lemme III (p. 82), la relation

$$\frac{Am}{Bm}$$
: $\frac{AI}{IB} = \frac{aM}{bM}$: $\frac{ai}{ib}$

Et d'autre part, on a, en vertu du Corollaire du Lemme XI (p. 83), appliqué aux quatre droites partant du point Q et coupées par les deux LM, A'B',

$$\frac{aM}{bM}$$
; $\frac{ai}{bi} = \frac{m'A'}{B'm'}$.

Done

$$\frac{Am}{Bm}$$
: $\frac{AI}{IB} = \frac{m'A'}{B'm'}$

Mais AI = IB. Donc

$$\frac{\mathbf{A}\,m}{\mathbf{B}\,m} = \frac{m'\,\mathbf{A}'}{\mathbf{B}'\,m'}, \quad \text{ou} \quad \mathbf{A}\,m, \mathbf{B}'\,m' = \mathbf{B}\,m, m'\,\mathbf{A}',$$

c. O. F. B

XXI Genre.

Le rectangle compris sous telle droite et telle autre est donné.

Porissie XCIII. — Quand deux points variables m,
m' sur deux droites ab, a'b' sont liés par la
relation

 $\frac{am \cdot b'm'}{bm \cdot a'm'} = \lambda,$

on peut trouver deux points I, J' sur les deux droues et un espace v, tels, que le rectangle Im. J'm' soit toujours égal à cet espace.

Soient c, c' deux positions correspondantes des points m, m' sur les deux droites, de sorte qu'on ait

$$\frac{ac.b'c'}{bc.a'c'} = \lambda,$$

203

OH

$$\frac{1a}{1b} = \frac{ca}{cb} : \frac{c'a'}{c'b'} = \frac{ca \cdot c'b'}{cb \cdot c'a'} = \lambda.$$

On a de même

$$\frac{S'a'}{\overline{S'b'}} = \frac{1}{Y}.$$

Porisme XCIV. — Étant donné un parallélogramme ABCD, si de ses sommets ABCD.

chaque point M du côté opposé CD, lesquelles rencontrent la droite EF qui joint les milieux des deux côtés AB, CD, en deux points m, m': on peut trouver un point I sur cette droite EF et un espace v, tels, que le rectangle Im Im' sera égal à cut

espace. En esset, on aura

$$Im.Im' = \overline{IF}'.$$

Car les quatre droites AC, AD, AM, AF coupées par les deux FC, FE donnent, en vertu du Lemme XI,

$$\frac{\mathrm{I}m}{\mathrm{IF}} = \frac{\mathrm{CM}}{\mathrm{CF}} : \frac{\mathrm{DM}}{\mathrm{DF}}.$$

De même

$$\frac{\text{I}\,m'}{\text{IF}} = \frac{\text{DM}}{\text{DF}} : \frac{\text{CM}}{\text{CF}}.$$

Et, par consequent,

$$Im.Im' = \overline{IF}'.$$

c. o. f. D.

Porisme XCV. — Étant donnés un parallélogramme ABCD, et doux points P, Q sur ses côtés AD, CD, si par ces points on mène dans une direction quelconque deux

droites parallèles qui rencontrent en m et m' les deux côtés AB, CB: le rectangle Am. Cm'

est donné

Soient N, N' les points dans lesquels la droite PQ rencontre les deux côtés AB,

 $\Lambda m \cdot Cm' = \Lambda N \cdot CN'$.

En effet, on voit par les triangles sem-

blables que

$$\frac{A m}{A P} = \frac{C Q}{C m'}$$
 or $\frac{A P}{A N} = \frac{C N'}{C Q}$:

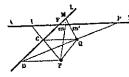
par conséquent

$$\frac{Am}{AN} = \frac{CN'}{Cm'}$$

ou

$$Am.Cm' = AN.CN'.$$

PORISME XCVI. - Si autour de deux points fixes P, Q on fait tourner deux droites qui se coupent sur une



droite donnée de position LF, et rencontrent une autre droite fixe AX en deux points m, m': on pourra trouver deux points I, I sur cette dernière droite, et un

rectangle v, tels, que le produit des deux segments Im, J'm' sera toujours égal à ce rectangle v.

Qu'on mène parallèlement à la droite fixe AX la droite QC qui rencontre LF en C: la droite PC coupera AX en I. Que parcillement on mêne la droite PD parallèle à AX, laquelle rencontre LF en D : la droite QD coupera AX en J'. Les deux points cherchés I, J' sont ainsi déterminés.

inclinées entre elles sons l'angle donné. Dans le premier système les deux droites rencontrent, respectivement, les deux droites données en a et a'; dans le deuxième système, en m et m'; dans le troisième système, la droite menée par le point Q est Qi parallèle à l'une des deux droites données, et la droite menée par le point P rencontre l'autre droite donnée au point I; enfin, dans le quatrième système, la droite issue du point P est Pj parallèle à cette dernière droite donnée, et la droite issue du point Q rencontre l'autre

Les droites Pa, Pm, PI et Pj coupent la droite a'm' en quatre points que nous appellerons A, M, i et J. On a entre ces points et les trois a, m, Ila relation

$$\frac{Im}{Ia} = \frac{iM}{IA} : \frac{JM}{JA}$$
. (Lemme XI.)

Mais ces quatre droites font entre elles les mêmes angles que les quatre droites correspondantes Qa', Qm', Qi et QJ': par conséquent, on a entre les quatre mêmes points A, M, J, i et les trois a', m', J', la relation

$$\frac{iM}{iA}$$
: $\frac{JM}{JA} = \frac{J'a'}{J'm'}$. (Corollaire II, p. 83.)

Done

$$\frac{Im}{Ia} = \frac{I'm'}{J'a'}, \quad \text{ou} \quad Im.J'm' = Ia, J'a'.$$

Ainsi v = Ia. J'a' = const. Ce qui démontre le Porisme.

Observation. Si les deux points P, Q coincidaient, auquel cas il y aurait à considéror un angle de grandeur dounée tournant autour de son sommet, et dont les côtés rencontreraient les deux droites fixes en deux points m, m': la proposition qui vient d'être démontrée permet de conelure qu'il existe dans ce cas sur les deux droites deux points I et J' donnant lieu à la relation constante

$$1m.J'm' = const.$$

Quant à la constante », soit F le point de rencontre de la droite LF et de AX; on aura

$$\nu = 1F \cdot J'F$$
.

Il faut prouver dès lors que

$$Im.J'm' = IF.J'F.$$

Or cela résulte, sons difficulté, du Lemme XI (proposition 137). En esset, d'une part, en considérant les quatre droites PM, PF, PC, PD coupées par les deux AX et LF, on trouve

$$\frac{Im}{IF} = \frac{CM}{CF} : \frac{DM}{DF};$$

et, d'autre part, en considérant les quatre droites QM, QF, QC, QD coupées par les deux mêmes

$$\frac{J'F}{J'm'} = \frac{CM}{CF} : \frac{DM}{DF}$$

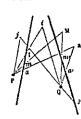
Done

$$\frac{1m}{1F} = \frac{1F}{1'm'},$$

ou

$$Im J'm' = IF J'F$$

C. Q. F. D.

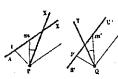


Porisme XCVII. - Quand deux droites tournent autour de deux points fixes en faisant entre elles un angle de grandeur donnée, et qu'elles rencontrent en deux points m, m' deux droites données de position: on peut trouver sur ces dernières droites deux points fixes I et J', et un rectangle v, tels, que le rectangle Im. J'm' soit toujours égal à ce revtangle v.

En effet, considérons quatre systèmes de deux droites

(207)

Ponisme XCVIII. - Si autour de deux points P, Q on fait tourner deux droites faisant, respectivement, avec



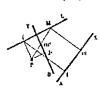
deux droites fixes PX, QY deux angles égaux, mais en sens contraire; ces deux droiics tournantes rencontreront deux droites fixes AZ, B'U' en deux points m, m': et l'on

pourra trouver sur ces dernières droites deux points I, I', tels, que le rectangle Im .J' m' soit égal à un rectangle dé-

Qu'on mène la droite PI faisant l'angle IPX égal à l'angle qu'une parallèle à B'U', menée par le point Q, fait avec la droite QY; le point ou cette droite PI rencontre AZ est le point I demandé. On détermine, semblablement, le point J' sur B'U', en faisant l'angle J'QY égal à celui qu'une parallèle à AZ, menée par le point P, fait avec la droite PX.

La démonstration de ce Porisme est semblable à celle du Porisme précédent.

Porisme XCIX .- Si de chaque point M d'une droite LM on mène une perpendiculaire Mm sur une droite fixe



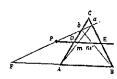
AX, et une droite MP aboutissant à un point fixe P, laquelle rencontre une troisième droite BY en un point m'; on peut trouver sur les deux droites AX, BY deux points I, 1', tels, que le rectangle Im J'm' sera égal à un rectangle

Qu'on mênc par le point P une parallèle à BY, qui rencontre la droite LM en i, et que de ce point on abaisse une perpendiculaire il sur la droite AX. Le pied de cette perpendiculaire est le point cherché I. L'autre point J' sera situé à l'intersection de la droite BY et d'une parallèle à la

$$\operatorname{Im} \operatorname{J}'m' = \operatorname{const.} = y.$$

La démonstration n'offre aucune difficulté, d'après ce qui précède.

- Étant donnés un triangle ABC et une Porishe C.



droite DE parallèle à la base AB, si autour d'un point P situé sur cette droite on fait tourner une transversale qui rencontre les deux côtés du triangle en deux points a, b, et qu'on mêne

les droites Aa, Bb qui rencontrent DE en m et m', le rectangle Pm. Pm' sera constant.

Ce théorème est une conséquence du Lemme XI. En esset, les trois droites AB, AC, Aa coupées par les deux PD, Pa, donnent, d'après ce Lemme,

$$\frac{\mathbf{P}_{m}}{\mathbf{P}\mathbf{D}} = \frac{\mathbf{P}_{a}}{\mathbf{P}_{b}} : \frac{\mathbf{F}_{a}}{\mathbf{F}_{b}}.$$

De même les trois droites BA, BC, Bb donnent

$$\frac{PE}{Pm'} = \frac{Pa}{Pb} : \frac{Fa}{Fb}$$

On a done

$$\frac{Pm}{PD} = \frac{PE}{Pm'}$$

ou

$$Pm.Pm' = PD.PE.$$

Ce qui démontre le Porisme.

Ponisme CI. - Etant données deux droites OA, OL,

et un point A sur la première, si par ce point on mêne arbitrairement deux droites AM, AM' qui rencontrent la droite OL en M et M', et que par ces points on mêne

(216)

On voit effectivement que

$$\frac{\Lambda m}{\Omega m} = \frac{MM'}{\Omega M};$$

et que de plus

$$\frac{Am'-Am}{Am} = \frac{Am'}{Am} - 1 = \frac{OM'}{OM} - 1 = \frac{OM'-OM}{OM} = \frac{MM'}{OM}$$

$$\frac{Am}{Om} = \frac{Am' - Am}{Am} = \frac{aAu}{Am},$$

ou

$$\overline{\Lambda m}^{1} = 2 \Lambda \mu. O m$$

Π* Genre (1).

Porisme CII. - Étant données deux droites SA, SA', si par un point donné P on mène une droite qui les rencontre en a, a', et sur laquelle on

prend le point m déterminé par l'é-

 $\frac{ma}{ma'} = \frac{Pa}{Pa'}$:

ce point est situé sur une droite donnée de position.

Cela résulte du Lemme XIX (proposition 145). Carsoient PBB' une position de la droite menée par le point P, et M le point déterminé par l'équation

$$\frac{MB}{MB'} = \frac{PB}{PB'}.$$

D'après le Lemme, le point m, quelle que soit la direction de la droite Paa', sera situé sur la droite SM.

deux autres droites Mm, M'm' parallèles, respectivement, à AM', AM, et qui coupent OA en m et m'; le rectangle Om.Om' est donné.

On a, on effet,

$$Om \cdot Om' = \overline{OA}'$$

Car les triangles semblables formés par les parallèles donnent

$$\frac{Om}{OA} = \frac{OM}{OM'}$$
 et $\frac{OA}{Om'} = \frac{OM}{OM'}$

Done

$$\frac{Om}{OA} = \frac{OA}{Om'}$$
, on $Om \cdot Om' = \overline{OA}^*$.

Remarque. H existe encore d'autres relations entre les segments déterminés par la construction de ce Porisme.

Telle est la relation

$$\frac{Om}{Om'} = \frac{\overline{Am}^2}{\overline{Am'}},$$

qui se déduit des mêmes triangles semblables.

En effet,

$$\frac{\mathrm{O}\,m}{\mathrm{A}\,m} = \frac{\mathrm{OM}}{\mathrm{MM'}}; \quad \frac{\mathrm{O}\,m'}{\mathrm{A}\,m'} = \frac{\mathrm{OM'}}{\mathrm{MM'}}.$$

D'où

$$\frac{\mathrm{O}\,m}{\mathrm{O}\,m'} = \frac{\mathrm{A}\,m}{\mathrm{A}\,m'} \cdot \frac{\mathrm{OM}}{\mathrm{OM}'}.$$

Mais

$$\frac{Am}{Am'} = \frac{mM}{AM'} = \frac{OM}{OM'}.$$

Done

$$\frac{0\,m}{0\,m'}=\frac{\overline{\mathrm{A}\,m'}}{\overline{\mathrm{A}\,m'}},$$

On a aussi cette autre relation

$$\overline{\Lambda m} = 2 \Lambda \mu. O m,$$

μ étant le milieu de mm'.

14

c. Q. F. D.

(211)

Porisme CIII. - Étant donnés deux droites SA, SB et un point P, si par ce point on mène deux droites quelconques qui rencontrent les deux droites données en a, a' et b, b': le point de concours des diagonales ab', ba' sera sur une droite donnée de position.

Ce Porisme est encore une conséquence du seul Lemme XIX.

En effet, soient a, 6 les points déterminés par les égalités

$$\frac{aa}{aa'} = \frac{Pa}{Pa'}, \quad \frac{6b}{6b'} = \frac{Pb}{Pb'}.$$

Il résulte du Lemme XIX que la droite a6 passe par le point S, intersection des deux droites ab, a'b', et aussi par le point m, intersection des deux droites ab', a'b.

Mais d'après le Porisme précédent, la droite Sα6 est déterminée de position; donc le point m est sur une droite déterminée de position.

Ponisme CIV. — Trois droites étant données de position et trois points A, B', C' étant donnés sur ces droites, si l'on cherche un point M, tel, que les pieds des perpendiculaires abaissées de ce point sur les trois droites étant m, m', m", on ait entre les segments Am, B'm', C"m" la relation

$$\frac{Am + \lambda \cdot B'm'}{C''m''} = \mu;$$

λ et μ étant deux raisons données: le point M sera sur une droite déterminée de position.

Cette proposition est une conséquence du Porisme LXVIII, d'après lequel, si l'on détermine deux points M,, M. satisfaisant à la question, c'est-à-dire à l'équation

$$\frac{Am + \lambda \cdot B'm'}{C''m''} = \mu$$

⁽t) Voir l'énoncé de ce Genre, p. 117.

aussi à cette équation.

Pontsme CV. — Trois droites étant données de position, si l'on cherche un point M, tel, que les obliques Mp, Mp', Mp" abaissées de ce point sur les trois droites, sous des angles donnés, aient entre elles la relation constante

$$\frac{Mp + \lambda . Mp'}{Mp''} = \mu;$$

λ et μ étant des raisons données: le point M sera sur une droite donnée de position.

Ce Porisme se déduit sur-le-champ du précédent; car si par un point A de la première droite sur laquelle tombent les obliques Mp on mêne une parallèle AX à ces obliques; et par chaque point M des parallèles à la première droite : ces parallèles feront sur AX des segments Am égaux, respectivement, aux obliques Mp. Si l'on remplace, semblablement, les autres obliques Mp', Mp'' par des segments B'm', C''m''; on aura, entre les trois segments correspondant au même point M, la relation

$$\frac{\lambda m + \lambda \cdot B'm'}{G''m''} = \mu$$

et, conséquemment, le point M sera sur une droite déterminée de position.

Remarque. Ce Porisme est un cas particulier d'une proposition des Lieux plans d'Apollonius, rapportée par Pappus, en ces termes:

Plusieurs droites étant données, si d'un point on abaisse sur ces droites des obliques sous des angles donnés, et que le rectangle d'une oblique et d'une (ligne) donnée, plus le rectangle d'une autre oblique et d'une donnée, fasse une somme égale au rectangle d'une autre oblique et d'une donnée, et semblablement pour les rectangles des obliques restantès: le point sera sur une droite donnée de position.

(214)

Done

$$\frac{am_1}{bm_1} = \frac{am_2}{bm_1}$$

Ce qui prouve que les deux points m_i , m_i coïncident, c'està-dire que le point m se-trouve sur la droite ab.

Le Porisme est donc démontré.

Porisme CVII. — Quand deux droites LA, L'A' sont divisées en parties proportionnelles par deux points variables a, a', entre lesquels a lieu, par conséquent, une re-

lation telle que $\frac{Aa}{A'a'} = \lambda$, si l'on prend sur chaque droite as' le point m qui la divise dans un rapport donné μ : ce point est sur une droite donnée de position; et cette droite est une de celles qui divisent l'. LA et L'A' en parties proportionnelles.

En esset, soient m et m' les points qui divisent les deux droites aa', bb' dans le rapport donné \(\mu\). La droite mm' rencontre les deux droites LA, L'A' en c et c'. Des parallèles à cette droite mm', menées par les points a, b, coupent L'A' en \(\alpha\) et 6.

On a, par les triangles semblables,

$$\frac{e'\alpha}{e'\alpha'} = \frac{m\alpha}{m\alpha'} = \mu.$$

Et de même

$$\frac{c'\,6}{c'\,b'} = \frac{m'\,b}{m'\,b'} = \mu.$$

Done

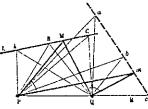
$$\frac{c'\alpha}{c'\alpha'} = \frac{c'6}{c'b'}, \quad \text{ou} \quad \frac{c'\alpha}{c'6} = \frac{c'u'}{c'b'}$$

Mais à cause des parallèles $a\alpha$, b6, cc', $\frac{c'\alpha}{c'6} = \frac{ca}{cb}$.

Done

$$\frac{ca}{cb} = \frac{c'a'}{c'b'}.$$

Ponisme CV1. — Quand deux angles de grandeur constante MPm, MQm tournent autour de leurs sommets P,



Q de manière que les côtés PM, QM se croisent toujours sur une droite LM donnée de position, l'angle Pétant donné de grandeur: on peut déterminer la grandeur de

l'angle Q, de manière que le point d'intersection des côtés Pm, Qm des deux angles soit aussi toujours sur une droite donnée de position.

Que l'on place l'angle P de manière que son second côté Pm coïncide avec la droite PQ, son premier côté PM viendra couper la droite LM en un point C; que l'on prenne l'angle Q égal à CQR, dont le premier côté est QC et le second QR prolongement de PQ. Cet angle satisfera à la question.

En esset, considérons les deux angles mobiles dans quatre positions, où leurs premiers côtés se croisent sur la droite LM en quatre points A, B, M, C. Dans les trois premières positions, leurs seconds côtés se croiseront en trois points a, b, m; et dans la quatrième position, ils coıncideront suivant la droite PQ.

Soit e le point où la droite ab rencontre PQ; et supposons qu'elle coupe les deux côtés Pm, Qm en deux points m_1 , m_2 .

On a entre les quatre points A, B, M, G et les quatre a, b, m_1 , c (par le Corollaire III du Lemme III, p. 84),

$$\frac{am_t}{bm_t}$$
: $\frac{ac}{bc} = \frac{AM}{BM}$: $\frac{AC}{BC}$.

Pareillement

$$\frac{am_1}{bm_1}$$
: $\frac{ac}{bc} = \frac{AM}{BM}$: $\frac{AC}{BC}$

Ce qui prouve que la droite mm' ou cc' est du nombre des droites ac', bb',..., qui divisent les deux LA, L'A' en parties proportionnelles. Or par le point m on ne peut mener qu'une telle droite $\{i\}$. Done les points m'', m^{2l} ,... qui divisent d'autres droites dd', cc',... dans le rapport μ , seront sur la droite cc'. Done, etc.

Corollaire. Puisque chaque droite qui divise en parties proportionnelles les deux droites aa', bb' est une de celles qui divisent en parties proportionnelles les deux droites données LA, L'A', on en conclut ce théorème :

Quand deux droites LA, L'A' sont divisées en parties proportionnelles par un système de droites aa', bb',..., deux quelconques de celles-ci sont divisées en parties proportionnelles par toutes les autres, y compris les deux LA 1/A'.

PORISME CVIII. — Quand trois points variables m, m',
m" sur trois droites fixes L, l', I." divisent ces droites en parties propor-

tionnelles, le centre de gravité du trim' angle mm'm" est situé sur une droite déterminée de position.

En effet, le centre de gravité g du triangle mm/m" est situé sur la droite menée du point m au milieu µ de m'm" à

$$\frac{ab}{ac}: \frac{Sb}{Sc} = \frac{a'b'}{a'c'}: \frac{Sb'}{Sc'}, \quad \text{(Lemmo III de Pappus.)}$$

Or, par hypothèse,
$$\frac{ab}{ac} = \frac{a'b'}{a'c'}$$
. Donc $\frac{Sb}{Sc} = \frac{Sb'}{Sc'}$.

Mais cette proportion exprime que les deux droites bb', ce' sont paralléles; co qui est contraire à l'hypothèso. Donc trois droites qui divisent en parties proportionnelles deux droites données LA, L'A' non parallèles, ne peuvent pas passer par un même point.

En effet, si trois droites σα', bb', cc' passaient par un nidmo point m, on aurait, en appelant S le point de rencontre des deux droites Lλ, L'A', Pagestion

une distance $mg = \frac{2}{3}m\mu$. Or le point μ est sur une droite déterminée de position, qui est une des droites m'm'' (Po-

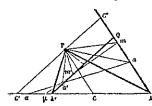
déterminée de position, qui est une des droites m'm'' (Porisme précédent). Et le point μ fait sur cette droite des divisions proportionnelles aux divisions que le point m' fait sur L' (Corollaire précédent), et, par conséquent, proportionnelles aux divisions que le point m fait sur L. Donc le point g qui divise la droite $m\mu$ dans un rapport donné, est situé sur une droite déterminée de position.

Portsme CIX. — Si de chaque point M d'une droite L donnée de position on abaisse des perpendiculaires sur trois droites fixes, le triangle déterminé par les pieds de ces perpendiculaires a son centre de gravité situé sur une droite donnée de position.

En esset, les pieds des perpendiculaires divisent les trois droites en parties proportionnelles. Par conséquent, le Porisme est une conséquence du précédent.

III Genre (1).

Porișme CX. - Quand deux angles égaux APA',



AQA' sous-tendent une même corde AA', si l'on fait tourner le premier P autour de son sommet: les cordes aa', bb',..., mm' que ses côtés interceptent entre les côtés du second Q, seront divisées toutes

par la droite AA', dans une raison donnée.

Les deux points variables m, n' forment sur les deux droites indéfinies QA, QA' deux divisions semblables, et

(1) Voir l'énonce de ce Cente, p. 133.

(218)

V* Genro (1).

Ponisme CXI. — Étant données trois droites A, B, C et deux raisons λ et μ : on peut trouver une quatrième droite D, telle, qué toute droite coupée par les trois premières en trois points a, b, c faisant des segments ab, be dans le rapport λ , sera coupée par la quatrième D en un quatrième point d, qui déterminera des segments da, db dans le rapport donné μ .

En esset, si les droites abc, a'b'c', a''b''c'',... sont divisées en parties proportionnelles par les trois droites A, B, C, deux de ces dernières, A, B, sont elles-mêmes divisées en parties proportionnelles par les droites abc, a'b'c',.... C'est ce qui résulte du corollaire du Porisme CVII. Donc, d'après ce Porisme même, si l'on prend sur celles-ci les points d, d',..., tels, que l'on ait

$$\frac{da}{db} = \mu, \quad \frac{d'a'}{d'b'} = \mu, \ldots,$$

ces points d, d', \ldots seront sur une quatrième droite D déterminée de position. Ce qui démoutre le Porisme énoucé.

VI* Genre (2).

Porisme CXII. — Étant donnés trois points A, B, C et deux raisons λ et μ , si l'on demande une droite telle, que les perpendiculaires p, q, r abaissées des trois points sur cette droite aient entre elles la relation

$$\frac{p+\lambda \cdot q}{r} = \mu$$

cette droite passera toujours par un même point. Cela résulte du Porisme LNXI, d'après lequel, si l'on . A.m

$$\frac{Am}{A'm'} = \text{const.} = \frac{Aa}{A'a'}$$

En esset, quand le côté PA de l'angle mobile devient PC parallèle à la droite QA, l'autre côté PA' devient en même temps PC' parallèle à QA'. Les quatre droites PA, Pa, Pm et PC ont leurs angles égaux, respectivement, à ceux des droites PA', Pa', Pm' et PC'. Appelons A'', a'', m'', C'' les points où ces droites rencontrent QA. Ces points et les trois A, a, m donnent lieu (d'après les Corollaires des Lemmes III et XI, p. 83) à l'équation

$$\frac{\mathbf{A}\,a}{\mathbf{A}\,m} = \frac{\mathbf{A}''\,a''}{\mathbf{A}''\,m''} : \frac{\mathbf{C}''\,a''}{\mathbf{C}''\,m''}.$$

On a, pareillement, entre les quatre mêmes points A'', a'', m'', C'' et les trois A', a', m',

$$\frac{\mathbf{A'}\mathbf{a'}}{\mathbf{A'}\mathbf{m'}} = \frac{\mathbf{A''}\mathbf{a''}}{\mathbf{A''}\mathbf{m''}} : \frac{\mathbf{C''}\mathbf{a''}}{\mathbf{C''}\mathbf{m''}}.$$

Done

l'on a

$$\frac{Am}{Aa} = \frac{A'm'}{A'a'},$$

οιι

$$\frac{Am}{A'm'} = \frac{Aa}{A'a'} = \text{const.}$$

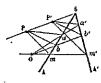
Ainsi les deux droites QA, QA' sont divisées en parties proportionnelles par les cordes mm'. Dès lors, d'après le Porisme CVII, l'une de ces cordes, par exemple AA', divise aussi toutes les autres en parties proportionnelles. Si donc α et μ sont les points où les deux cordes aa' et mm' rencontrent AA', on a

$$\frac{\mu m}{\mu m'} = \frac{\alpha n}{\alpha n'} = \text{const.}$$

C. Q. F. D.

détermine deux droites satisfaisant à l'équation proposée, toute autre droite menée par leur point d'intersection y satisfera aussi.

Ponisme CXIII. - Étant donnés deux droites SA, SA' et



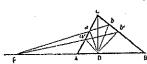
deux points P, P en ligne droite avec le point S, si autour de ces points on fait tourner deux droites parallèles qui rencontrent, respectivement, SA et SA' en m et m': la droite mm' passera par un point

En esset, soient Pa, et Pa' deux droites parallèles, et Pb, Pb' deux autres droites parallèles; les quatre droites PS, Pa, Pb, Pm sont entre elles, deux à deux, des angles égaux aux angles formés par les quatre droites P'S; P'a', P'b', P'm'. Par conséquent, on a (d'après le Corollaire. III du Lemme III, p. 84),

$$\frac{Sa.mb}{Sb.ma} = \frac{Sa'.m'b'}{Sb'.m'a'}$$

Et cette équation prouve, d'après le Lemme XVI, que la droite mm' passe par le point d'intersection des deux droites aa', bb'. Ce qui démontre le Porisme.

Porisme CXIV. - Un triangle ABC étant donné, si par



le pied de la perpendiculaire abaissée du sommet C sur la base AB, on mène deux droites faisant des angles égaux avec la per-

pendiculaire et rencontrant, respectivement, les côtés CA, CB en a et b: la droite ab passera par un point donné.

Soit a'b' une deuxième droite semblablement déterminée. Les quatre droites DC, Da, Da' et DA font entre elles des angles égaux à ceux des droites DC, Db, Db' et DB, Par

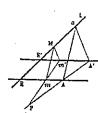
⁽¹⁾ Voir l'énoncé de ce Cenre, p. 136.

⁽²⁾ Voir l'énoncé de ca Genre, p. 139.

$$\frac{Ca}{Ca'}: \frac{Aa}{Aa'} = \frac{Cb}{Cb'}: \frac{Bb}{Bb'}, \quad \text{ou} \quad \frac{Ca.Aa'}{Ca'.Aa} = \frac{Cb.Bb'}{Cb'.Bb}$$

Donc, d'après le Lemme XI ou le Lemme XVI, les trois droites ab, a'b' et AB passent par un même point. Ce qui démontre le Porisme.

Ponisme CXV. — Si de chaque point d'une droite donnée de position LE, on abaisse sur deux droites pa-



rallèles deux obliques sous des angles donnés: la droite qui joindra les pieds de ces obliques passera toujours par un même point.

En esset, soient m, m' et A, A' les pieds des obliques abaissées de deux points M et a de la droite LE: on a par les triangles semblables (comme au Porisme XLVI),

$$\frac{Am}{A'm'} = \frac{AE}{aE} : \frac{A'E'}{aE'}$$

Mais, en appelant P le point où mm' rencontre AΛ', on aura visiblement

$$\frac{AP}{A'P} = \frac{Am}{A'm'} = \frac{AE}{aE} : \frac{A'E'}{aE'} = \text{const.}$$

Donc le point P est sixe. Donc, etc.

Porisme CXVI. — Quand trois droites sont parallèles,

fuand trois droites sont parallèles, si autour de deux points P, Q on fait tourner deux droites qui se coupent sur l'une des premières et rencontrentles deux autres en deux points m, m': la droite mm' passe

par un point donné,

qui détermine la position du point e sur la droite PQ. Ce qui démontre le Porisme.

Ponisme CXVIII. — Si sur deux droites SA, SB dont les points A, B sont donnés, on preud deux points m, m' liés par l'équation

Am.Bm' = AS.BS:

la droite mm' passera par un point donné. Qu'on forme sur les deux droites SA, SB le parallélogramme ASBP; le sommet

P sera le point par lequel passe la droite mni.

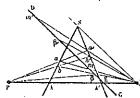
En esset, si l'on considère les droites PA, PB et une troisième menée par le point P et rencontrant SA, SB en m, m', on sura évidemment

$$\frac{SA}{Am} = \frac{Bm'}{SB}$$
, ou $Am.Bm' = AS.BS$.

Done etc.

VII* Genre (1).

Poussme CXIX. — Étant donné un angle ASA', on fait tourner autour d'un point P une droite qui rencontre les



cótés de l'angle en a et a'; d'un autre point Q on mène les droites Qa, Qa' qui coupent une droite fixe CD parallèle à SQ, en deux points m, m': il existe sur CD un

point E, tel, que le rapport des deux segments Em, Em' reste constant.

Ce point E est à l'intersection de la droite CD, par la droite PQ.

En effet, on a

$$\frac{Em}{FM} = \frac{EP}{FP} \quad \text{et} \quad \frac{E'm'}{FM} = \frac{E'Q}{FO}.$$

Done

$$\frac{E m}{E' m'} = \frac{EP}{FP} : \frac{E'Q}{FQ}.$$

Mais la droite mm' rencontrant PQ en p, on a de plus

$$\frac{\mathbf{E}_m}{\mathbf{E}'m'} = \frac{\mathbf{E}_p}{\mathbf{E}'_p}.$$

Done

$$\frac{E_{\rho}}{E'_{\rho}} = \frac{EP}{FP} : \frac{E'Q}{FQ}$$

Le point p est donc fixe. Donc, etc.

Porisme CXVII. — Étant données trois droites SA, SB, SC qui passent par le même point S, si autour de deux points fixes P, Q on fait tourner deux droites qui se coupent sur l'une de ces droites SC, et rencontrent, respectivement, les deux autres en a

et b : la droite ab passe par un point donné.

En esset, soient e et p les points où la droite ab rencontre SC et PQ. Le Lemme III, appliqué d'abord aux trois droites SA, SB, SC coupées par pab, pAB, sournit la relation

$$\frac{c_{P}}{ca}:\frac{b_{P}}{ba}=\frac{C_{P}}{CA}:\frac{R_{P}}{BA}.$$

Et parcillement, à l'égard des trois droites ma, mb, me coupées par les deux mêmes,

$$\frac{e\rho}{ca}: \frac{b\rho}{ba} = \frac{C\rho}{CP}: \frac{Q\rho}{QP}.$$

De ces deux égalités résulte celle-ci :

$$\frac{B_{P}}{Q_{P}} = \frac{BA \cdot CP}{CA \cdot QP}$$

En esset, soit Pbb' une deuxième position de la droite tournante: Qb et Qb' déterminent sur CD les points 6, 6'. D'après le Lemme III, les trois droites Paa', Pbb' et PAA' coupées par SA, SA', donnent

$$\frac{\mathbf{S}a}{\mathbf{S}b}$$
: $\frac{\mathbf{A}a}{\mathbf{A}b} = \frac{\mathbf{S}a'}{\mathbf{S}b'}$: $\frac{\mathbf{A}'a'}{\mathbf{A}'b'}$.

Mais, d'après le Corollaire II (p. 83), les droites QS, Qa, Qb, QA, coupées par SA et CD, donnent aussi

$$\frac{Sa}{Sb}: \frac{Aa}{Ab} = \frac{E6}{Em}$$

Et de même ·

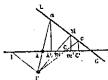
$$\frac{Sa'}{Sb'}: \frac{A'a'}{A'b'} = \frac{E6'}{Em'}.$$

Done

$$\frac{\mathbb{E}\,m}{\mathbb{E}\,6} = \frac{\mathbb{E}\,m'}{\mathbb{E}\,6'}, \quad \text{ou} \quad \frac{\mathbb{E}\,m}{\mathbb{E}\,m'} = \frac{\mathbb{E}\,6}{\mathbb{E}\,6'},$$
c. Q. F. D.

VIII" Genre (1).

Ponisme CXX. — Si de chaque point M d'une droite LG on mène à un point fixe P une droite qui rencontré



une autre droite AX en un point m; et que du même point M on abaisse une perpendiculaire Mm! sur la droite AX; le point A étant donné sur AX et une ligne a étant aussi donnée : on pourra trouver deux autres points I et A' sur AX

et une raison \,, tels, que l'on aura l'équation

$$\frac{\operatorname{Im}.A'm'}{Am.a} = \lambda.$$

⁽¹⁾ Yoir l'énancé de ce Genre, p. 144.

⁽¹⁾ Voir l'énonce de co Genre, p. 149.

Qu'on mêne par le point P une parallèle à LG, qui rencontre la droite AX en I; puis, qu'on prenne IC = a. Qu'on mène PC qui rencontre la droite LG en c, et qu'on abaisse sur AX la perpendiculaire cC. Enfin, qu'on prolonge PA jusqu'à la rencontre de LG en a, et qu'on abaisse la perpendiculaire a A' sur AX. On aura

$$\frac{\mathrm{I}m.\lambda'm'}{\mathrm{A}m.a} = \frac{\lambda'\mathrm{C}'}{\mathrm{A}\mathrm{C}}.$$

En effet, les quatre droites PA, Pm, PC et PI coupées par AX et LG, donnent (par le Corollaire II du Lemme X1)

$$\frac{Im}{\Lambda m}$$
; $\frac{IC}{\Lambda C} = \frac{ac}{aM}$.

Or

$$\frac{ac}{aM} = \frac{\lambda'C'}{\lambda'm'}$$

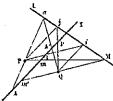
Done

$$\frac{\operatorname{I} m}{\operatorname{A} m}$$
: $\frac{\operatorname{IC}}{\operatorname{AC}} = \frac{\operatorname{A}' \operatorname{C}'}{\operatorname{A}' m'}$, ou $\frac{\operatorname{I} m \cdot \operatorname{A}' m'}{\operatorname{A} m \cdot \operatorname{IC}} = \frac{\operatorname{A}' \operatorname{C}'}{\operatorname{AC}}$;

ou, parce que IC = a,

$$\frac{\operatorname{I} m \cdot \operatorname{A}' m'}{\operatorname{A} m \cdot a} = \frac{\operatorname{A}' \operatorname{C}'}{\operatorname{A} \operatorname{C}}.$$

Porisme CXXI. - Si autour de deux points P, Q on



fait tourner deux droites qui se rencontrent sur une droite donnée de position LM, et qui coupent une autre droite aussi donnée de position AX, en deux points m, m'; une ligne μ étant donnée : on peut déterminer le point A sur la droite AX et

trouver aussi deux autres points A' et I sur cette droite,

Il est clair qu'on a aussi la relation

$$\frac{Am \cdot J'm'}{A'm'} = AI.$$

Ponisme CXXII. - Si l'on fait tourner un angle de grandeur donnée autour ses côtés rencontrent une droite fixe AX en deux points m, m'; le point A

étant donné sur cette droite ; on pourra trouver deux autres points I et A', et une ligne u, tels, qu'on aura toujours la relation

$$\frac{\operatorname{I} m \cdot \mathsf{A}' m'}{\operatorname{A} m} = \mu.$$

Soit GOG parallèle à AX. Qu'on fasse les angles AOA', IOG' et GOJ' égaux à l'angle mobile m O m'; et qu'on prenne $\mu = A'J'$: les points I et A' et la ligue μ seront déterminés; et l'égalité à démontrer devient

$$\frac{\mathrm{J}m.\,\mathrm{A}'m'}{\mathrm{A}m}=\mathrm{A}'\mathrm{J}'.$$

Les quatre droites OA, Om, OI et OG parallèle à AX, font entre elles les mêmes angles que les quatre OA', Om', OG et OJ'. Concevons une droite transversale qui rencontre ces droites dans les deux séries de points a, n, i, g et a', n', g', j'; on aura, entre ces points (en vertu du Corollaire III, p. 84),

$$\frac{an}{ag}: \frac{in}{ig} = \frac{a'n'}{a'j'}: \frac{g'n'}{g'j'}.$$

Mais les droites OA, Om, OI, OG, coupées par AX et la transversale ai donnent (Corollaire II, p. 83)

$$\frac{an}{ag}$$
: $\frac{in}{ig} = \frac{Am}{Im}$;

(225)

tels, qu'on aura toujours l'égalité

$$\frac{\operatorname{I} m \cdot \lambda' m'}{\lambda m} = \mu.$$

Qu'on mêne par les points P et Q les parallèles à la droite AX, qui rencontrent la droite LM en j et i, puis les droites Pi et Qj qui déterminent sur AX les deux points I et J'.

Qu'on prenne le point A' à la distance \u03c4 de J', de sorte que A'J' = μ , et qu'on mêne QA' qui rencontre LM en a, puis Pa qui coupe AX en A. Les points A, A' et I satisfont à la question : c'est-à-dire que toujours

$$\frac{\mathrm{I}\,m\,.\,\mathrm{A}'\,m'}{\mathrm{A}\,m}=\mathrm{A}'\,\mathrm{J}'.$$

En esset, les quatre droites menées du point P, savoir PA, PM, Pi et Pj, coupées par LM et AX en a, M, i, j et A, m, I, donnent (d'après le Corollaire II du Lemme XI)

$$\frac{\mathrm{I}m}{\mathrm{A}m} = \frac{i\mathrm{M}}{a\mathrm{M}} : \frac{ij}{aj}.$$

On a, parcillement, entre les points a, M, j, i et A', m', J'.

$$\frac{\mathbf{A}'\mathbf{J}'}{\mathbf{A}'m'} = \frac{aj}{a\mathbf{M}} : \frac{ij}{i\mathbf{M}}$$

Done

$$\frac{\mathrm{I}\,m}{\mathrm{A}\,m} = \frac{\mathrm{A}'\,\mathrm{J}'}{\mathrm{A}'\,m'},$$

ou

$$\frac{\mathrm{I}\,m.\,\mathrm{A}'\,m'}{\mathrm{A}\,m}=\mathrm{A}'\,\mathrm{J}',$$

Observation. Le point A' déterminé par la condition A'I'= μ, pout être pris indisséremment d'un côté ou de l'autre du point J'. Il s'ensuit que le Porisme admet deux solutions, quant aux points A et A': le point I restant le même dans les deux cas.

15

et les droites OA', Ont, OG, OJ', coupées par les deux mèmes AX, ai,

$$\frac{a'n'}{a'j'}:\frac{g'n'}{g'j'}=\frac{A'm'}{A'J'}.$$

Done

$$\frac{Am}{Im} = \frac{A'm'}{A'J'}, \quad \text{ou} \quad \frac{Im.A'm'}{Am} = A'J'.$$
c. Q. F. D.

On démontrerait de même que

$$\frac{\mathbf{A}m.\mathbf{J'}m'}{\mathbf{A'}m'} = \mathbf{A}\mathbf{I}.$$

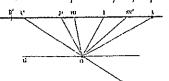
Plus brièvement. Les quatre points A, m, I, co ont leur rapport anharmonique égal à celui des quatre points A', m', ∞', J'. Ce qu'on exprime par l'équation

$$\frac{Am}{Im} = \frac{A'm'}{A'J'},$$

$$\frac{1m.A'm'}{Am} = A'J'.$$

Donc, etc.

Pomske CXXIII. - Autour d'un point O on fait tourner un angle mOm' dont les côtés rencontrent une droite fixe LA en deux points m, m'; le point A étant donné sur



cette droite : on pourra trouver un second point B', un rectangle v et une ligne u, tels, que pour une infinité

de positions de l'angle mobile, on aura toujours l'égalité

$$Am.B'm' = u + \mu.mm'$$

⁽¹⁾ Your l'émonoi de ce Genre, p. 156.

(228)

Qu'on détermine les points A', I et J', comme au Porisme CXXII; et qu'on prenne B'J'=IA, ν =AI.A'A et μ =AI. On aura la relation

$$Am.B'm' = AI.A'A + AI.mm'$$

pour toutes les positions du point m entre I et J', ou au delà, selon que le point donné A est placé au delà des points I et J', ou entre ces points, respectivement.

En effet, on a la relation

Am.J'm' = A'm'.AI. (Porisme CXXII.) Ecrivons :

> Am.(B'm'-B'J') = A'm'.AI,Am.B'm' = Am.B'J' + A'm'.AIAm.B'm' = mA.J'B' + (A'A - m'A)AI.

Or J'B' = AI. Donc

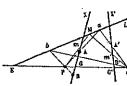
Am.B'm' = (mA - m'A)AI + A'A.AI,ou enfin

Am.B'm' = AI.A'A + AI.mm'.

C. Q. F. p.

(230)

m et m'; si deux points A, B sont donnés sur GX: on peut



déterminer deux points A', B' sur G'X' et une raison à, tels, que le rectangle m A . m'B' sera toujours au rectangle mB.m'A' dans la raison λ .

En esset, qu'on mène les droites PA, PB qui coupent

LM en a et b; puis, les deux droites Qa, Qb qui rencontrent G'X' en A' et B'. Ces deux points sont les points demandés, et la raison $\lambda = \frac{GA \cdot G'B'}{GB \cdot G'A'}$. De sorte que l'on a

$$\frac{m \, \mathbf{A} \cdot m' \, \mathbf{B}'}{m \, \mathbf{B} \cdot m' \, \mathbf{A}'} = \frac{\mathbf{G} \, \mathbf{A} \cdot \mathbf{G}' \, \mathbf{B}'}{\mathbf{G} \, \mathbf{B} \cdot \mathbf{G}' \, \mathbf{A}'}$$

En esset, les droîtes PE, PM, Pa, Pb coupées par les deux LM, GX, donuent, d'après le Coroll. I du Lemme III, p. 82,

$$\frac{Ma}{Mb}: \frac{Ea}{Eb} = \frac{mA}{mB}: \frac{G}{GB}$$

Pareillement

$$\frac{\text{M } a}{\text{M } b} : \frac{\text{E } a}{\text{E } b} = \frac{m' \text{A}'}{m' \text{B}'} : \frac{\text{G}' \text{A}'}{\text{G}' \text{B}'}$$

Donc
$$\frac{mA}{mB}$$
: $\frac{GA}{GB} = \frac{m'A'}{m'B'}$: $\frac{G'A'}{G'B'}$, on $\frac{mA \cdot m'B'}{mB \cdot m'A'} = \frac{GA \cdot G'B'}{GB \cdot G'A'}$

C. Q. F. D.

Porisme CXXVI. — Quand un cercle passe par trois points A, B, C, si autour de deux de ces points A, B, on fait tourner deux droites qui se coupent en M sur la circonférence et rencontrent une corde EF en m et m': le rectangle Em.Fm' est au rectangle Fm.Em' dans une

raison donnée.

Soient D, D' les points dans lesquels la corde EF rencontre les droites AC, BC. Les quatre droites AE, AD, Am, AF

III. LIVRE DES PORISMES.

Pappus dit: « Dans le IIIe Livre, le plus grand nombre » des hypothèses concernent le demi-cercle, quelques-unes

» le cercle et les segments. Pour les choses cherchées, la

» plupart ressemblent aux précédentes. Il y a en outre w celles-ci. w

Ainsi que nous l'avons fait pour le He Livre, nous donnerons d'abord les Porismes qui forment les huit Genres spéciaux au IIIe Livre, de XXII à XXIX; et ensuite, ceux qui rentrent dans les vingt et un Genres précédents.

XXII* Genre.

Le rectangle de telles droites est au rectangle de telle et telle autre dans un rapport donné.

Porisme CXXIV. - Quand une droite tourne autour d'un point p et rencontre deux droites SA, SA' données de posi-

tion, en deux points m, m'; un point A étant donné sur la première droite : on peut détermine, un point A' sur la deuxième et une

raison \u00e0, tels, que le rectangle Sm. A' m' sera au rectangle Am.Sm' dans la raison λ.

Ce Porisme est exprimé par le Lemme III (proposition 129 de Pappus).

Porisme CXXV. — Quand deux droites qui tournent autour de deux points P, Q en se coupant toujours sur une droite LM, rencontrent deux autres droites GX, G'X' en

(231)

font entre elles les mêmes angles que les quatre BE, BD, Bm', BF. Par conséquent, on a, entre les deux séries de quatre points E, D, m, F et E, D', m', F, d'après le Corollaire III du Lemme III (p. 84), l'équation

$$\frac{\mathbf{E}\,\mathbf{m}}{\mathbf{E}\mathbf{D}}:\frac{\mathbf{F}\,\mathbf{m}}{\mathbf{F}\mathbf{D}}=\frac{\mathbf{E}\,\mathbf{m}'}{\mathbf{E}\mathbf{D}'}:\frac{\mathbf{F}\,\mathbf{m}'}{\mathbf{F}\mathbf{D}'},\quad\text{ou}\quad\frac{\mathbf{E}\,\mathbf{m}\,,\mathbf{F}\,\mathbf{m}'}{\mathbf{E}\,\mathbf{m}'\,,\mathbf{F}\,\mathbf{m}}=\frac{\mathbf{F}\,\mathbf{D}'\,,\mathbf{E}\,\mathbf{D}}{\mathbf{F}\,\mathbf{D}\,,\mathbf{E}\,\mathbf{D}'}$$

Si EF est parallèle à BC, on trouve alors que

$$\frac{\mathbf{E}m.\mathbf{F}m'}{\mathbf{E}m'.\mathbf{F}m} = \frac{\mathbf{E}\mathbf{D}}{\mathbf{F}\mathbf{D}}.$$

Ainsi le Porisme est démontré.

Observation. On a encore entre m et m' l'équation

$$\frac{Dm \cdot Fm'}{D'm' \cdot Fm} = \frac{DE}{D'E}$$

Ces relations, qui s'appliquent aux sections coniques, constituent le théorème de Desargues sur l'involution, et forment, dans la Géométrie moderne, une des propriétés fondamentales de ces courbes. C'est aussi à ces relations que se rapporte le troisième des cinq Porismes de Fermat (Voir Aperçu historique, p. 67-68).

Porisme CXXVII. - Un cercle est circonscrit à un

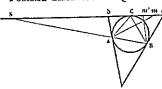
triangle ABC, et autour des deux sommets A, B on fait tourner deux droites qui se croisent sur la circonférence, et qui rencontrent en m et m' les tangentes en B et A : le rapport des rectangles Am'. Sm et Sm'. Bm est donné.

En effet, les quatre droites AC, AM, AB et AS font entre elles des angles égaux à ceux des droites BC. BM, BS et BA. Par consequent, d'après le Corollaire III (p. 84),

$$\frac{Am'.Sm}{Sm'.Bm} = \frac{Ac'.Sc}{Sc'.Bc}$$

Donc, etc.

Porisme CXXVIII. - Quand un cercle est inscrit dans



m'm a un triangle abc, si autour des deux points
de contact A, B on
fait tourner deux
droites qui se coupent sur la circonférence et rencontrent

le côté ab du triangle en m et m'; le point S étant à l'intersection de ce côté par la droite AB : le rectangle Sm.Sm' sera au rectangle am'. bm dans un rapport donné.

Ce rapport est $\frac{\overline{SC}^{i}}{aC.bC}$, c'est-à-dire que l'on a

$$\frac{\mathbf{S}m.\mathbf{S}m'}{am',bm} = \frac{\overline{\mathbf{SC}}^{2}}{a\,\mathbf{C}.b\,\mathbf{C}}$$

En esset, les quatre droites AS, Ab, AC, Am sont entre clies des angles égaux à ceux des droites Ba; BA, BC, Bm'. Par conséquent, les deux systèmes de quatre points S, b, C, m et a, S, C, m', sont liés par la relation du Corollaire III (p. 84).

$$\frac{Sm}{bm}: \frac{SC}{bC} = \frac{am'}{Sm'}: \frac{aC}{SC}$$

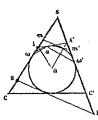
OIL

$$\frac{\mathbf{S}m.\mathbf{S}m'}{bm.am'} = \frac{\mathbf{\overline{SC}}^{2}}{a\mathbf{C}.b\mathbf{C}}.$$

Done, etc.

Observation. Les deux droites sur lesquelles sont formés les segments Am, A'm' peuvent coïncider; le Porisme subsiste et la démonstration reste la même.

Porisme CXXX. - Un cercle est inscrit dans un trian-



gle SCC'; une tangente tourne sur la circonférence et rencontre les deux cótés SC, SC' du triangle en m et m'; si deux points A et B sont donnés sur le cóté SC: on pourra trouver deux points A', B' sur le cóté SC' et une raison \(\lambda\), tels, que l'on aura toujours la re-

$$\frac{\mathbf{A} \ m \ \mathbf{B}' \ m'}{\mathbf{B} \ m \ \mathbf{A}' \ m'} = \lambda.$$

Les tangentes au cercle menées par les deux points donnés A et B, rencontrent le côté SC en A' et B' qui sont les deux points demandés; et la raison λ est égale λ $\frac{AC.B'C'}{BC.A'C'}$.

En effet, soient ω, ω' les points de contact des côtés SC, SC', a le point de contact de la tangente AA', et O le centre du cercle. Les deux droites OA, OA' sont perpendiculaires aux cordes ωa, ω'a; par conséquent, l'angle AOA' a pour mesure la moitié de l'arc ωaω'; de même l'angle m Om'; et de même les suppléments des angles BOB', COC'. Il s'ensuit que les droites OA, OB, OC et Om font entre elles des angles égaux à ceux des droites OA', OB', OC' et Om'. Donc, en vertu du Corollaire III (p. 84), on a, entre les deux sécies de points A, B, C, m et A', B', C', m', l'équation

$$\frac{\mathbf{A}\,m}{\mathbf{B}\,m}:\frac{\mathbf{A}\,\mathbf{C}}{\mathbf{B}\,\mathbf{C}}=\frac{\mathbf{A}'\,m'}{\mathbf{B}'\,m'}:\frac{\mathbf{A}'\,\mathbf{C}'}{\mathbf{B}'\,\mathbf{C}'},\quad\text{ou}\quad\frac{\mathbf{A}\,m\,,\,\mathbf{B}'\,m'}{\mathbf{B}\,m\,,\,\mathbf{A}'\,m'}=\frac{\mathbf{A}\,\mathbf{C}\,,\,\mathbf{B}'\,\mathbf{C}'}{\mathbf{B}\,\mathbf{C}\,,\,\mathbf{A}'\,\mathbf{C}'}$$

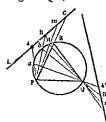
Ce qui démontre le Porisme.

Observation. Chacune des deux équations suivantes satisfait aussi à l'énoncé du XXII Genre:

$$\frac{bm.Cm'}{Cm.Sm'} = \frac{bS.Ca}{CS.Sa}$$

$$\frac{Cm.am'}{Sm.Cm'} = \frac{Cb.aS}{Sb.CS}$$

Porisme CXXIX.— Quand un cercle est circonscrit à un triangle PQR, si deux droites tournent autour des som-



mets P, Q, en se coupant toujours sur la circonférence, et rencontrent deux droites données de position LC, L'C' en deux points m, m'; deux points A et B étant donnés sur la première de ces droites: on peut trouver deux points A', W sur la deuxième et un rapport ì,

tels, que le rectungle A m.B' m' sera au rectangle A' m' .Bm dans le rapport λ .

Qu'on mène les droites PA, PB qui rencontrent la circonférence en a et b; les deux droites Qa, Qb déterminent sur la droite L'C' les deux points cherchés A', B'. Soient C et C' les points où les droites QR, PR rencontrent LC et L'C', respectivement : le rapport λ est égal à $\frac{AC.B'C'}{A'C.BC}$.

En esset, les quatre droites menées du point P, Pa, Pb, PR, PM sont entre elles des augles égaux à ceux des quatre droites Qa, Qb, QR, et QM; par conséquent, on a, entre les deux séries de quatre points A, B, C, m et A', W, C', m', l'équation

$$\frac{Am}{Bm}: \frac{AC}{BC} = \frac{A'm'}{B'm'}: \frac{A'C'}{B'C'}, \quad \text{ou} \quad \frac{Am.B'm'}{A'm'.Bm} = \frac{AC.A'C'}{A'C'.BC'}$$

Ce qui démontre le Porisme.

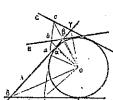
Scolie. La démonstration fait voir que si le point donné A coïncide avec le point de contact & de la tangente SC, le point A' vient en S; et que si le point donné B est situé en S, le point B' coïncide avec le point de contact & de la tangente SC. De sorte qu'on a alors l'équation

$$\frac{\omega m}{Sm}$$
: $\frac{\omega C}{SC} = \frac{Sm'}{\omega'm'}$: $\frac{SC'}{\omega'C'}$,

on

$$\frac{\omega m.\omega' m'}{\$m.\$m'} = \frac{\omega C.\omega' C'}{\$C.\$C'}$$

Porisme CXXXI. - Quand quatre droites A, B, C, D



données de position sont tangentes à un cercle: toute autre tangente les rencontre en quatre points a, b, c, d, tels, que le rapport des rectangles ac.bd et ad.be est donné.

Soit a le point de contact de la tangente A et 6, 7, d les

points où cette tangente rencontre les trois autres B, C, D; la raison donnée est égale à $\frac{\omega_7 \cdot \ell \delta}{\sigma \delta \cdot \delta \gamma}$. De sorte que l'on a

$$\frac{ac,bd}{ad,bc} = \frac{a\gamma.6\delta}{\alpha\delta.6\gamma}$$

$$\frac{ac}{ad}$$
: $\frac{bc}{bd} = \frac{a\gamma}{a\lambda}$: $\frac{6\gamma}{c\lambda}$

$$\frac{ac.bd}{ad.bc} = \frac{a\gamma.6\delta}{\alpha\delta.6\gamma}$$

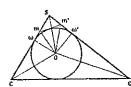
Done, etc.

Corollaire. Ce Porisme, mis sous la forme des théorèmes ordinaires, prend cet énoucé: Lorsque quatre tangentes à un cercle A, B, C, D rencontrent deux autres tangentes en deux systèmes de points a, b, c, d et a', b', c', d', on a entre ces points la relation

$$\frac{ac}{ad}: \frac{bc}{bd} = \frac{a'c'}{a'd'}: \frac{b'c'}{b'd'}, \quad \text{ou} \quad \frac{ac.bd}{ad.bc} = \frac{a'c'.b'd'}{a'd.b'c'}$$

Cette proposition offre une des propriétés du cercle les plus importantes dans la Géométrie moderne.

PORISME CXXXII. - Quand un cercle est inscrit dans



un triangle SCC', dont il touche les côtés SC, SC' en ω, ω': une tangente quelconque rencontre ces cótés en deux points m, m', tels, que le rapport des rectangles Sm.C'm' et Cm.w'm' est

donnė.

En esset, les angles ωOS, mOm', SOw' et le supplément de l'angle COC' sont égaux, comme ayant chacun pour mesure la moitié de l'arc ww'. Par conséquent, les quatre droites OS, Ow, Om et OC font entre elles des angles égaux à ceux des droites Ow', OS, Om' et OC', prolongée au delà du point O. On a done, entre les quatre points S, w, C, m et ω', S, C', m', l'équation

$$\frac{\mathbf{S}\,m}{\mathbf{C}\,m}:\frac{\mathbf{S}\,\omega}{\omega\,\mathbf{C}}=\frac{\omega'\,m'}{\mathbf{C}'\,m'}:\frac{\omega'\,\mathbf{S}}{\mathbf{S}\,\mathbf{C}},\quad\text{ou}\quad\frac{\mathbf{S}\,m,\,\mathbf{C}'\,m'}{\mathbf{C}\,m,\,\omega'\,m'}=\frac{\mathbf{S}\,\omega,\,\mathbf{S}\,\mathbf{C}'}{\omega\,\mathbf{C}\,\,\omega'\,\mathbf{S}}$$

qui démontre le Porisme.

(238)

gle en a, b, c et la circonférence en m : le rapport des rectangles am . be at bm . ac sera donné.

En effet, la droite Cm rencontre le côté AB en un point m', et l'on a, d'après le Porisme CXXVI,

$$\frac{\mathbf{A}m'.\mathbf{B}c}{\mathbf{A}c.\mathbf{B}m'}=\lambda,$$

À étant une raison constante, quel que soit le point m de la circonférence. Mais, par le Lemme III,

$$\frac{\mathbf{A}\,m'.\mathbf{B}\,c}{\mathbf{A}\,c.\,\mathbf{B}\,m'} = \frac{am.\,be}{ac.\,bm}$$

Done

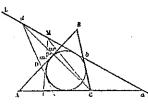
$$\frac{am \cdot bc}{ac \cdot bm} = \lambda = \text{const.}$$

On détermine très-simplement à en menant la transversale Pas parallèle à la droite AB; car on obtient alors

$$\lambda = \frac{\alpha \mu}{6 \mu}$$

Ainsi le Porisme est démontré.

Porisme CXXXV. — Quand un cercle est inscrit dans

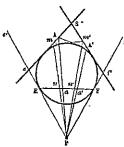


un triangle ABC, si de chaque point M d'une tangente fixe LM on mène une tangente au cercle et une droite aboutissant au sommet C du triangle: cette tangente et cette droite rencon-

treront le coié AB en deux points m, m', tels, que le rapport des rectangles Am. Bm' et Am'. Bm sera donné.

En esset, soit Dd une des positions de la tangente Mm; les deux tangentes LM et AB sont coupées par les quatre (237)

Porisme CXXXIII. - Quand une tangente tourne sur



un cercle et rencontre deux tangentes fixes SA, SA' en deux points m, m', si d'un point fixe P, pris au dehors du cercle, on mène les droites Pm, Pm'; et si n, n' sont les points d'intersection de ces droites et de la corde EF qui joint les points de contact des tangentes issues du point P: les rectangles

En.Fn' et En'.Fn sont dans une raison donnée.

En effet, soit AA' une position de la tangente mobile mm'; la tangente PE rencontre SA, SA' en e et e'; et la tangente PF en f et f'. On a, d'après le corollaire du Porisme CXXXI,

$$\frac{\epsilon m}{fm} : \frac{\epsilon \Lambda}{f\Lambda} = \frac{\epsilon' m'}{f'm'} : \frac{\epsilon' \Lambda'}{f'\Lambda'}.$$

On sait d'ailleurs, par le Corollaire I du Lemme III (p. 82), que

$$\frac{em}{fm}: \frac{eA}{fA} = \frac{En}{Fn}: \frac{Ea}{Fa}$$

$$\frac{e'm'}{f'm'}:\frac{e'A'}{f'A'}=\frac{En'}{Fn'}:\frac{Ea'}{Fa'}.$$

Done

$$\frac{\mathbf{E}n}{\mathbf{F}n}: \frac{\mathbf{E}a}{\mathbf{F}a} = \frac{\mathbf{E}n'}{\mathbf{F}n'}: \frac{\mathbf{E}a'}{\mathbf{F}a'}, \quad \text{ou} \quad \frac{\mathbf{E}n.\mathbf{F}n'}{\mathbf{E}n'.\mathbf{F}n} = \frac{\mathbf{E}a.\mathbf{F}a'}{\mathbf{E}a'.\mathbf{F}a}.$$

Ce qui démontre le Porisme énoncé.

PORISME CXXXIV .- Quand un triangle ABC est inscrit dans un cercle, si autour d'un point P de la circonférence on fait tourner une droite qui rencontre les côtés du trian-

Aa, Bb, Dd et mM: ainsi, d'après le Porisme CXXXI,

$$\frac{Am}{AD}$$
: $\frac{Bm}{BD} = \frac{aM}{ad}$: $\frac{bM}{bd}$

Les droites menées du point C aux quatre points a, b, d et M rencontrent la tangente AB en A, B, D', m', et l'on a (par le Corollaire I du Lemme III),

$$\frac{aM}{ad}: \frac{bM}{bd} = \frac{Am'}{AD'}: \frac{Bm'}{BD'}$$

Done

$$\frac{Am}{AD}$$
: $\frac{Bm}{BD} = \frac{Am'}{AD'}$: $\frac{Bm'}{BD'}$,

ou

$$\frac{Am,Bm'}{Bm,Am'} = \frac{AD,BD'}{BD,AD'}$$

Ce qui démontre le Porisme.

XXIII Genre.

Le carré construit sur telle droite cat à une certaine abscisse dans un rapport donné.

Porisme CXXXVI. - Étant donnés un cercle dont le diamètre est AC, et un point B sur la tangente en A, si des points A et B on mêne à chaque point M de la circonférence les droites AM, BM qui rencontrent en m et m' la tangente au point C ; le carré du segment Cm est à l'abscisse mm' dans

un rapport donné.

En effet, soit Mp la perpendiculaire abaissée du point M sur le diamètre AB, on a, dans le triangle mCA coupé par Mp,

$$\frac{Cm}{CA} = \frac{Mp}{Ap}.$$

Par conséquent

$$\frac{\overline{Cm'}}{\overline{CA'}} = \frac{\overline{Mp'}}{\overline{Ap'}} = \frac{Cp \cdot Ap}{\overline{Ap'}} = \frac{Cp}{\overline{Ap}} = \frac{Mm}{\overline{AM}} = \frac{mm'}{\overline{AB}},$$

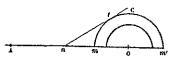
(240)

OΠ

$$\frac{\overline{Cm}^2}{mm'} = \frac{\overline{CA}^4}{AR}.$$

Ce qui démontre le Porisme.

Porisme CXXXVII. — Quand des demi-circonférences, telles que m Cm', ont le même centre et pour base une meme droite, un point A étant donné sur cette droite; si



l'on prend le point n dont la distance au point A soit égale à la tangente menée de ce point n à la

circonférence mCm': le carré de Am est à l'abscisse nu dans un rapport donné.

On a, en ellet,

$$\frac{\overline{Am'}}{nm} = 2 AO.$$

Car nt étant la tangente à la circonférence.

$$\overline{nt} = nm \cdot nm';$$

et par conséquent

$$\overline{An}' = nm \cdot nm'$$
.

Cette relation, d'après le Lemme XXIII, donne celle-ci :

$$\overline{\mathbf{A}m}' = mn \cdot (\mathbf{A}m + \mathbf{A}m'),$$

$$\frac{\overline{Am}}{mn} = 2 \text{ AO}.$$

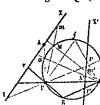
C. O. F. D.

(242)

Done

$$\frac{\Lambda m}{\Lambda} = \frac{\Lambda' m'}{J' m'}, \quad \text{ou} \quad \Lambda m . J' m' = \Lambda' m' . \Lambda 1.$$

Pomsme CXXXIX. - Quand un cercle est circonscrit à un triangle PQR, si autour des deux sommets P, Q on



fait tourner deux droites qui se coupent sur la circonférence et qui rencontrent deux droites fixes AX, A'X' en m et m'; le point A étant donné sur AX : ou pourra trouver les points A' et J' sur A'X', et une ligne μ, tels, qu'on aura toujours

$$Am.J'm' = \mu, A'm',$$

Qu'on mêne PA qui rencontre la circonférence en a, et parallèlement à AX, Pj qui rencontre la circonférence en j. Les droites Qa, Qj déterminent sur A'X' les points cherchés A' et J'. Pour la ligne \(\mu_i \) il suffit de mener à A'X' la parallèle Qi qui rencontre la circonférence en i; puis Pi qui rencontre AX en I. On prendra

$$\mu = AI$$
.

En esset, les quatre droites Pa, PM, Pi, Pi sont entre elle des angles égaux à ceux des quatre droites Qa, QM, Qi, Qj. Par conséquent, on a, entre les points A, m, I et A', m', J' (comme il a été démontré au Porisme CXXII) l'équation

$$\frac{Am}{AI} = \frac{A'm'}{J'm'}$$
, on $Am.J'm' = AI.A'm'$.

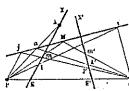
Observation. Les deux droites AX, A'X' penvent se confondre.

Observation. Si le point A se trouvait intérieur à la circonférence variable m'Cm', ce serait le Lemme XXV que l'on invoquerait.

XXIV Genre.

La rectangle construit sur telles droites est égal au rectangle qui a pour côles une droite donnée et le segment formé par tel point à partir d'un

Porisme CXXXVIII. - Si autour de deux points P, Q on fait tourner deux droites qui se coupent toujours sur une



droite donnée de position LM, et rencontrent, respectivement, deux droites fixes EX, E'X'en in, in'; un point A étant donné sur la première de ces droites : on pourra trouver deux points

A' et J' sur la deuxième, et une ligne p, tels, que le rectangle Am. I'm' sera toujours égal au rectangle µ. A'm'.

Qu'on mène PA qui rencontre la droite LM en a; Qa qui rencontre E'X' en A'; Pj parallèle à EX et qui rencontre LM en j; puis Qj qui rencontre E'X' en J'; Qi parallèle à E'X', qui rencontre LM en i; et enfin Pi qui rencontre EX en I. Les points A' et J' sont les points demandés,

En esset, les quatre droites Pa, PM, Pi, Pj coupées par les deux LM, EX donnent, d'après le Lemme XI,

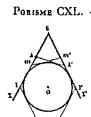
$$\frac{\mathbf{A}m}{\mathbf{A}\mathbf{I}} = \frac{a\mathbf{M}}{ai} : \frac{f\mathbf{M}}{fi}$$

Et les droites Qa, QM, Qi, Qj, donnent de même

$$\frac{A'm'}{J'm'} = \frac{aM}{ai} : \frac{jM}{ji}.$$

16

(243)



Porisme CXL. — Quand un cercle est tangent à deux droites SX, S'X', si l'on mene une troisième tangente quelconque qui rencontre les deux premières en m et m'; le point A étant donné sur SX: on pourra trouver deux points A' et J' sur SX', et une ligne u, tels, qu'on aura

$$Am \cdot J'm' = \mu \cdot A'm'$$
.

Les deux tangentes menées, l'une par le point A et l'autre parallèlement à SX, rencontrent SX' dans les deux points demandés A' et J'. Quant à la ligne µ, elle se détermine par la tangente parallèle à SX', qui coupe SX en I; on aura

$$\mu = AI$$
.

En esset, les quatre droites menées du centre O du cercle aux trois points A, m, I, et parallèlement à SX, font entre elles des angles égaux à ceux des quatre droites menées du centre, les deux premières aux points A', m', la troisième parallèle à SX' et la quatrième au point J'; ce qu'on prouve comme au Porisme CXXX. On a donc, comme dans le Porisme précédent, entre les points A, m, I et A', m', J', l'équation

$$\frac{Am}{A1} = \frac{A'm'}{J'm'}$$
, ou $Am.J'm' = A1.A'm'$.

c. Q. F. D.

La carré construit sur telle droîte est égat un rectangle qui a pour côtés une droite donnée et le segment formé par une perpendiculaire, à partir d'un point doané.

Porisme CXLI. — Si de chaque point m d'une demi-

circonférence de cercle ou abaisse une perpendiculaire mp sur son diamètre AB: on pourra trouver une ligne \mu, telle, que l'on aura toujours

 $\overline{\Lambda m} = \mu . \Lambda p.$

En effet, on a

$$\overline{\Lambda m} = AB.Ap.$$

Ponisme CXLII. — Si autour de deux points AC d'une circonférence de cercle on fait tourner les côtés d'un angle droit AMC, et que du point m où le côté CM rencontre la circonférence, on abaisse une perpendiculaire in p sur le diamètre AB: on pourra trouver une ligne µ, telle, que

l'on aura

$$\overline{AM}^2 = \mu \cdot Ap$$
.

En effet, les deux triangles rectangles AMC et AmB sont semblables, parce que les angles en C et en B sont égaux. Par conséquent, on a

$$AM.AB = Am.AC$$

et

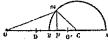
$$\overline{AM}', \overline{AB}' = \overline{Am}', \overline{AC}'$$

Or $\overline{Am} = \Lambda p$. AB, et $\overline{AC} = \Lambda c$. AB. Donc

$$\overline{AM}' = Ap.Ac.$$

Ce qui démontre le Porisme.

PORISME CXLIII. — Si d'un point O pris sur le diamètre AB d'un demi-cercle, on



mètre AB d'un demi-cercle, on mène une droite à chaque point m de la circonférence, et que de ce point on abaisse la perpen-

perpendiculaire mp sur la droite des centres C, C : on pourra trouver sur cette droite un point O, tel, que le carré de la tangente sera au segment Op dans une raison donnée.

On aura

$$\frac{\overline{mt}}{\overline{Op}} = 2 \cdot CC'.$$

Pour le prouver, prenons sur CC' le point O déterminé par la relation OA.OB = OA'.OB'; on aura

$$0m.0m' = 0a.0b$$

Il s'ensuit

$$ma.mb = 2m0.\alpha6;$$

a, 6 étant les milieux des cordes mm', ab.

$$Oa = ma - mO$$
, $Ob = mb - mO$,

 $Oa.Ob = ma.mb - mO(ma + mb) + \overline{mO}' = Om.Om',$ Donc

$$ma.mb = mO (ma + mb - mO + m'O)$$

= $(ma + mb - mm') mO$,

011

$$ma.mb = mO.(2m6 - 2m\alpha)$$

= $2mO.(m6 - m\alpha) = 2mO.\alpha6$.

Or, en vertu des triangles semblables,

$$\frac{\alpha 6}{CC'} = \frac{O\alpha}{OC'} = \frac{Op}{Om}, \quad \text{ou} \quad \alpha 6.0m = Op.CC'.$$

De là

$$ma.mb = 2 Op.CC'.$$

Mais ma.mb = mt. Done enfin

$$\frac{\overrightarrow{mt}}{\overrightarrow{0p}} = 2 \cdot CC'$$

Ce qui démontre le Porisme.

Soit C le centre du cercle, et O' le point déterminé par l'expression $\overline{CA} = CO \cdot CO'$: le milieu D des deux points O, O' est le point cherché, et la ligne μ est égale à 2.0C; de sorte qu'on 2

$$\overline{Om} = 2OC.Dp.$$

Cela est une conséquence du Lemme XXXVII (proposi-

En eilet, d'après ce Lemme,

$$\overline{\mathrm{OA}}' = \overline{\mathrm{Om}}' + (\mathrm{OA} + \mathrm{OB}) \, \mathrm{Ap},$$

ou

$$\overline{OA}' = \overline{Om}' + 2OC.An$$

et

$$\overrightarrow{Om}' = \overrightarrow{OA}' - 2OC.Ap.$$

Or, d'après le Lemme XXIII,

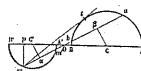
$$\overline{OA}$$
' = OC (OA + O'A) = 2 OC.AD.

Donc

$$\overline{Om}^2 = 2OC. AD - 2OC. Ap = 2OC. (AD - Ap),$$

$$\overline{Om}^2 = 2OC. Dp.$$

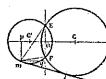
Porisme CXLIV. — Étant dounées deux demi-circon-



férences dont les centres C, C et les bases AB, A'B' sont sur une mênie droite, si de chaque point m de l'une on mêne une tangente à l'autre et une

(247)

Corollaires. Si au lieu de demi-circonférences on consi-



dère des cercles entiers, et qu'ils se coupent, le point O est évidemment sur leur corde commune EF. On a toujours

$$\frac{\overline{mt}}{\overline{Op}} = 2.CC',$$

ou

$$\frac{\overline{mt}}{\overline{mq}} = 2 \, \text{CC'}, \quad \frac{\overline{mt}}{\overline{mq \cdot \text{EF}}} = 4 \cdot \frac{\text{CC'}}{\text{EF}},$$

c'est-à-dire que : le carré de la tangente un est à l'aire du triangle $\operatorname{Em} F$ dans une raison donnée $\left(\frac{4 \cdot \operatorname{CC'}}{\operatorname{EF}}\right)$.

Ce qui forme un Porisme.

On en conclut cette réciproque:

Deux points étant donnés sur un cercle: le lieu d'un point tel, que le carré de la tangente menée de ce point à la circonférence du cercle, et l'aire du triangle formé par les droites menées du même point aux deux points donnés, soient dans une raison donnée, est un cercle.

Le Porisme peut prendre une autre expression : car l'angle en mest constant; par conséquent, d'après le Lemme XX de Pappus, les aires de deux triangles EmF, Em'F sont entre elles dans le rapport des rectangles mE.mF, m'E.m'F.

D'où il suit que le rapport $\frac{mt}{mE.mF}$ est donné, c'est-à-dire

Quand deux cercles se coupent, si de chaque point de l'un on mène une tangente à l'autre et des droites aux deux points d'intersection des cercles, le carré de la tangente est au rectangle des deux droites dans une raison donnée.

Ce théorème est un des Porismes donnés par lord Brougham, dans son Mémoire intimlé: General Theorems, chiefly Porisms, in the higher Geometry, qu'on trouve dans les Philosophical Transactions de la Société Royale de Londres, année 1798 (1).

Porisme CXLV. - Étant donnés un triangle ABC et une droite EF parallèle à la base AB; si de chaque point

m de cette droite on mène mC, mB qui rencontrent, respectivement, les côtés AB, AC en n, n': la droite nn' coupe la droite EF en un point m', et l'on a toujours, entre les deux points m et m', la relation

$$\overline{Em}^{3} = \mu \cdot Em'_{3}$$

οù μ est une ligne de grandeur connue.

Cela est une conséquence du Lemme VII de Pappus. Car il résulte de la réciproque de ce Lemine que dans le quadrilatère Bnn'C coupé par la droite EF, parallèle au côté Bn et passant par le point de rencontre des deux diagonales,

. Or, more generally, the square of the tangent shall have a given ratio to the rectangle under the inflected lines. * (Proposition VII, p. 382.)

Q d'un cercle on fait tourner deux droites qui se coupent en M sur la circonférence du cercle, et qui rencontrent

une corde EF en deux points m, m'; une raison à étant donnée : on peut trouver deux points A et B sur EF et une ligne µ, tels, que dans tous les cas où le point m se trouvera hors du segment AB, on aura la relation con-

stante

$$\frac{(\mathbf{A}m+\mathbf{B}m)\lambda.\mathbf{F}m'}{mm'}=\mu.$$

Qu'on mêne la corde Qi parallèle à EF, et Pi qui rencontre EF en I; puis, qu'on premie EA = \(\lambda\). EI, EB = EA, et $\mu = BA$, on aura

$$\frac{(\mathbf{A}m + \mathbf{B}m)\lambda.\mathbf{F}m'}{mm'} = \mathbf{B}\mathbf{A}.$$

En esset, d'après le Porisme CXXVI, on a

$$\frac{\operatorname{E} m \cdot \operatorname{F} m'}{\operatorname{E} m' \cdot \operatorname{F} m} = \frac{\operatorname{EI}}{\operatorname{FI}}$$

Et par conséquent, d'après le Porisme LXXXII,

$$\frac{\mathbf{E}m.\mathbf{F}m'}{mm'} = \mathbf{E}\mathbf{I}.$$

Or, EA = EB; et, par suite,

$$\mathbf{E}m = \frac{\mathbf{A}m + \mathbf{B}m}{2}.$$

Done

$$\frac{(\mathbf{A}m + \mathbf{B}m)\mathbf{F}m'}{mm'} = 2\mathbf{E}1;$$

Ou

$$\frac{(\mathbf{A}m + \mathbf{B}m)\lambda \cdot \mathbf{F}m'}{mm'} = 2\lambda \cdot \mathbf{EI} = \mathbf{B}\mathbf{A}.$$

c. Q. F. D.

on a

$$\overline{Em}^1 = ED \cdot Em'$$
.

Donc, etc.

Ponisme CXLVI. - Étant donnés un triungle ABC et la droite AD, 'si de chaque point M du côte CA on mène

la droite MB qui rencontre AD en n', et une parallèle à la base AB, qui rencontre le côté CB en n; puis, qu'on mêne les droites An et nn' qui rencontrent en m et m' la parallèle à la base AB, monée

par le sommet C: on pourra trouver une ligne u, telle, qu'on aura toujours

$$\overline{Cm}^* = \mu.Cm'.$$

En esset, les quatre droites qui partent du point A, coupées par les deux CD, MB, donnent

$$\frac{Cm}{CD} = \frac{MG}{Mn'}$$
: $\frac{BG}{Bn'}$. (Corollaire II du Lemme XI, p. 83.)

Et pareillement, les quatre droites qui partent du point n, coupées par les deux mêmes CD, MB, donnent

$$\frac{Cm}{Cm'} = \frac{BG}{Bn'} : \frac{MG}{Mn'}$$

Done

$$\frac{Cm}{CD} \cdot \frac{Cm}{Cm'} = 1$$
, on $\overline{Cm'} = CD \cdot Cm'$.

Done $\mu = CD$. Done, etc.

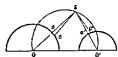
Tel rectangle, qui a pour côtés la somme de deux droites et une droite en rapport daniel avec tella autre, est dans un rapport doniel avec tella ab-

Porisme CXLVII. - Si autour de deux points P. O.

XXVII* Genre.

Il existe un point tel, que des droites menées de ce point comprennant un triangle donné d'espèce.

Porisme CXLVIII. — Étant donnés deux demi-cercles O, O', et un angle: on peut trouver un point S, tel,



que si l'on fait tourner autour de ce point, comme sommet, l'angle donné, dont les côtés Sc, Sc rencontreront les demicirconférences en c et c', res-

pectivement, le triangle Scc' soit donné d'espèce.

C'est-à-dire, puisque l'angle cSc'est donné de grandeur, que ses côtés Sc, Sc doivent être dans un rapport con-

Que sur OO' on décrive un segment de cercle capable de l'angle donné; et qu'on preune sur l'arc de ce segment le point S, de manière que le rapport des lignes SO, SO' soit égal à celui des rayons Oa, O'a'. Ce point, que l'on détermine par le Lemme XXIX (proposition 155) de Pappus, satisfait à la question; et la raison constante des deux lignes

Sc, Sc', est égale à $\frac{Oa}{O'a'}$. Prenons sur Se' le point c", tel, que l'on ait

$$\frac{Sc}{Sc''} = \frac{Oa}{Oa'}.$$

Il s'agit de prouver que ce point c'' coïncide avec c'. On a, par construction,

$$\frac{SO}{SO'} = \frac{Ou}{Ou'}$$
:

d'où resulte

$$\frac{\$ a}{\$ a'} = \frac{O a}{O a'}.$$

⁽i) a Two points in a circle being given (but not in one diameter), another circle may be described, such, that if from any point thereof to the given points straight lines be drawn, and a line touching the given circle, the tangent shall be a mean proportional between the lines so inflected.

Donc

$$\frac{Sa}{Sa'} = \frac{Sc}{Sc''}.$$

Mais les angles aSc, a'Sc" sont égaux, parce que les angles OSO', cSc' sont égaux : les deux triangles aSc et a'Sc# sont donc semblables, comme ayant un angle égal compris entre côtés proportionnels. Par conséquent, d'une part, les angles O ac et O'a'c" sont égaux; et, d'autre part, on a

$$\frac{ac}{aS} = \frac{a'c''}{a'S},$$

et, par suite,

$$\frac{ac}{0a} = \frac{a'c''}{0'a'}$$

Donc les deux triangles Oac et O'a'c" sont semblables, comme avant un angle égal compris entre côtés proportionnels. Mais dans le premier, Oa = Oc; donc, dans le second, O'a' = O'a". Le point a" est donc sur la circonférence O', et, par conséquent, coïncide avec c'. Ce qu'il fallait prouver.

Le Porisme est donc démontré.

Corollaire. Le lieu d'un point dont les distances aux centres OO' de deux cercles sont entre elles dans le rapport des rayons Oa, O'a', est la circonférence qui a pour diamètre la droite qui joint les centres de similitude des deux cercles. D'après cela, on conclut du Porisme qui vient d'être démontré, ce théorème :

Étant donnés deux cercles (), (), un point S pris sur la circonférence qui a pour diamètre la droite qui joint les centres de similitude des deux cercles; si autour de ce point, comme sommet, on fait tourner un angle égal à OSO, dont les côtés rencontreront les deux cercles en deux points c, c': le rapport des deux lignes Sc, Sc' sera constant et égal au rapport des rayons des deux cercles.

les angles aOb et a'Ob' sont égaux. Mais les angles SaO, Sa'O sont égaux, parce que les quatre points S, a, a', O sont sur un même cercle. Les deux triangles aOb, a'Ob' sont donc semblables. Conséquemment

$$\frac{0 a}{0 a'} = \frac{0 b}{0 b'}$$

Et de même

$$\frac{0}{0}\frac{a}{a'} = \frac{0}{0}\frac{b}{b'}.$$

$$\frac{0}{0}\frac{a}{a'} = \frac{0}{0}\frac{c}{c'}, \dots$$

Le Porisme est donc démontré.

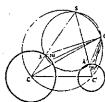
Porisme CL. - Quand de chaque point d'une droite L on abaisse des perpendiculaires sur deux autres droites, il existe un certain point qui, avec les pieds des deux perpendiculaires, forme un triangle donné d'espèce.

C'est-à-dire que les droites qui joignent le point en question aux pieds des perpendienlaires abaissées de chaque point de la droite L, sur les deux autres droites, forment un angle de grandeur constante et sont entre elles dans un rapport constant.

En esset, les pieds des perpendiculaires divisent les deux droites en parties proportionnelles (Porisme XLVII). Done le Porisme énoncé est une conséquence du précédent.

Ce Porisme s'applique également aux pieds des obliques abaissées de chaque point de la droite L sur les deux autres, sous des angles donnés.

Porisme CLI. - Étant donnés deux cercles et deux



points A, A' sur leurs circonférences : on peut trouver un point O, tel, que les droites menées de ce point sous un angle égal à l'angle AOA' et terminées aux points m, m' des deux circonsérences, sorment un triangle m0m' donné d'espèce.

(253)

Observation. Des deux éléments qui constituent l'espèce du triangle dont il est question dans le Porisme précédent, savoir, l'angle au sommet et le rapport des deux côtés, un seul est à trouver, puisque l'angle est donné de fait. Dans les Porismes suivants, l'espèce des triangles est complétement inconnue et la recherche de ces deux éléments fait l'objet des propositions.

Porisme CXLIX. - Quand deux droites SA, SA' sont divisées en parties proportionnelles, il existe un point O,

tel, que les droites menées de ce point à deux points homologues quelconques des deux divisions, forment un triangle donné d'espèce.

C'est-à-dire que les deux droites font entre elles un angle de grandeur constante, et que leurs lon-

gueurs sont dans une raison constante.

Soient a, b deux points de SA; a', b' les deux points homologues de SA'. Concevons les deux circonférences de cercle aSa', bSb', qui se coupent en O. Ce point O satisfait à la question.

En esset, les angles a O a' et b O b' sont égaux entre eux, parce que l'un et l'autre sont égaux à l'angle aSa'. L'angle des perpendiculaires abaissées du point O sur SA et SA' est aussi égal à l'angle ASA', et est, par conséquent, égal aux angles aOa', bOb'. On conclut de là, en vertu du Porisme XLVIII, que si l'on fait tourner cet angle autour de son sommet O, ses côtés passeront, respectivement, par chaque couple de points homologues c, c', d, d',... des deux droites SA, SA'. C'est-à-dire, que tous les angles aOa', bOb', cOc',... sont égaux entre eux. Il reste à prouver que les côtés de chacun de ces angles sont dans un rapport constant.

Or, les angles a O a' et b O b' étant égaux, il s'ensuit que

(255)

Soit S le point de rencontre des deux rayons. CA, C'A'. Qu'on décrive deux circonférences dont l'une passe par les trois points A, A', S, et l'autre par les trois C, C', S; elles se coupent en un point O qui est le point cherché.

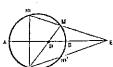
En effet, les angles AOA' et COC' sont égaux, parce que chacun d'eux est égal à l'angle CSC'. Donc si on fait tourner le cercle C'autour du point O de manière que OA'vienne se placer sur OA, OC' viendra sur OC. Mais alors le rayon C'A' se trouvera parallèle au rayon CA, parce que les angles OCS, OC'S sont égaux, comme compris l'un et l'autre dans le même segment de cercle. Il s'ensuit que le point O sera le centre de similitude des deux cercles. Par conséquent, une droite quelcouque menée par ce point les rencontrera en deux points m, m' dont les distances au point O seront entre elles dans le rapport de OA à OA'. Et si on ramène le second cercle dans sa position primitive C', par une rotation autour du point O, ces deux droites Om, Om' feront un triangle mOm' de même espèce que le triangle AOA'.

Ce qui démontre le Porisme.

XXVIII Genre.

il existe un point tel, que les droites menées de ce point interceptent des arcs égaux.

Ponisme CLII. - Étant donné un point D dans le



plan d'un cercle, il existe un deuxième point E, tel, que si par le point D on mêne une droite quelconque qui rencontre le cercle en deux points M, M', les deux droites EM, EM in-

tercepteront dans le cercle deux arcs égaux Mm, M'm'. Que sur le diamètre AB sur lequel est situé le point donné D, on prenne le point E déterminé par la propor-

ce point satisfera à la question.

Cela résulte de la réciproque évidente du Lemme XXX (proposition 156), d'après lequel la corde Mass est perpendiculaire au diamètre AB; d'où il suit que les droites E.m., Em' font des angles égaux avec le diamètre; qu'elles sont donc également éloignées du centre, et, par conséquent, qu'elles sous-tendent des arcs égaux Mm, M'm'. Donc, etc.

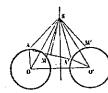
Ce Porisme a été rétabli par Simson (proposition 53,

Ponisme CLIII. - Étant données deux circonférences

de cercle de même rayon et un angle: on peut trouver un point tel, que si autour de ce point, comme sommet, on fait tourner l'angle donné, ses côtes interceptent toujours dans les deux cercles deux arcs égaux.

Soient O, O' les centres des deux cercles. Que sur OO' on décrive un segment capable de l'angle donné, et soit S le point milieu de ce segment. Si autour du point S on fait tourner l'angle OSO et qu'il prenne la position aSa, les deux cordes ab, a'b' interceptent des arcs égaux dans les deux circonférences, parce qu'elles sont évidemment égales entre elles. Donc, etc.

Porisme CLIV. - Étant donnés deux cercles égaux et



deux points A, A' sur leurs circonférences, on peut trouver un point S et un angle, tels, que deux droites menées par ce point sous cet angle interceptent sur les deux circonférences, à partir des deux points A, A', des arcs égaux,

(258)

Si deux points de division correspondants coïncident en S, point de rencontre des deux droites, toutes les droites mm' sont parallèles entre elles; cela est évident.

Dans le cas général où cette coïncidence n'a pas lieu, on a vu (Porisme CXLIX) qu'il existe un point O, tel, que le triangle mOm' est donné d'espèce; par conséquent l'angle m'm O est donné.

Le Porisme est donc démontré.

PORISME CLVI. -– Si de chaque point M d'une droite

donnée de position LM, on abaisse sur deux autres droites aussi données de position des obliques Mm, Mm' sous des angles donnés : il existera un point O, tel, que l'angle m'in O formé par la droite m'm, avec la droite menée

du point m à ce point O, sera donné.

Ce Porisme est une conséquence du précédent, parce que les deux points m, m' divisent les deux droites fixes en parties proportionnelles.

Si la droite LM passe par le point de concours des deux droites sur lesquelles on abaisse les obliques, les droites mm' seront parallèles à une même droite. Cas prévu dans l'énoncé du Genre.

Porissie CLVII. - Quand deux droites L, L' sont divi-

sées en parties proportionnelles par deux points variables m, m', il existe un certain point O, tel, que chaque droite mm' fait un au gle douné avec la droite menée de son milieu µ au point O.

En effet, le point O, tel, que les triangles mOm' sont donnés d'espèce (Porisme CXLIX), satisfait à la question. Car les droites menées du sommet de ces triangles semblables au milieu de leurs bases feront des angles éganx avec ees bases.

Que par le milieu de la droite OO', qui joint les centres des deux cercles, on mène la perpendiculaire à cette droite, et par le milieu de la droite AA' la perpendiculaire à celleci; ces deux perpendiculaires se rencontrent en un point S qui est le point demandé; et l'angle ASA' est l'angle qui satisfait à la question.

En esset, les deux triangles ASO, A'SO' sont égaux comme ayant les côtés égaux chacun à chacun. Donc les angles ASO et A'SO' sont égaux. Il s'ensuit que les deux angles ASA' et OSO' sont égaux. Or, si l'on mène deux droites SM, SM' faisant entre elles l'angle MSM' égal à OSO', elles détacheront évidemment deux arcs égaux BM, B'M' comptés à partir des droites SO, SO'. Donc les arcs AM et A'M' sont aussi égaux.

Observation. Si les deux cercles sont inégaux, on peut demander que les deux arcs AM, A'M' soient dans un rapport constant. On a alors ce Porisme:

Étant donnés deux cercles quelconques et deux points A, A' sur leurs circonférences, on peut trouver un point. un angle et une raison, tels, que deux droites menées par ce point et comprenant entre elles cet angle, retrancheront à partir des points A, A', respectivement, des arcs dans cette raison.

XXIX* Genre.

Telle droite est paraliele à une certaine droite, ou fait avec une droite passant par un point donné un angle de grandeur donnée.

Porisme CLV. — Quand deux points variables m, m' divisent deux droites en parties proportionnelles, les droites mm' sont parallèles à une droite donnée de

direction; ou bien, il existe un point O, tel, que chaque droite mm' fait un angle donné avec la droite menée du point m à ce point O.

17

(259.) Observation. Simson a proposé le Porisme suivant pour satisfaire au XXIX* Genre : Si de deux points donnés A,

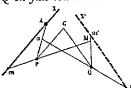
B on mène à chaque point C d'un cercle donné de position deux droites qui rencontreront le cercle en deux autres points D, E, la droite DE fera un angle donné avec une droite menée par un point donné, ou sera parallèle à une

droite donnée de position, ou bien passera par un point donné (1).

Si nous n'admettons pas ici ce Porisme, c'est qu'il embrasse trois cas différents: Pappus n'en a compris que deux dans l'énoncé du XXIX Genre. Les trois Porismes que nous proposons satisfont chacun rigoureusement à cet énoncé.

I" Genre. (Voir p. 114.)

Porishie CLVIII. - Si autour de deux points fixes P, Q on fait tourner deux droites PM, QM qui se coupent



sous un angle de grandeur donnée, et que PM rencontre une droite AX donnée de position en un point m; le point A étant donné sur cette droite, et une raison à étant aussi donnée : on

pourra déterminer une autre droite A'X' et un point A' sur cette droite, tels, que la deuxième droite tournante OM fasse sur cette droite un segment A'm', qui soit toujours au segment Am dans la raison λ.

⁽t) . Si a duohus punctis datis A, It ad circulum positione datum CDE in-Reclantur uteunque dum rectm AC, BC circumferentim rursus in D, E occurentes, recta DE vel continebit datum angulum cum recta ad datum punctum vergente; vel paraliela erit rectos positione datas, vel verget ad datum punctum. . (Prop. 57, p. 472.)

Qu'on mêne PC parallèle à AX, et QC correspondante à PC, c'est-à-dire saisant l'angle C égal à l'angle donné; la droite cherchée A'X' sera parallèle à QC. Qu'on mène Qacorrespondante à PA; le point cherché A' sera situé sur Qa. Supposons que deux droites Pb, Qb, faisant l'angle PbQ égal à l'angle donné, coupent, la première la droite AX en un point B, et la deuxième la droite cherchée A'X' en B'. Ou

doit avoir $\frac{AB}{A'B'} = \lambda_i$ de sorte que cette relation détermine la

longueur du segment A'B'. Il sussit donc d'inscrire dans l'angle des deux droites Qa, Qb une droite égale à cette longueur et parallèle à QC. Ce sera la droite cherchée. C'està-dire que pour deux droites PM, QM faisant entre elles l'angle donné, on aura toujours

$$\frac{Am}{A'm'} = \frac{AB}{A'B'} = \lambda.$$

En esset, les quatre droites Pa, Pb, PM, PC font entre elles des angles égaux à ceux des droites Qa, Qb, QM, QC. Concevous qu'une transversale de direction quelconque coupe les deux systèmes de quatre droites dans les points A_1 , B_1 , m_1 , C_1 et A'_1 , B'_2 , m'_1 , C'_1 . On aura, par le Corollaire II (p. 83), les deux égalités

$$\frac{Am}{AB} = \frac{A_1m_1}{A_1B_1} : \frac{C_1m_1}{C_1B_1},$$

$$\frac{A'm'}{A'B'} = \frac{A'_{i}m'_{i}}{A'_{i}B'_{i}} : \frac{C'_{i}m'_{i}}{C'_{i}B'_{i}}$$

Mais, d'après le Corollaire III (p. 84), les seconds membres de ces équations sont égaux. Donc

$$\frac{Am}{AB} = \frac{A'm'}{A'B'}$$
, ou $\frac{Am}{A'm'} = \frac{AB}{A'B'} = \lambda$.

Autrement. Les côtés du triangle PAm sont également

nés, si par ce point on mène une droite qui rencontre la circonférence en a et b, et sur laquelle on prenne le point m déterminé par la proportion

$$\frac{am}{mb} = \frac{aP}{Pb}:$$

ce point sera sur une droite donnée de position.

Cela résulte immédiatement du Lemme XXVIII (proposition 154) quand le point P est au dehors du cercle; et du Lemme XXXV (proposition 161) quand ce point est dans l'intérieur du cercle.

Dans le premier cas la droite lieu du point m est la corde de contact des deux tangentes au cercle, menées par le

Autrement. Soit n le milieu de la corde ab. On a, d'après le Lemme XXXIV,

$$Pa.Pb = Pm.Pn.$$

Soit de plus mD perpendiculaire sur le diamètre ABP. Les deux triangles rectangles CnP, mDP sont semblables, parce qu'ils ont l'angle P commun, et donnent la proportion

$$\frac{Pn}{PC} = \frac{PD}{Pm}$$
, ou $Pn.Pm = PC.\dot{P}D.$

Done

$$PC.PD = Pa.Pb = PA.PB.$$

Ce qui démontre que le point D est donné; et, par conséquent, que le point m est sur une droite donnée de position.

Observation. Cette droite lien du point m s'appelle, dans la Géométrie moderne, la polaire du point P; et ce point est dit lo polo de la droite.

Porisme CLXI. - Étant donné un point P dans lo

inclinés sur ceux du triangle QA'm'; et, par suite, les deux triangles sont semblables, comme le sont aussi les triangles PAB, QA'B'. Done

$$\frac{\mathbf{A}m}{\mathbf{A}'m'} = \frac{\mathbf{P}\mathbf{A}}{\mathbf{Q}\mathbf{A}'} = \frac{\mathbf{A}\mathbf{B}}{\mathbf{A}'\mathbf{B}'}.$$

Done, etc.

Porisme CLIX. - Étant donnés une droite AX, un point A sur cette droite, une raison à, et un angle de gran-

deur constante mOm' qu'on fait r tourner autour de son sommet : on peut mener une autre droite A'X' et déterminer sur cette droite un point A', tel, que les segments Am, A'm', formés par les côtés de l'an-

gle mobile, soient entre eux dans la raison à.

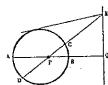
Qu'on fasse tourner l'angle autour de son sommet, de manière que son premier côté Om devienne O $oldsymbol{x}$ parallèle à AX, et soit Ox' son deuxième côté : la droite cherchée A'X' sera parallèle à cette droite Ox'. Maintenant qu'on fasse passer le premier côté de l'angle par le point A, et soit OA' son deuxième côté; le point A' sera situé sur cette

Ensin, que mOm' soit une position quelconque de l'angle, on inscrira entre les deux droites OA' et Om' une corde A' m' parallèle à O x' et telle que $\frac{A'm}{A'm'} = \lambda$. Cette corde A'm' sera la droite cherchée A'X'.

Cela est une conséquence du Porisme XLVIII, d'après lequel les côtés Om, Om' de l'angle tournant mOm' divisent les deux droites AX, A'X' en parties proportion-

Porisme CLX. - Un cercle et un point P étant don-

plan d'un cercle, si l'on demande un point M dont la distance à ce point soit égale à la tangente menée du point M au cercle : ce point M est sur une droite donnée de position.



Que sur le diamètre AB qui passe par le point donné P, on prenne le point Q déterminé par la relation

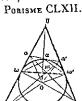
$$QA \cdot QB = \overline{QP}$$
,

et que par ce point on mêne la perpendiculaire au diamètre: cette droite est le lieu du point M.

Cela résulte du Lemme XXXIII (proposition 159), d'après lequel la droite MP menée d'un point quelconque de la perpendiculaire QM rencontre la circonférence en deux points C, D, tels, que l'on a

$$MC.MD = \overline{MP}$$
.

En esset, le carré de la taugente au cercle menée par le point M est égal à MC.MD. Donc cette tangente est égale à MP. Done, etc.



PORISME CLXII. - Quand un cercle est inscrit dans un triangle USS', si l'on mene une tangente aa qui coupe les côtés US, US' en a, a': le point de rencontre m des droites Sa', S'a est sur une droite donnée de position.

Cette droite est la corde qui joint les points de contact ω, ω' des deux côtés US, US' du triangle.

En effet, soit O le centre du cercle. L'angle a O a' (dont les côtés sont perpendiculaires aux cordes ωα, ω'α}, a pour mesure la moitié de l'arc ωαω'. Les angles ωΟU et ω'OU ent la même mesure, et, par conséquent, sont éganx à l'an-

gle a Oa'. L'angle SOS', qui a pour mesure la moitié de l'arc ωσω', est supplémentaire de l'angle aOa'. Il résulte de là, d'après le Corollaire III (p. 84), que l'on a, entre les deux systèmes de quatre points S, w, a, U et S', U, a', w' qui se correspondent deux à deux, la relation

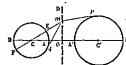
$$\frac{S_a}{S_\omega}: \frac{U_a}{U_w} = \frac{S'a'}{S'U}: \frac{\omega'a'}{\omega'U}.$$

Suivant le Corollaire II du Porisme XXIV, cette relation démontre que les points dans lesquels les trois droites Sa', SU, Sω' rencontrent les droites S'a, S'ω, S'U, respectivement, savoir: les points m, ω , ω' , sont en ligne droite,

Corollaire. Considérant le quadrilatère Saa'S', on conclut du Porisme ce théorème :

Quand un quadrilatère est circonscrit à un cercle, les cordes qui joignent les points de contact des côtés opposés passent par le point de rencontre des deux dia-

Ponisme CLXIII. — Deux cercles étant donnés, si les



tangentes menées d'un point à ces cercles sont égales ; ce point est sur une droite donnée de position:

Soient m un point satisfaisant à la question, et mO la

perpendiculaire abaissée sur la droite qui joint les centres C, C' des deux cercles. On a, en appelant R le rayon du cer-

$$\overline{mt}' = mE \cdot mF = (mC + R) (mC - R) = \overline{mC}' - R^2$$

$$= \overline{mO}' + \overline{OC}' - R' = \overline{mO}' + (OC - R) (OC + R)$$

$$= \overline{mO}' + OA \cdot OB.$$

SA, SB deux divisions semblables; done, d'après le Porisme CVII, le lieu du point m, qui divise la corde ab dans un rapport donné, est une droite donnée de position. Donc, etc.

Si le point O était au dehors de l'angle ASB ou de son opposé au sommet, cet angle devrait être égal à l'angle mobile, au lieu d'être supplémentaire.

Porisme CLXVI. - Deux points D, E étant pris sur le diamètre AB d'un cercle de manière qu'on ait

$$\frac{EA}{EB} = \frac{AD}{DB}:$$

les droites menées de ces points à un point de la circonférence, sont dans une raison donnée.

Cette raison est AD. De sorte qu'il faut démontrer que

$$\frac{MD}{ME} = \frac{AD}{AE}.$$

Cela est une conséquence du Lemme XXX (proposition 156). En esset, d'après ce Lemme, les droites MD, ME rencontrent la circonférence en deux points m', m" situés sur une corde perpendiculaire au diamètre AB. Par conséquent, les arcs An', Am" sont égaux, et la droite MA est la bissectrice de l'angle DME. Il s'ensuit qu'on a, dans le triangle DME,

$$\frac{MD}{ME} = \frac{AD}{AE}.$$

Observation. Nous avons supposé dans ce Porisme que les deux points D, E étaient donnés, et l'on n'a en à déterminer que la raison constante des deux lignes MD, ME.

Pareillement

$$\overline{mt'} = \overline{mO'} + OA' \cdot OB'$$
.

Or mt = mt', par hypothèse. Donc

$$OA.OB = OA'.OB'.$$

Équation qui détermine la position du point O, et par conséquent, la position de la droite OD perpendiculaire à CC', sur laquelle se trouve chaque point m satisfaisant à la question. Donc, etc.

Porisme CLXIV. - Un cercle est inscrit dans un triangle; chaque tangente rencontre les trois côtés du triangle

en trois points a, b, c; si l'on prend sur cette droite un point m déterminé par la relation

$$ma.cb = \lambda.mb.ca$$

dans laquelle), est une raison donnée: ce point sera sur une droite donnée de position.

Cela est une conséquence du Porisme CXXXI.

Ponisme CLXV. — Un angle a Ob de grandeur donnée tourne autour de son sommet O et intercepte une corda ab entre deux droites fixes SA, SB qui font entre elles un angle supplémentaire de l'angle mobile : le milieu de cette corde est sur une droite donnée de

position.

Plus généralement, si sur chaque corde ab, on prend un point m qui la divise dans un rapport donné $\frac{am}{bm} = \lambda$; le lieu de ce point est une droite.

En esset, il a été démontré (voir Porisme XLVIII) que les deux points a, b marquent sur les deux droites

Mais on peut ne donner qu'un de ces points, puisqu'il existe une relation entre les deux, et demander de déterminer l'autre, ainsi que la raison. On forme alors le Porisme que nous avons pris pour exemple dans le paragraphe III de l'Introduction (p. 39). La solution reste la même évidemment.

On peut, à l'inverse, prendre pour donnée la raison l, et demander de trouver les deux points D, E. Il en résulte le Porisme suivant qui, sans offrir de difficulté, ne se démontre cependant pas aussi simplement que le précédent. Toutesois, les Lemmes de Pappus sussissent à la démonstration.

Porisme CLXVII. - Étant donnés un cercle et une raison \(\lambda\): on peut trouver sur le diamètre AB deux points E, D, tels, que les distances de chaque point M de la circonférence à ces deux points seront entre elles dans la raison h; c'est-à-dire que l'on aura

$$\frac{ME}{MD} = \lambda.$$

Qu'on prenne $CE = \lambda \cdot CA$, et $CD = \frac{1}{\lambda} \cdot CA$; les deux points E, D ainsi déterminés satisferont à la question. En effet, il résulte de là que

$$\overline{\mathrm{CA}}' = \mathrm{CD.CE}:$$

et conséquemment, d'après le Lemme XXXIV,

$$\frac{EA}{AD} = \frac{EB}{BD}.$$

D'où l'on conclut, en vertu du Lemme XXX, que la corde m'm" est perpendiculaire au diamètre AB.

Par suite, les angles EMA, DMA sont égaux, et l'on a la proportion

$$\frac{ME}{ME} = \frac{AE}{AE}$$

$$\frac{AB}{AB} = \lambda$$
.

Or l'équation $\overline{CA}' = CD$. CE s'écrit: $\frac{CE}{CA} = \frac{CA}{CD}$. Done

$$\frac{CE - CA}{CA} = \frac{CA - CD}{CD}, \quad \text{ou} \quad \frac{AE}{CA} = \frac{AD}{CD},$$

$$\frac{AE}{AD} = \frac{C\lambda}{CD}$$

Mais $\frac{CA}{CD} = \lambda$, par construction. Done

$$\frac{AE}{AD} = \lambda$$
.

C. Q. F. D.

On peut encore conclure cette égalité du Lemme XXVII. Car par la réciproque évidente de ce Lemme, l'équation $\overline{\mathrm{CA}}^{\imath} = \mathrm{CD}$. CE entraîne celle-ci :

$$\frac{CE}{CD} = \frac{\overline{AE}^2}{\overline{AD}}.$$

Mais la même équation s'écrit aussi $\frac{\overline{CE}^2}{\overline{CA}^2} = \frac{\overline{CE}}{\overline{CD}}$.

Done

$$\frac{\overline{CE}'}{\overline{CA}'} = \frac{\overline{AE}'}{\overline{AD}'}, \quad \text{et} \quad \frac{CE}{\overline{CA}} = \frac{AE}{\overline{AD}}.$$

Or, par construction, $\frac{EC}{CA} = \lambda$; done

$$\frac{AE}{AD} = \lambda$$
.

nature du lieu est connue ou donnée, et la chose à trouver est seulement la position de ce lieu (ici la position implique nécessairement la grandeur).

Cette concordance montre que telle était bien la forme des propositions appelées Lieux chez les Anciens, comme tous les géomètres modernes l'ont admis et comme nous l'avons supposé dans notre Introduction, en définissant le théorème local, le lieu et le problème local (p. 33).

Du reste, l'ouvrage des Connues géométriques, de Hassan ben Haithem, qui nous a déjà offert un document précieux par les Porismes qui s'y trouvent (1), renferme aussi un témoignage péremptoire au sujet des Lieux. Car toutes les propositions de Lieux y sonténoncées dans la forme indiquée par Pappus et Eutocius. Il nous suffira de rapporter la proposition même dont il vient d'ètre question : elle est conçue en ces termes, d'après la traduction de M. L.-Am. Sedillot :

Lorsque de deux points connus de position on mêne deux lignes droites qui se rencontrent en un point, et que le rapport de ces deux lignes, savoir, celui de la plus grande à la plus petite, est connu : le point de rencontre est sur une circonférence de cercle, connue de position (Livre I, proposition IX) (2).

Cet énoncé est presque identique à celui de Pappus : et ne le sût-il pas dans les mots de l'original, il décrit incon-

Observations. La propriété du cercle à laquelle se rapportent les deux Porismes précédents, se peut traduire aussi sous la forme d'une proposition de lieu; ce qui serait encore un Porisme. On prendrait pour hypothèse, ou pour données de fait, les deux points E, D et la raison; et le Porisme exprimerait que le point M, dont les distances à ces points sont entre elles dans la raison donnée, se trouve sur un cercle donné de position.

Cette proposition de lieu faisait partie des Lieux plans d'Apollonius. Pappus la rapporte sous l'énoncé général suivant, qui implique le cas où la raison est égale à l'u-

Si de deux points donnés on mène des droites qui se rencontrent en un point, et que ces droites soient entre elles dans une raison donnée : ce point est sur une droite ou sur une circonférence donnée de position.

Eutocius, dans son Commentaire sur les Coniques d'Apollonius, lorsqu'il expose la définition des Lieux plans, solides, et à la surface, qu'on trouve aussi dans Pappus, démontre cette même proposition, comme exemple des Lieux plans. Il l'énonce ainsi :

Étant donnés deux points sur un plan et la raison de deux droites inégales : on peut décrire sur le plan un cercle, tel, que les droites menées des deux points donnés à chaque point de la circonférence soient entre elles dans la raison donnée.

Eutocius détermine le centre et le rayon du cercle; puis il prouve, d'abord que chaque point de la circonférence satisfait à l'énoncé de la proposition, et ensuite que, pour les points qui ne sont pas sur la circonférence, la relation n'a pas lieu.

On remarquera que l'énoncé d'Eutocius et celui de Pappus, sans être précisément dans les mêmes termes, sont néanmoins les mêmes au fond. Dans l'un et dans l'autre la

testablement la nature du lieu, ce qui seul constitue le caractère que nous avons fait ressortir.

Simson, en rétablissant les lieux plans d'Apollonins, a conservé rigoureusement la forme des énoncés transmise par Pappus. Mais il semble, dans un passage de son Traité des Porismes, n'avoir pas distingué, comme il le fallait, la disserence qui existe entre le lieu et le problème local.

Il ne parle pas formellement du problème local; cependant on peut croire qu'il le comprend implicitement dans la définition du lieu, quand il dit:

- a Le lieu est une proposition dans laquelle on demande
- » de démontrer qu'une certaine ligne ou surface est donnée,
- u ou de trouver une ligne ou surface dont tous les points
- aient une propriété commune décrite dans l'énoncé de la proposition; ou bien de démontrer qu'une certaine sur-
- face est donnée, ou de trouver une surface, sur laquelle
- des lignes tracées suivant une loi donnée, aient une propriété commune décrite dans l'énoncé de la proposi-
- n tion, n

C'est ce que l'auteur exprime plus brièvement ainsi :

- « Locus est Propositio in qua propositum est datam esse
- » demonstrare, vel invenire lineam aut superficiem cujus
- » quodlibet punctum, vel superficiem in qua quælibet linea
- » data lege descripta, communem quandam habet proprie-" tatem in Propositione descriptam. " (De Porismati-

bus, etc., p. 324.) Ainsi Simson dit qu'un lieu est une proposition dans laquelle on demande de démontrer que les points d'une ligne dont la nature est donnée, jouissent de telle propriété com-

Ou bien, une proposition par laquelle on demande de trouver la ligne dont tous les points jouissent de telle propriété commune.

Cette seconde partie de la définition constitue un pro-

⁽¹⁾ Voir ci-dessus, p. 44 et 51.

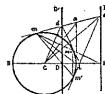
(2) J'ai signalú dans l'*Sperçu historique* (p. 527) le rapprochement qui se présente ici utilement, entre les ouvrages d'Apollonius, d'Eutocius et d'Ilassan ben Haithem.

On est autorisé à croire que la démonstration d'Eutocine est précisément celle d'Apollonius, puisque c'est de son Ouvrage qu'il extrait l'exemple des lieux plans qu'il vent donner. Elle a, du reste, la caractère des démonstrations du grand géomètre, Mais une autre considération ajoute à la probabilité de notre conjecture. C'est que la démonstration d'Eutoclus contient implicitement la Lomme que l'appus donne (proposition 119 de Commandius . 346. Édition de 1660) comme se rapportant au premier lieu du second livro p. 346. Euriton au rocojeonine - d'Apollonius, c'est-à-dire à la proposition en question.

blème local. Et rien, de la part de Pappus, ni d'Eutocius, ni d'Hassan ben Haithem, n'autorise à confondre le problème avec le lieu; puisque dans les propositions de lieux rapportées par ces trois géomètres, la nature du lieu est toujours donnée et jamais à trouver. Il est à remarquer que le témoignage scul d'Eutocius sussirait, puisqu'il se propose formellement de donner un exemple de ces propositions appclées lieux.

Du reste, ce que nous croyons être une inadvertance de Simson est tout à fait sans conséquence ultérieure dans le développement de ses idées sur la question des Porismes; et quand il cite, aussitôt après, deux propositions de lieux, il prend deux propositions conformes aux énoncés d'Apollonius, c'est-à-dire dans lesquelles la nature du lieu fait partic de l'hypothèse.

Porisme CLXVIII .- Quand doux droites DD', EE' perpendiculaires au diamètre AB d'un cercle, coupent ce



diamètre et son prolongement en deux points D, E de manière

$$\frac{EA}{EB} = \frac{AD}{DB},$$

et qu'une tangente au cercle rencontre ces droites en deux points

d, e: les distances de ces points au centre du cercle sont entre elles dans une raison donnée.

Cette raison est égale à AD. De sorte qu'il faut démontrer que

$$\frac{\mathbf{C}d}{\mathbf{C}e} = \frac{\mathbf{A}\mathbf{D}}{\mathbf{A}\mathbf{E}}.$$

Qu'on mène la tangente ent; la corde mut passera par le point D. Car si l'on connaît la droite eD et qu'on dé-

(274)

eu m et m' : les distances de ces points au point O seront entre elles dans une raison constante.

Soient O, O' les deux points qui divisent harmoniquement chacun des deux diamètres AB, A'B'. L'un ou l'autre de ces points satisfait à la question. Et en appelant D le milieu de OO' et C, C' les centres des deux demi-cercles,

$$\frac{Om}{Om'} = \sqrt{\frac{OC}{OC'}}, \quad \text{et} \quad \frac{O'm}{O'm'} = \sqrt{\frac{O'C}{O'C'}}$$

En esset, O et O' divisent harmoniquement le diamètre AB : c'est-à-dire que

$$\frac{OA}{OB} = \frac{O'A}{O'B}$$

et, par suite,

$$CO.CO' = \overline{CA}'$$
. (Lemme XXXIV.)

Il résulte de cette équation, d'après le PorismeCXLIII, que

$$\overline{\mathrm{Om}}^{\,2} = 2\,\mathrm{OC.D}\,p.$$

Pareillement

$$\overline{\mathrm{O}m'}^{*}=2.\mathrm{OC'}.\mathrm{D}p.$$

Done

$$\frac{\overline{Om}}{\overline{Om'}} = \frac{OC}{OC}$$
, et $\frac{Om}{Om'} = \sqrt{\frac{\overline{OC}}{OC}}$.

La démonstration est la même pour le point O'. Done, etc.

Ponisme CLXX. - Si autour d'un point P on fait tourner une droite qui rencontre un cercle en deux points M, m : les tangentes en ces points et les parallèles à

signe par g, h et D,, les points où elle rencontre la circonsérence et la corde mm', on aura, d'après le Lemme XXVIII.

$$\frac{\epsilon g}{\epsilon h} = \frac{D_1 g}{D_2 g}$$

D'un autre côté, d'après le Lemme XXXV,

$$\frac{eg}{eh} = \frac{Dg}{Dh}$$

Donc le point D, coincide avec D. Donc la corde mni passe par le point D. Pareillement, si l'on mène la tangente dmh, la corde min" passera par le point E. Enfin la corde m'm" est perpendiculaire au diamètre AB (Lemme XXX). Par conséquent, les angles Amm', Amm" sont égaux; et comme les droites Cd, Ce, Ca sont perpendiculaires aux cordes mm", nun', mA, les angles dCa, aCa sont égaux. On a ainsi, dans le triagle dCc,

$$\frac{Cd}{Ce} = \frac{ad}{ae}$$

Mais

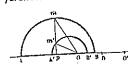
$$\frac{ad}{ae} = \frac{AD}{AE}$$

Done

$$\frac{\mathrm{C}d}{\mathrm{C}e} = \frac{\mathrm{AD}}{\mathrm{AE}}.$$

c. Q. F. B.

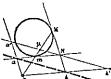
Porisme CLXIX. - Étant données deux demi-circonférences dont l'une est intérieure à l'autre et dont les bases



AB, A'B' sont sur la même droite : on peut déterminer un point O, tel, que si une perpendiculaire à AB, rencontre o les deux demi-circonférences

(275)

ces tangentes, menées par le point P, forment un parallélogramme PAN a dont la diagonale An est sur une droite



donnée de position. En effet, qu'on prolonge les côtés PA, Pa de quantités AA', aa' égales à ces mêmes côtés, respectivement: la droite A'a

sera parallèle à $\mathbf{A}a$ et passera par le sommet \mathbf{N} du parallélogramme. Soit µ le point où elle rencontre la corde PmM. Les trois droites NM, Nµ, Nm coupées par les deux PM, PA' donnent, en vertu du Lemme XI,

$$\frac{Pm}{PM}$$
: $\frac{\mu m}{\mu M} = \frac{A'A}{PA}$

Or A'A = PA. Done

$$\frac{Pm}{PM} = \frac{\mu m}{\mu M}$$

Ce qui prouve (Porismes CLX et ci-après CLXXVII) que la droite uN est celle que l'on appelle la polaire du point P, et, par conséquent, est donnée de position. La droite Λa qui lui est parallèle et à une distance sous-double du point P, est donc aussi donnée de position. c. Q. F. D. Porisme CLXXI. - Si entre deux tangentes à un

cercle Su, Su', on inscrit une autre tangente quelconque mm', et que d'un point P de la circonférence on mène les droites Pm, Pm'; une ligne a étant

donnée de grandeur : il existera une droite, donnée de

18.

Que l'on inscrive dans l'angle &PS une droite o cégale à la ligne donnée a, et parallèle à la tangente menée an point donné P, cette droite satisfera à la question.

Il faut démontrer que $\mu\mu' = o\sigma = \alpha$.

En effet, on a, entre les deux systèmes de points A, ω , m, S et A', S, m', ω' , d'après le scolie du Porisme CXXX, la relation

$$\frac{\omega m}{Sm}$$
: $\frac{\omega A}{SA} = \frac{Sm'}{\omega'm'}$: $\frac{SA'}{\omega'A'}$.

Or, les quatre droites PA, Po, Pm, PS coupées par SA et oc, donneut, en vertu du Coroli. Il du Lemme XI (p. 83),

$$\frac{\omega m}{Sm}: \frac{\omega \Lambda}{SA} = \frac{\sigma u}{\sigma u}$$

Pareillement,

$$\frac{\mathrm{S}\,m'}{\omega'\,m'}:\frac{\mathrm{S}\,\Lambda'}{\omega'\,\Lambda'}=\frac{\sigma\mu'}{\sigma'\,\mu'}.$$

Done

$$\frac{o\,\mu}{\sigma\mu} = \frac{\sigma\mu'}{\sigma'\,\mu'}, \quad \text{ou} \quad \frac{o\mu}{\mu\sigma} = \frac{\sigma\mu'}{\mu'\,\sigma'}$$

Et, par suite

$$\frac{\sigma\mu+\mu\sigma}{\sigma\mu}=\frac{\sigma\mu'+\mu'\sigma'}{\sigma\mu'},\quad \text{ou}\quad \frac{\sigma\sigma}{\sigma\mu}=\frac{\sigma\sigma'}{\sigma\mu'}.$$

Cela posé, je dis que $o\sigma = \sigma o'$. On sait effectivement que le triangle ASA' coupé par la droite R $\omega o'$, donne

$$\frac{RA}{RA'} \cdot \frac{\omega'A'}{\omega'S} \cdot \frac{\omega S}{\omega A} = 1;$$

ou, parce que $S\omega = \omega'S$, $\omega A = AP$ et $\omega'A' = A'P$,

$$\frac{RA}{RA'} = \frac{PA}{PA'}$$

On a de même, sur la diagonale bb,

$$\frac{Pb}{Pb'} = \frac{b6}{6b'}$$

La droite ef est déterminée par les deux points α, δ. Mais, d'après le Lemme XXVIII, quand le point P est au déhors du cercle, et, d'après le Lemme XXXV, quand ce point est dans l'intérieur du cercle, ces points α, 6 sont tonjours sur une même droite, quelles que soient les deux sécantes Paa, Pbb. Cette droite est la polaire du point P (Porisme CLX).

Le Porisme est donc démontré.

Ponisme CLXXIII. - Si autour d'un point fixe P, pris

sur le diamètre AB d'un cercle, on fait tourner une droite qui rencontre la circonférence on C et D, et que l'on mène DE perpendiculaire au diamètre AB: la corde EC passera

par un point donné.

Ce Porisme est une conséquence immédiate du Lemme XXX (proposition 156).

Porisme CLXXIV. - Etant donné un demi-cercle ADB,

si l'on mene une droite MM qui forme sur les tangentes aux extrémités de ce diamètre deux segments dont le rectangle AM, BM soit égal à un espace donné v : la perpendiculaire à cette droite, menée par le point m où elle rencontre le demi-cercle, passera par un point donné.

Qu'on prenne le point P déterminé par l'égalité

$$PA.PB = v_i$$

ce sera le point cherché.

Et si l'on considère les trois droites SA, SP, SA' coupées par les deux AA', ωω', cette équation, en vertu du Lemme XIX, conduit à celle-si:

$$\frac{R\omega}{R\omega'} = \frac{\pi\omega}{\pi\omega'}$$
, ou $\frac{\pi\omega}{\pi\omega'}$; $\frac{R\omega}{R\omega'} = 1$.

Maintenant en appliquant aux quatre droites PA, Pω, Pπ, Pω' coupées par les deux ωω' et oo', le Corollaire II du Lemme XI, déjà cité, on a,

$$\frac{\pi\omega}{\pi\omega'}: \frac{R\omega}{R\omega'} = \frac{\sigma\sigma}{\sigma\sigma'}$$

Done so = so'. Par consequent, l'équation ci-dessus

$$\frac{\sigma \sigma}{\sigma \mu} = \frac{\sigma \sigma'}{\sigma \mu'}$$

se réduit à $o\mu == \sigma \mu'$.

Il s'ensuit:

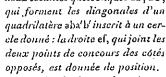
$$o\mu + \mu\sigma = \sigma\mu' + \mu\sigma$$

ou

$$o \sigma = \mu \mu'$$
.

Ce qu'il fallait démontrer. Donc, etc.

Ponisme CLXXII. — Si par un point P donné on mène deux sécantes quelconques sa', bb',



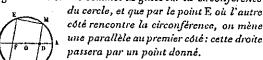
En esset, la diagonale aa' rencontre la droite af en un point α pour lequel on a, d'après le Lemme V,

$$\frac{P a}{P a'} = \frac{a a}{a a'}$$

Cela résulte du Lemme XXXI (proposition 157), d'après lequel la perpendiculaire à MM' menée par le point m, rencontre le diamètre AB en un point P, tel, que l'on a

$$PA.PB = AM.BM' = y$$

Porisme CLXXV. — Si autour d'un point D pris dans le plan d'un cercle on fait tourner un côté d'un angle droit dont le sommet M glisse sur la circonférence



Qu'on prenne sur AB le point F, tels que OF = OD, O étant le centre du cercle. Ce sera le point qui satisfait à la question.

La démonstration résulte du Lemme XXXVI (proposition 162).

En esset, qu'on prolonge la droite MD et sa parallèle jusqu'à leur rencontre avec la circonférence, en M' et E', on sorme un rectangle inscrit MEE'M'. D'après le Lemme, les deux côtés parallèles MM', EE' sont à égale distance du centre; donc tout diamètre les rencontre en deux points situés à égale distance du centre. Donc la droite EE' passe par le point F situé sur le diamètre AB à la distance OF égale à OD. Ce qui démontre le Porisme.

Porisme CLXXVI. — Un angle de grandeur donnée se meut de manière qu'un de ses côtés passe par un point donné, et que son sommet glisse sur une circonférence de cercle; son deuxième côté rencontre la circonférence en un deuxième point par lequel on mène une droite faisant avec ce côté un angle égal à l'angle mobile, mais dans un sens contraire: cette droite passe par un point donnée.

La démonstration de cette proposition se déduit du Po-

risme précédent qui n'en est qu'un cas particulier, celui où l'angle mobile est droit.

Reprenons, en esset, la sigure précédente et concevons qu'on ait abaissé du point D sur ME une oblique DN saisant l'angle N de la grandeur donnée; le point N sera sur un cercle. Car le triangle rectangle MDN est donné d'espèce: par conséquent, son hypoténuse DN est proportionnelle au côté DM. Si l'on portait sur DM une ligne égale à DN, son extrémité serait sur un cercle ayant le point D pour centre de similitude avec le cercle AMB. Et si l'on suppose que ce cercle tourne autour du point D d'un angle égal à MDN,

il deviendra le lieu du point N. Ce point est donc sur un cercle Σ . Le point A' où la droite DA', faisant avec DA l'angle ADA' égal à MDN, rencontre la tangente en A, appartiendra au cercle Σ , dont le centre sera en O' au point d'in-

tersection de la droite DA' et de la perpendiculaire à DF élevée par le centre O du premier cercle.

Maintenant si l'on suppose que du point F on abaisse sur la droite ME une oblique FI faisant l'angle en I égal à l'angle en N, mais en sens contraire, de manière que le premier étant à droite de la perpendienlaire DM, le second soit à gauche de la perpendienlaire FE: le point I sera sur un cercle qui sera évidenment le même que le cercle \(\Sigma\). Car son centre sera sur la droite FIs' faisant avec FB l'angle BFB' égal à EFI, et, par conséquent, coïncidera avec le centre O' de \(\Sigma\); en outre, son rayon O'B' sera égal à O'A'.

On conclut de là que: Si par un point D donné dans le plan d'un cercle E on mène une droite DN à un point de la circonférence, et par ce point une droite NI faisant avec DN un angle donné, puis par le point I une autre droite faisant avec NI un angle égal à l'angle N, mais dans un sens dissérent: cette droite passera par un point sixe F situé sur la

(282)

de sorte que d'après le Porisme CLX, si la droite LM rencontre le cercle, le point P est le point de concours des tangentes aux deux points de rencontre. On en conclut ce théorème:

Quand un angle est circonscrit à un cercle, si par son sommet on mêne une droite qui rencontre le cercle, les tangentes aux deux points de rencontre se coupent sur la corde qui joint les points de contact des deux côtés de l'angle. On peut dire, sur la polaire du sommet de l'angle.

Porisme CLXXVIII. - Un angle APB ctant circonscrit

à un cercle, et un point Q étant donné sur la corde de contact AB; si par ce point et le sommet de l'angle on mène deux droites qui se coupent en M sur le cercle: la corde mm' que ces droites interceptent dans le cercle passe par un point donné.

Ce point est sur AB et se détermine par la proportion

$$\frac{RA}{RB} = \frac{AQ}{QB}.$$

En esset, la droite PM rencontre la corde de contact AB en u, et l'on a

$$\frac{PM}{Pm} = \frac{\mu M}{\mu m}$$
. (Porisme CLX.)

Le point p' déterminé sur QM par l'équation

$$\frac{\mathrm{QM}}{\mathrm{Q}\,m'} = \frac{\mu'\,\mathrm{M}}{\mu'\,m'},$$

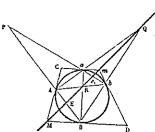
est, de même que le point R, sur la corde de contact des tangentes menées par le point Q (Porisme CLX). Cette corde, d'après le corollaire du Porisme précédent, passe par le point P.

droite DA qui fait avec le rayon O'D du cercle E, un angle ADA' égal au complément de l'angle donné N.

Ce qui démontre le Porisme.

Porisme. CLXXVII. — Si de chaque point d'une droite donnée de position dans le plan d'un cercle, on mène deux tangentes au cercle: la corde qui joint les deux points de contact passe par un point donné.

Soient MA, MB et ma, mb les tangentes menées par deux points M, m de la droite LM. Ces tangentes forment le qua-



drilatère circonscrit MCmD dans lequel les cordes Aa, Bb se rencontrent en un point Q de la diagonale Mm (Porisme CLXII, Coroll.), et les cordes Ab et Ba en un point R de la même diagonale. Soit

P le point de rencontre des deux cordes de contact AB, ab; et E, e les points où ces cordes rencontrent la droite LM.

Considérons le quadrilatère a Q bR dont les points de concours des côtés opposés sont A et B. La droite qui joint ces points, c'est-à-dire la corde AB, est rencontrée par les deux diagonales ab et QR en P et E, et l'on a (Lemme V),

$$\frac{PA}{PB} = \frac{EA}{EB}$$
.

Done, quelle que soit la corde ab, c'est-à-dire quel que soit le point m sur la droite LM, le point P par lequel passe cette corde est fixect déterminé. Cequi démontre le Porisme. Corollaire. On a, évidemment.

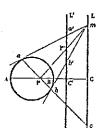
$$\frac{Pa}{Ph} = \frac{ca}{ah}$$

Les deux dernières équations donnent celle-ci :

$$\frac{PM}{Pm}: \frac{\mu M}{\mu m} = \frac{\mu' M}{\mu' m'}: \frac{QM}{Qm'},$$

entre les deux séries de points P, M, m, μ et μ' , M, m', Q situés sur les deux droites PM, QM. Et cette équation prouve, d'après le Lemme XVI, que les trois droites P μ' , Q μ , mm' passent par un même point : c'est-à-dire, que la corde mm' passe par le point d'intersection des deux droites P μ' , Q μ , ou PR, QA. Ce qui démontre le Porisme.

Pobisme CLXXIX. — Deux droites parallèles LC,



L'C'étant données dans le plan d'un cercle, si par chaque point de I.C on mène deux tangentes au cercle et une droite au point milieu du segment que ces tangentes interveptent sur L'C': cette droite passe par un point donné.

En effet, on a vu dans le Porisme CLXXVII que la droite ab qui joint les deux points de contact de chaque

couple de tangentes, passe par un point fixe P, et que, o étant le point ou ab rencontre LC, on a la proportion

$$\frac{Pa}{Pb} = \frac{ca}{cb}$$

De plus les trois droites ma, mb, mP rencoutrent la droite L'C' en a', b' et P', et l'on a

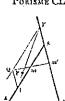
$$\frac{P'a'}{P'b'} = \frac{Pa}{Pb} : \frac{ca}{ca}$$
 (Corollaire II, p. 83.)

Done

$$\frac{P'a'}{P'b'} = 1$$
, ou $P'a' = P'b'$.

Le Porisme est donc démontré.

Porisme CLXXX. - Etant donnés deux droites SA,



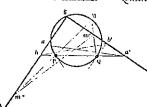
SA', un point P et un espace v: on peut trouver sur ces droites deux points I et J' en ligna droite avec le point P, et tels, que si l'on prend sur SA, SA', deux points m, m' lies par l'équation

$$Im.J'm'=\nu$$

la droite mm' passera par un point donné. Que l'on mêne par le point P la droite IJ', telle, que SI.SJ'=v; ce que l'on fait par le Lemme XXXVIII (proposition 164): les deux points I et J' satisfont à la question, et le sommet Q du parallélogramme construit sur les deux côtés SI, SJ'est le point par lequel passent les droites mm'.

Cela est une conséquence du Porisme CXVIII.

Porisme CLXXXI. - Quand deux droites qui tour-



nent autour de deux points P, Q d'un cercle,en se coupant toujours sur la circonférence, rencontrent deux droites fixes SA, SA', menées par unautre point du cercle,

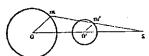
en deux points m, m' : la droite mm' passe par un point donné.

Soient a et b' les points où les tangentes en P et en Q rencontrent, respectivement, les deux droites SA, SA'; et b, a' les points de section de ces droites par la ligne PQ. Le point de rencontre des deux droites aa', bb' est le point

(286)

Le premier membre est constant, par conséquent le rapport $\frac{PS}{RS}$ l'est aussi. Ce qui démontre le Porisme.

Porisme CLXXXIII. - Étant donnés deux cercles, si l'on mène deux rayons parallèles: la droite qui joindra



leurs extrémités passera par un point donné.

En esset, soit S le point où la droite mm' rencontre la ligne des centres

OO': les deux triangles mOS, m'O'S sont semblables, et l'on a

$$\frac{SO}{SO'} = \frac{Om}{O'm'} = \frac{R}{R'},$$

en appelant R, R' les rayons des deux cercles. Ainsi le point S'est fixe. Donc, etc. Remarque. On a

$$\frac{Sm}{Sm'} = \frac{SO}{SO'} = \frac{R}{R'}$$

Par consequent les deux cercles sont deux figures semblables dont le centre de similitude est en S.

Il est clair que les tangentes aux deux cercles, en leurs points homologues mm' sont parallèles, puisque les rayons Om, Om' sont parallèles.

Dans la figure, les deux rayons parallèles Om, Om' ont la même direction. S'ils avaient des directions contraires, la droite mm' passerait encore par un point fixe, différent de S. Ainsi deux cercles ont deux centres de similitude.

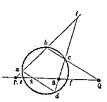
Porissie CLXXXIV. - Étant donné un triangle ABC, si par les deux points A, B, on fait passer plusieurs cercherché; c'est-à-dire que la droite mm' passe par ce point.

En effet, les quatre droites Pa, Pb, PS et Pm font entre elles des angles éganx à cenx des droites Qa', Qb', QS et Qm'. Par conséquent (d'après le Corollaire III, p. 84) la relation suivante a lieu entre les deux séries des quatre points S, a, b, m et S, a', b', m':

$$\frac{Sm}{Sa}: \frac{bm}{ba} = \frac{Sm'}{Sa'}: \frac{b'm'}{b'a'}, \quad \text{ou} \quad \frac{Sm.ba}{bm.Sa} = \frac{Sm'.b'a'}{b'm'.Sa'}.$$

Or cette équation prouve, d'après le Lemme X ou XVI, que la droite mm' passe par le point d'intersection des deux droites aa', bb'. Donc, etc.

Ponisme CLXXXII. — Un quadrilatère étant inscrit dans un cercle, si on le déforme en faisant tourner trois



de ses côtés autour de trois points fixes P, Q, R situés en ligne droite: le quatrième côté passera par un point donné,

En effet, soit S le point où le quatrième côté rencontre la droite sur laquelle sont les trois points P, Q, R; et soit i le point de ren-

contre des deux côtés opposés ab, cd du quadrilatère. Considérant le triangle PiR coupé par les deux droites ad et be, on a, d'après le théorème de Ptolémée,

$$\begin{split} \frac{\mathbf{P}a}{ia} \cdot \frac{i d}{\mathbf{R}d} \cdot \frac{\mathbf{RS}}{\mathbf{PS}} &= \mathbf{1}, \\ \frac{ic}{\mathbf{R}c} \cdot \frac{\mathbf{RQ}}{\mathbf{PQ}} \cdot \frac{\mathbf{P}b}{ib} &= \mathbf{1}. \end{split}$$

$$\frac{ic}{Rc} \cdot \frac{RQ}{PQ} \cdot \frac{Pb}{ib} = 1.$$

Multipliant membre à membre et observant que

$$ia.ib = ic.id$$
,

on obtient

$$\frac{Pa.Pb}{Rc.Rd} = \frac{PQ.PS}{RQ.RS}$$

cles, dont chacun rencontre les côtés AC, BC en deux points m, m'; un point D étant donné sur CA : on pent trouver un point E sur CB, tel, que les deux segments Dm, Em' seront entre eux dans un rapport 'donnė.

Le cercle mené par les trois points A, B, D rencontre le côté BC au point de-

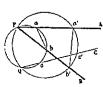
mandé E. Et l'on a

$$\frac{Dm}{Em'} = \frac{DC}{EC}.$$

En effet, les deux cordes DE, mm' sont parallèles, parce que les angles ADE, Anim' sont égaux entre eux, comme suppléments de l'angle ABC. Par conséquent

$$\frac{D_{m}}{E_{m'}} = \frac{DC}{EC} \cdot$$

Donc, etc.



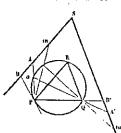
Ponisme CLXXXV. - Quand plusieurs cercles passent par deux points P, Q, et rencontrent deux droites fixes PA, PB, menées par un de ces points, en des couples de points a, b; a', b'; ...: le rapport des segments aa', bb' faits par deux quelconques des cercles, est donné.

En d'autres termes, les cercles divisent les deux droites en parties proportionnelles.

En esset, menons par le point Q une droite QC qui rencontre les cercles aux points c, c', \ldots Le rapport $\frac{aa'}{a}$ est donné (Porisme précédent); et de même le rapport $\frac{bb'}{cc'}$. Donc $\frac{aa'}{bb'}$ est donné.

Corollaire. Il résulte de là, en vertu du Porisme CVII; que : Les milieux des cordes ab, a'b', ... sont sur une méme droite.

Porisme CLXXXVI. - Un cercle est circonscrit à un



triangle PQR, et deux droites fixes SA, SA' sont parallèles aux deux côtés PR, QR; si autour des deux points P, Q on fait tourner deux droites quise coupent sur la circonférence du cercle et qui rencontrent SA, SA' en m et m'; le point A étant donné sur SA: on pourra trouver le point A'

sur SA' et une raison à, tels, que le rapport des deux segments Am, A'm' sera égal à cette raison.

La droite PA rencoutre le cercle en a, et la droite Qa rencontre SA' au point cherché A'. Soit B le point où la tangente en Prencontre SA, et B' le point où PQ rencontre SA'. La raison à est égale à $\frac{AB}{A'B'}$

En effet, le faisceau de quatre droites PA, PB, Pm et PR, a ses angles égaux à ceux des quatre droites QA', QB', Qm' et QR. Il s'ensuit, comme il a été démontré pour le Porisme CX, qu'il existe entre les deux systèmes de points A, B, m et A', B', m' la relation

$$\frac{Am}{AB} = \frac{A'm'}{A'B'}$$
 ou $\frac{Am}{A'm'} = \frac{AB}{A'B'}$.

Donc, etc.

IX Genre. (Voir p. 149.)

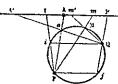
Posissie CLXXXVII. - Si l'on prend sur une droite OA deux points variables m, m', déterminant des segments

(290)

En effet, soient Ci, Cj les parallèles aux deux côtés A'B, AB menées par le centre du cercle. On démontre comme au Porisme CXXX, que les quatre droites CA, Cm, CI et Cj font entre elles, deux à deux, des angles égaux aux angles des droites CA', Cm', Ci, CJ'. Et on en conclut par la même demonstration que pour le Porisme CXXII, cette égalité

$$\frac{Am}{AI} = \frac{A'm'}{J'm'} \quad \text{on} \quad \frac{Am \cdot J'm'}{A'm'} = AI.$$

Porissie CLXXXIX. - Si autour de deux points P, Q



d'un cercle, on fait tourner deux droites qui se coupent en M sur la circonférence, et rencontrent une droite fixe LA en m et m'; le point A étant donné, ainsi qu'une ligne a: on pourra trouver

deux autres points, A' et J' sur LA, tels, que le rapport des rectangles Am. J'm' et A'm'. a sera constant.

Qu'on menc PA qui coupe le cercle en a; Qa détermine le point demandé A'. Soient Pj, Qi parallèles à LA; les droites Qj, Pi coupeut LA en J'et I. J'est le deuxième point demandé; et l'on a

$$\frac{Am \cdot J'm'}{A'm' \ \alpha} = \frac{AI}{\alpha},$$

ou bien

$$\frac{Am.J'm'}{A'm'} = AI.$$

En effet, les quatre droites PA, Pm, PI et Pj font entre elles des angles égaux à ceux des droites QA', Qm', Qi, QI'. Si l'on conçoit que ces droites issues du point Q rencontrent une transversale en des points A", m", I", J": en comparant ces points d'abord aux trois A, m, I, puis aux trois

(289)

dont le rectangle 0 m.0 m' soit égal au carré construit sur

née : on peut trouver un point E et une raison μ, tels, que Pon aura toujours

$$\frac{\mathbb{E}m.\,\mathbb{E}m'}{b.\,\mathbb{E}n}=\mu.$$

Il suffit de prendre OE = a, et $\mu = 2 \frac{OE}{k}$. Cela résulte du Lemme XXIII (proposition 149).

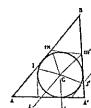
En effet, puisque $Om \cdot Om' = a^3 = \overline{OE}^3$, il s'ensuit, d'après ce Lemme, que

$$Em.Em' = OE(Em + Em'),$$

$$\frac{\mathbf{E}\,m\,\mathbf{E}\,m'}{\mathbf{a}\,\mathbf{E}\,n} = \mathbf{OE}, \quad \text{et} \quad \frac{\mathbf{E}\,m\,\mathbf{E}\,m'}{b\,\mathbf{E}\,n} = \frac{\mathbf{a}\,\mathbf{OE}}{b} = \mu.$$

Si le point E, au lieu d'être placé comme dans la figure, était pris du même côté de O que m et m', ce serait le Lemme XXV (proposition 151) que l'on invoquerait.

Porisme CLXXXVIII. — Quand un cercle est inscrit



dans un triangle AA'B, si l'on fait tourner sur la circonférence une tangente qui rencontre les côtés BA, BA' en deux points m, m': on peut trouver un point J' sur le côté BA', et une ligne μ, tels, qu'on aura toujours l'égalité

$$\frac{Am \cdot J'm'}{A'm'} = \mu.$$

La tangente parallèle à AB coupe A'B au point cherché J'. La tangente parallèle à A'B coupe AB en un point I, et l'on a µ = AI.

19

A', m', J', on obtiendra les relations

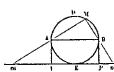
$$\frac{A'''m''}{A''l''}: \frac{J'''m''}{J''l''} = \frac{Am}{Al}, \quad \text{(Cor. des Lemmes III et XI, p. 83.)}$$

$$\frac{\mathbf{A}''m''}{\mathbf{A}''\mathbf{I}''}:\frac{\mathbf{J}''m''}{\mathbf{J}''\mathbf{I}''}=\frac{\mathbf{A}'m'}{\mathbf{J}'m'}.$$

Done

$$\frac{Am}{AI} = \frac{A'm'}{J'm'}, \quad \text{ou} \quad \frac{Am \cdot J'm'}{A'm'} = AI.$$
c. Q. F. D.

Ponisme CXC. - On a un cercle dont le diamètre est AB; la tangente en E est parallèle à ce diamètre, et les points I et I de cette droite appartiennent aux tan-



gentes en A et en B; si autour de ces points A, B on fait tourner deux droites qui se coupent sur la demi-circonférence ADC, et qui rencontrent la tangente IJ' en m et m' ; le rectangle

Im'. I'm sera égal à un espace donné augmenté du rectangle formé sur l'abscisse n'im' et une ligne donnée.

L'espace donné est IE.J'E, et la ligne donnée J'I. De sorte que l'équation à démontrer est

$$Im', J'm = IE, J'E + J'I.mm',$$

En esset, les quatre points m, m', I, J' sont liés par l'équation suivante, d'après le Porisme LIX,

$$Im'.J'm = Im.J'm' + J'I.mm'.$$

It suffit done de prouver que Im J'm' = IE J'E.

Or les triangles Aml, m'BJ', sont semblables. Donc

$$\frac{\mathrm{i}\,m}{\mathrm{AI}} = \frac{\mathrm{BJ}'}{\mathrm{J}'m'}$$
, on bien $\mathrm{I}\,m,\mathrm{J}'m' = \mathrm{AI}.\mathrm{BJ}'.$

Et comme AI = BJ'= IE = J'E, il en résulte

$$Im.J'm' == IE.J'E.$$

Done, etc.

Observation. On trouverait de même que si le point M était pris sur la demi-circonférence AEB, l'équation deviendrait

$$1m'$$
, $J'm + IJ'$, $mm' = IE$, $J'E$.

Elle répondrait donc à un Porisme exprimé par la formule

$$Im'$$
, $J'm + \mu$, $mm' = \nu$.

Mais cette formule ne se trouve pas dans les énoncés de Pappus. Nous en dirons plus loin la raison (à la suite du Porisme CXCIX).

Porisme CXCI. — Un trapèze Pi Qj est inscrit dans un cercle, et une droite AL parallèle à ses cotés Pj, Qi, est prise au dehors du cercle;

donné sur cette droite : on pourra trouver un autre point B', un rectangle v et une ligne u, tels, que si de chaque point M de l'arc iPj, on mène les droites MP, MQ, qui coupent LA en m et m', on aura toujours la relation

$$\Delta m \cdot B'm' = v + \mu \cdot mm'$$
.

Qu'on mêne PA qui rencontre le cercle en a, et Qa qui

Qu'on prenne sur l'arc ACB, qui complète la circonférence du cercle, le point C déterminé par le rapport $\frac{AC}{CB} = \lambda$; ce qu'on fait par le Lemme XXIX; puis $\mu = \frac{AB}{BC}$: on aura

$$\frac{Am + \frac{AC}{CB} \cdot Bm}{Cm} = \frac{AB}{BC}$$

En effet, les quatre points A, B, C, m sont les sommets d'un quadrilatère inscrit au cercle, dans lequel, d'après le théorème connu des Anciens et qui fait la base de leur trigonométrie, le produit des diagonales est égal à la somme des produits des côtés opposés; c'est-à-dire que

$$AB.Cm = Am.BC + Bm.AC$$

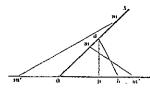
Ott

$$\frac{Am + \frac{AC}{BC}Bm}{Cm} = \frac{AB}{BC}.$$

le point A étant

Observation. Si la raison donnée est égale à l'unité, le point C sera le milien de l'arc ACB, et l'équation satisfera à l'énoncé du XIVe Genre (voir p. 172).

Porisme CXCIII. - Deux droites OA, OB' étant don-



nées, si l'on mène une droite mm' qui fasse soit avec AO et OB, soit avec OA et le prolongement de OB, un triangle m Om' égal à un espace donné v : le rectangle des deux segments Om, Om' est donné.

détermine le point A'. Puis, Pi et Qj qui coupent Al. en 1 et J' On prendra J'B' = AI, $\nu = AI$. A'A et $\mu = AI$. En esset, d'après le Porisme CLXXXIX, on a l'égalité

$$Am.J'm' = A'm'.AI,$$

et l'ou en conclut, comme au Porisme CXXIII, l'équation

$$Am.B'm' = AI.A'A + AI.mm';$$

ce qui démontre le Porisme.

Observation. Si l'on cherche ce que devient l'équation quand le point M est pris sur l'arc $ia\, Q\, bj$ qui avec iPj complète la circonférence, on trouve qu'il y a deux cas à considérer :

Pour les points des arcs ia, jb contigus à iPj, l'équation est

$$Am \cdot B'm' + AI \cdot AA' \rightleftharpoons AI \cdot mm'$$

Er pour les points de l'arc a Q b, elle devient

$$Am.B'm'+IA.mm'=IA.A'A.$$

Ainsi la circonférence est partagée en quatre arcs consécutifs jPi, ia, aQb, bj dont le premier et le troisième donnent lieu à deux équations différentes, et les deux autres à une scule équation.

Porisme CXCII. — Un segment de cercle AmB étant donné, ainsi qu'une raison le on peut trouver un point C et une raison u, tels, que les distances de chaque point m de l'arc de cercle AmB aux trois points A.

B, C auront entre elles la relation con-

$$\frac{Am + \lambda .Bm}{Cm} = \rho.$$

Cela résulte des Lemmes XX et XXI. En effet, soit ab une position de la droite mnt. Les deux triangles aOb, mOm' sont égaux par hypothèse. Leurs angles en O sont égaux ou supplémentaires; par conséquent, d'après le Lemme XX dans le premier cas et le Lemme XXI dans le second, leurs surfaces sont entre clles comme les rectangles Oa.Ob et Om.Om'. Done ces rectangles sont égaux.

Soit aD perpendiculaire sur OB; on a

triangle
$$b \circ a = \frac{\circ b \cdot a \circ}{2} = v$$
,

d'où

$$Ob = \frac{2v}{aD} \text{ et } Oa.Ob = 2v.\frac{Oa}{aD}$$

Le rapport $\frac{0a}{aD}$ est constant, quel que soit le point a pris sur OA. Le rectangle Oa.Ob, et par conséquent Om. Om', qui lui est égal, est donc déterminé.

Ce qui démontre le Porisme,

Porisme CXCIV. - Si d'un point P pris sur le diamètre AB d'un demi-cercle, on mène

une droite à chaque point M de la circonférence, et que par ce point on mene à cette droite une perpendiculaire qui rencontrera en deux points m, m', les

tangentes en A et B: le rectangle Am. Bní sera donné. Cela résulte du Lemme XXXI (proposition 157) d'après lequeL

$$Am.Bm' = PA.PB.$$

Porisme CXCV .- Si autour d'un point fixe on fait tourner un côté d'un angle de grandeur donnée dont le sommet glisse sur une circonférence de cercle : l'autre côté de l'angle forme sur deux certaines droites données de position deux segments dont le rectangle est donné.

position de l'angle mobile. Qu'on mène A'X faisant l'angle XA'D égal à DNK, et B'Y parallèle à A'X; puis par le point D une perpendiculaire à ces droites, qui les rencontre en A et B. Le côté NK de l'angle N fait sur ces droites les segments Am,

B'm' dont le rectangle est égal à DA. DB.

Cela résulte du Porisme précédent; car si l'on mêne DM perpendiculaire sur le côté NK de l'angle mobile, le point M sera sur le cercle décrit sur AB comme diamètre (ce qu'on démontre par le raisonnement déjà employé au Porisme CLXXVI). Donc, d'après le Porisme précédent,

$$Am.Bm' = DA.DB.$$

C. Q. F. D.

Ponisme CXCVI.-Si autour de deux points fixes D, D' pris sur le diamètre AB d'un demi-cercle à égale distance du centre, on fait tourner deux droites parallèles qui rencontrent la circonférence en deux points, E, E': la droite EE' forme sur les tangentes en A et B deux segments

"Am, Am' dont le rectangle est donné.

Ce rectangle est égal à DA.DB.

En esset, les deux droites DE, D'E' étant parallèles et également éloignées du centre, l'angle DE E' est nécessairement droit. Car si l'on mène le diamètre perpendiculaire à ces droites, qui les rencontre en G et G', on a CG = CG'; par suite, d'après le Lemme XXXVI, la corde EE' est parallèle à GG'. L'angle DEE' est donc droit; et conséquemment, d'après le Porisme CXCIV, le rectangle Am. Am' est égal à DA.DB.

deux à deux, des angles égaux à coux des droites CA, Cm', Ci et CJ'.

On en conclut par le raisonnement employé pour la démonstration du Porisme XCVII, qu'il existe entre les deux systèmes de points D, m, I, et A, nl, J l la relation

$$\frac{Im}{ID} = \frac{J'A}{J'm'}$$
, ou $Im J'm' = ID J'A$.

Autrement. Les deux triangles 1Cm, J'm'C sont semblables, parce que les côtés IC, Cm, mI du premier sont également inclinés sur les côtés respectifs J'nt', nt'C, Cl'du second. On a done la proportion

$$\frac{\operatorname{I} m}{\operatorname{IC}} = \frac{\operatorname{CI}'}{\operatorname{J}' m'}; \quad \text{et} \quad \operatorname{I} m. \operatorname{J}' m' = \operatorname{IC}. \operatorname{CJ}' = \overline{\operatorname{IC}}'.$$

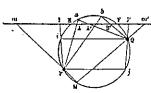
Aiusi le rectangle Im. I'm' est donné.

Cette seconde expression du rectangle Im . J'm' se ramène immédiatement à la première. Car dans le triangle ICA,

$$\overline{IC}' = ID.IA = ID.J'A.$$

XVI Genre. (Voir p. 177.)

Porisme CXCIX .- Si autour de deux points P, Q d'un



carcle, on fait tourner deux droites qui se coupent en M sur la circonférence, et qui rencontrent une corde EF en deux points m, m'; un point A étant

donné sur cette corde : on pourra trouver un second point W, un rectangle v et une ligne u, tels, que pour des points M du cerele, en nombre infini, on aura toujours la rela-

Autrement. Sans invoquer le Lemme XXXVI, les cordes EF, EF' sont égales, comme parallèles également éloignées du centre; et comme le diamètre qui leur est perpendiculaire passe par leurs milieux, GE = GE': donc EE' est parallèle à GG'; et l'angle DEE' est droit. Donc, etc.

Porisme CXCVII. - Étant donné un demi-cercle ACB, une tangente quelconque mm' fait sur les tangentes aux extrémités du diamètre AB, deux segments Am, Bm' dont le rectangle est donné.

Ce rectangle est égal au carré du rayon

du cercle. En effet, soient n le point de contact de la tangente, et O le centre du cercle. Les deux droites Om, Om' sont rectangulaires, parce qu'elles sont perpendiculaires respectivement aux cordes An, Bn. Le triangle mOnt est donc rectangle en O, et par conséquent on a $mn, m'n = \overline{On}^i = \mathbb{R}^i$. Mais mn = Am, et m'n = Bm'.

Done

tion

$$Am, Am' = R^{2}$$
.

Ce Porisme pourrait être considéré simplement comme un cas particulier du précédent.

Porisme CXCVIII.—Quand un losange AIBJ' est circonscrit à un cercle, toute tangente au cercle fait sur les côtés AI, AI' deux segments Im, J'm', dont le rectangle est donné. Soit D le point de contact du côté IA,

Im J'm' = ID J'A.

En effet, soit C le centre du cercle, et Ci, Cj parallèles à AJ' et AI, respectivement. Les quatre droites CD, Cm, CI, Cj, font entre elles

(299)

 $\frac{\mathbf{A}\,m\cdot\mathbf{B}'\,\dot{m}'\,+\,\mathbf{y}}{mm'}=\mu.$

on aura

Qu'on mène Pj et Qi parallèles à EF; puis Pi, Qj qui rencontrent EF en I et J'. Qu'on prenne J'B' = AI; B' sera le point cherché. La droite PA rencontre la circonsérence en a; et Qa rencontre EF en A'. On fera v = AI.AA', et $\mu = AI$.

Ensin, le point M devra se trouver sur l'arc iPi, ou sur l'arc ab déterminé par les lignes PA et QB'.

En esset, supposons-le sur l'arc iPj; les deux points m, m' ont, avec deux autres points C, C' déterminés de la même manière, la relation

$$\frac{Am}{Cm} = \lambda \frac{A'm'}{C'm'}$$
, (Porisme CXXIX.)

qui entraîne, comme au Porisme LXXVIII, la suivante

$$\frac{Am.B'm' + AI.AA'}{mm'} = AI.$$

Le Porisme est donc établi.

Si le point donné A est sur la circonférence, en E par exemple, le rectangle v est nul et la relation entre les deux points m, m', qui alors convient à tous les points M de la circonférence, devient

$$\frac{\mathbb{E}m.\mathbb{B}'m'}{mm'} = \mathbb{E}I.$$

C'est le cas prévu dans l'énoncé du XVIº Genre.

Observations. Si dans la figure sur laquelle nous venous de démontrer le Porisme, le point M est pris sur l'arc i E. ou sur jF, on trouve que l'équation devient

$$Am.B'm' = AI.A'A + AI.mm'.$$

Pour les points de l'arc Ea ou de l'arc Fb, elle prend

Am.B'm' + AI.mm' = AI.AA'.

Ainsi la circonférence est divisée en six arcs, iE, Ea, ab, bF, Fj, ij. Deux de ces arcs, ab, ij, qui sont opposés, se correspondent; des quatre autres, ceux qui se correspondent sont d'une part aE, bF, qui sont contigus à ab; de l'autre, iE, jF, qui sont contigus à ij: et chacune des trois équations se rapporte à l'un de ces couples d'arcs correspondants.

Il n'en était pas entièrement de même dans la figure du Porisme CXCI, qui appartient au X° Genre, et qui ne se distingue de celle dont nous venons de nous occuper que par la position de la droite AA' en dehors du cercle. Les différentes positions du point M exigeaient aussi trois équations: mais la circonférence n'était divisée qu'en quatre parties. A deux parties opposées répondait une seule des trois équations. Chacune des deux dernières parties employait seule une des deux équations restantes.

Mais on voit que les équations qui expriment les X° et XVI Genres se présentent ensemble dans une même question.

Toutefois dans l'ouvrage d'Euclide les questions relatives à ces deux Genres n'ont pas été les mêmes. Ce géomètre, guidé par une considération théorique importante qui tient aux imaginaires, comme nous allons le dire, a dû introduire dans les énoncés des Porismes dont Pappus a formé le XVI Genre une condition d'après laquelle ils s'appliquaient nécessairement à des questions, ou du moins à des figures, différentes des questions ou des figures qui ont fourni à Pappus son Xº Genre. Cette condition, c'est que le rectangle v puisse devenir nul par suite de la position du point A, condition qui n'existe pas dans le texte du X' Genre.

(302)

tives des points et des lignes, a demandé à Apollonius 87 cas; celui de la section de l'espace 84, et celui de la section déterminée 83, on doit être effrayé des obstacles multipliés qu'a dû rencontrer Euclide en introduisant dans la géométrie les équations à trois et à quatre termes qui font le sujet d'un grande partie des Genres indiqués par Pappus.

Sans doute la nature et le vaste ensemble des propositions variées auxquelles s'appliquent ces équations qui se rattachent à une théorie unique, celle des divisions homographiques, forment le mérite principal de l'ouvrage d'Euclide. Mais on peut croire que la nouveauté hardie que présentaient les Porismes, à raison des difficultés que nous avons signalées, a été aussi un des motifs de l'admiration de Pappus pour ce grand ouvrage, en tout si original et si profond.

Peut-être s'étonnera-t-on qu'Euclide n'ait pas donné de Porismes susceptibles de former un Genre exprimé par la troisième des équations renfermées dans la formule algébrique

 $Am.B'm' + \nu = \mu.mm'$

sayoir

Am.B'm'+IA.mn'=IA.AA'

équation qui se présente dans les mêmes questions que les deux premières, comme on l'a vu ci-dessus (Porismes CXC, CXCI et CXCIX).

Cette abstention s'explique naturellement; car cette équation répond précisément aux positions des points m, m' qui ne satisfont pas aux deux autres équations. Il aura donc suffi à Euclide d'en faire la remarque dans quelque scolie, pour éviter de multiplier inutilement les exemples de Porismes. Une réserve de ce genre est bien dans l'esprit du grand géomètre et dans le caractère de son ouvrage, on il n'a voulu donner que des principes et les germes d'une foule de conséquences importantes.

On reconnait immédiatement dans la géométrie moderne, que cette distinction revient au cas où les points doubles des deux divisions homographiques formées par les couples des points m, m' sont imaginaires.

Ce sont sans doute ces cas d'imaginarité dont Euclide a voulu montrer les conséquences, en distinguant avec précision des questions qui conduisent aux mêmes relations entre les points variables que l'on considère, et il les a caractérisées si nettement, que Pappus en a fait deux Genres séparés.

Les Livres de la section de raison, de la section de l'espace et de la section déterminée, nous apprennent que ces cas d'imaginarité avaient frappé vivement l'imagination des géomètres grecs. Apollonius y a trouvé le sujet de belles questions de maximum qui nous ont été conservées par Pappus, et qui suffiraient pour montrer la sagacité et le génie de celui que les Anciens avaient surnommé le grand géomètre.

La comparaison de ces trois ouvrages de la section de raison, de la section de l'espace et de la section déterminée, met aussi en évidence toute la hardiesse d'Euclide dans la conception de ses Porismes. Elle fait sentir combien il a eu à surmonter de dissionables pour donner toujours aux énoncés une rigoureuse exactitude.

Ces difficultés naissent pour la plupart de la diversité des positions relatives des points dans une figure, en d'autres termes, de la direction des segments; elles ont disparu dans la géométrie moderne par l'introduction des signes + et -.

Si le seul problème de la section de raison, le plus simple qu'on puisse imaginer, puisqu'il s'exprime par l'équation à deux termes $Am = \lambda .B'm'$, la plus simple aussi de toutes celles qui se trouvent dans les Porismes, si ce problème, dis-je, à raison de ces différences de positions rela-

(303)

XVII Genre. (Voir p. 184.)

Ponisme CC. — Si autour de deux points P, Q d'un cercle on fait tourner deux droites qui se coupent en M sur la circonférence et rencontrent en m et m' une tangente fixe AI: le rapport du rectangle Am. Am' à l'abscisse mm' sera donné.

Qu'on mène Qi parallèle à la tangente AI; et Pi qui coupe cette tangente en I; on aura

$$\frac{\mathbf{A}m.\mathbf{A}m'}{mm'} = \mathbf{AI}.$$

En esset, soit Pj parallèle à la tangente, et Qj qui coupe cette droite en J'. On a, d'après le Porisme CXXXIX,

 $Am'.Im \rightleftharpoons Am.AJ'.$

Or AF=1A. Done

$$Am'.Im = Am.IA$$
, ou $\frac{Am'}{Am} = \frac{AI}{mI}$

Par suite,

$$\frac{\mathbf{A}\,m'}{\mathbf{A}\,m'-\mathbf{A}\,m}=\frac{\mathbf{A}\mathbf{I}}{\mathbf{A}\mathbf{I}-m\mathbf{I}},$$

$$\frac{Am'}{mm'} = \frac{AI}{Am}, \quad \frac{Am \cdot Am'}{mm'} = AI.$$

C. Q. F. D.

Porisme CCI. — Quand un cercle est circonscrit à un triangle ABC, si autour des deux sommets A, B, on fait tourner deux droites qui se coupent en chaque point M de la circonférence, et qui rencontrent une corde el en m et m':

le rectangle em . sm' est à l'abscisse mm' dans une raison

Qu'on mêne la corde Bi parallèle à ef, et Ai qui rencontre ef en I, on aura

$$\frac{em \cdot fm'}{mm'} = eI.$$

En esset, nous avons vu (Porisme CXXVI) que

$$\frac{em \cdot fm'}{em' \cdot fm} = \frac{e \cdot D \cdot f \cdot D'}{e \cdot D' \cdot f \cdot D'} \quad \text{ou} \quad \frac{em}{fm} = \lambda \frac{em'}{fm'}.$$

Par conséquent, d'après le Porisme LXXXII.

$$\frac{em.fm'}{mm'} = eI.$$

XXI Genre. (Voir p. 201.)

Porisme CCII. - Un cercle et une droite DE étant donnés, si de l'extrémité A du diamètre perpendiculaire à DE on mêne une droite qui rencontre le cercle en m et DE en n : le rectangle Am. An est donné. En effet, les deux triangles AmB,

ADn sont semblables, comme étant rectangles et ayant l'angle A commun. Par conséquent,

$$\frac{Am}{AB} = \frac{AD}{An}$$
, on $Am.An = AB.AD$.

Ce qui démontre le Porisme.

Portsme CCIII. - Étant donnés deux cercles dont l'un a pour centre un point À de la circonférence de l'autre; si une tangente au premier rencontre le second en deux points m, m': le rectangle des distances de ces points au centre du premier cercle est donné.

(306)

Ce rectangle est égal au carré du rayon du cerele.

En esset, soient M, M', les points de contact des deux tangentes parallèles; l'angle MAM' est droit; par suite l'angle mCm', dont les côtés sont perpendiculaires aux cordes AM, AM', est aussi droit. Le triangle mCm' est donc rectangle en C; et conséquemment $Am.Am' = \overline{CA}$.

Porisme CCVI. — Si par deux points D, D pris sur

le diamètre d'un demi-cercle, à égale distance du centre, on mène deux droites parallèles Dm, D'm' terminées à la circonférence : le rectangle construit sur ces deux droites est donné.

Concevons que la circonférence entière soit décrite, et prolongeons la droite Dm jusqu'à la circonférence, en n. Je dis que Dn est égale à D'm'. En effet, joignons Cn et Cm'. Les deux triangles CDn, CD'm' sont égaux, parce qu'ils ont des angles égaux en D et D', et deux côtés égaux chacun à chacun. Donc

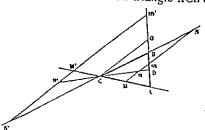
Dn = D'm'.

D'ailleurs Done

Dm.Dn = DA.DB.

 $Dm \cdot D'm' = DA \cdot DB$.

Ce qui démontre le Porisme. Porisme CCVII. — Un triangle ACB étant donné, si



on mène deux droites parallèles MN, M'N' qui forment l'une avec les deux cotés CA. CB et l'autre avec les prolongements de ves côtés au delà

Soit AB le diamètre du second cercle; AM le rayon du premier. On a

 $Am \cdot Am' = AB \cdot AM$.

En effet, les deux triangles rectangles AmB, AMm' sont semblables, parce que les deux angles ABm et

Am'M sont égaux comme étant l'un et l'autre suppléments de l'angle mm'A. Par conséquent,

$$\frac{Am}{AB} = \frac{AM}{Am'}$$
, ou $Am \cdot Am' = AB \cdot AM$.

Porisme CCIV. - Deux points O, A étant donnés sur une droite, si l'on prend sur cette droite, d'un méme côté du point O, deux points varia-bles m, m', tels, que l'on ait

$$\frac{0\,m}{0\,m'} = \frac{\overline{A\,m}^{\,1}}{\overline{A\,m'}^{\,1}}:$$

le rectangle 0 m. 0 m' est donné.

En effet, $Om \cdot Om' = OA$.

Ce Porisme n'est que la traduction du Lemme XXVI. quand les deux points m, m' sont pris du côté opposé au point A, à partir du point O; et du Lemme XXVII, quand m et m' sont pris du même côté que le point A.

Ponisme CCV. - Étant donnés un cercle et la tangente en un point A, si l'on mène deux tangentes parallèles entre elles qui rencontrent la tangente fixe en deux points m, m': le rectangle Am. Am' est donné.

da sommet C, les triangles MCN, M'CN' égaux en surface au triangle ACB : ces droites rencontrent la base AB du triangle en deux points m, m', et le rectangle des distances de ces points au milieu de AB est donné.

Ce Porisme se conclut du Lemme XXXII (proposition 158), pris dans l'état de généralité qu'il comporte, comme nous l'avons dit précédemment (p. 96). Soient D le milieu de AB, et n le point où MN coupe CD; on a, d'après le

$$\overline{Dm}^2 = \overline{DB}^2 \cdot \frac{D\pi}{DC + C\pi}$$
, ou $\overline{Dm}^2 = \overline{DB}^2 \cdot \frac{D\pi}{D\pi'}$

Par conséquent,

$$\overline{Dm}' = \overline{DB}' \cdot \frac{Dm}{Dm'}, \text{ ou } Dm.Dm' = \overline{DB}'.$$

Ce qui démontre le Porisme.

Observation. La démonstration du Lemme donnée par Pappus est assez pénible. Voici une démonstration directe du Porisme. Elle est fort simple, et la démonstration du Lemme en résulte immédiatement.

On a d'après le Lemme XX (proposition 145),

$$CA.CB = CM.CN$$
 ou $\frac{CA}{CM} = \frac{CN}{CR}$

Soit O le milieu de mm'; CO est parallèle à MN, et les triangles semblables ainsi formés donnent

$$\frac{\text{CA}}{\text{CM}} = \frac{\text{OA}}{\text{O}m}$$
 et $\frac{\text{CN}}{\text{CB}} = \frac{\text{O}m}{\text{OB}}$

Done

$$\frac{OA}{Om} = \frac{Om}{OB}$$
, ou $\overline{Om} = OA.OB$.

Cette équation, en verta du Lemme XXXIV dont on peut

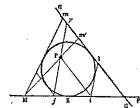
invoquer la réciproque, entraîne celle-ci :

$$\frac{m\,\mathbf{A}}{m\,\mathbf{B}} = \frac{m'\,\mathbf{A}}{m'\,\mathbf{B}}$$

Et de cette dernière, en vertu du même Lemme, on conclut

$$\overline{\rm DB}' = {\rm D}m.{\rm D}m'.$$

Ponisme CCVIII. - De chaque point M d'une tan-



gente à un cercle, on mène une seconde tangente et une droite passant par un point donné P; cette tangente et cette droite rencontrent une autre tangente HG en deux points m, m': on peut trouver deux points I, J' sur HG,

et un espace v, tels, que le rectangle Im. J'm' sera toujours égal à v.

En esset, concevons les points M, A, B, C de la droite EF. Les tangentes menées par ces points rencontrent la tangente HG, en m, a, b, c, et les droites menées des mêmes points au point P rencontrent cette même tangente en m', a', b', c'.

On a, d'une part,

$$\frac{MA}{MB}$$
: $\frac{CA}{CB} = \frac{ma}{mb}$: $\frac{ca}{cb}$, (Porisme CXXXI, Corollaire.)

et d'autre part,

$$\frac{MA}{MB} : \frac{CA}{CB} = \frac{m'a'}{m'b'} : \frac{c'a'}{c'b'}$$
 (Lemme III, Corollaire I, p. 82.)

Done

$$\frac{ma}{mb} : \frac{ca}{cb} = \frac{m'a'}{m'b'} : \frac{c'a'}{c'b'}, \quad \text{ou} \quad \frac{ma.m'b'}{mb.m'a'} = \frac{ca.c'b'}{cb.c'a'}$$

En estet, soient les trois cordes ρMM', ρAA', ρCC', dont la troisième est menée de manière que PC' soit parallèle à DX. Soit P' le point où la droite ρP rencontre la circonsérence. Les quatre droites PM, PA, PC, PC' rencontrent respectivement les quatre P'M', P'A', P'C', P'C en quatre points μ, α, γ, γ, situés sur une même droite (Porisme CLXXII).

Désignons par m, a, O, les points où les trois droites PM, PA, PC coupent DX; il existe entre ces points et les quatre μ , α , γ , γ_i , la relation

$$\frac{0m}{0a} = \frac{7\mu}{7a} : \frac{7\mu}{2a}. \quad \text{(Lemme XI.)}$$

Appelons pareillement μ' , α' , γ' , γ' , les points où les quatre droites qui partent du point P coupent DX; il existe encore entre ces points et les quatre μ , α , γ , γ_1 la relation

$$\frac{7\mu}{\gamma\alpha} \div \frac{\gamma_1\mu}{\gamma_1\alpha} = \frac{\gamma'\mu'}{\gamma'\alpha'} \div \frac{\gamma'_1\mu'}{\gamma'_1\alpha'}. \quad \text{(Coroll. I du Lemme III, p. 82.)}$$

Ensin les quatre droites PM', PA', PC, PC sont entre elles les mêmes angles que les quatre PM', PA', PC, PC qu'elles rencontrent sur la circonférence; et l'on en conclut, d'après les Corollaires II et III du Lemme XI (p. 83), que les points déterminés sur DX par ces deux systèmes de quatre droites ont entre eux la relation

$$\frac{\gamma'\mu'}{\gamma'\alpha'}$$
: $\frac{\gamma'_1\mu'}{\gamma'_1\alpha'}$ = $\frac{Oa'}{One'}$

Il résulte de ces trois égalités que

$$\frac{0m}{0a} = \frac{0a'}{0m'}, \quad \text{on} \quad 0m.0m' = 0a.0a'.$$

Ce qui démontre le Porisme.

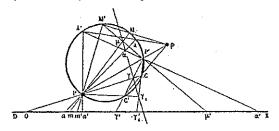
Portsue CCX. — Un cercle est circonscrit à un triangle PQR; et autour des deux sommets P, Q on fait tour(3og)

Cette équation pronve d'après le Porisme XCIII (1), qu'il existe deux points I, J' tels, que l'on ait

Im J'm' = constante = y.

Pour déterminer ces points, on fait d'abord passer par le point P, parallèlement à GH, une droite qui rencontre EF en i; la tangente menée par ce point i coupe GH en I. Ensuite on obtient le point J', en menant la tangente parallèle à GH, et par le point j où elle rencontre EF, la droite jP; cette droite coupe GH au point cherché J'. On détermine l'espace ν en prenant la tangente Mm dans une position particulière. Par exemple, qu'on suppose le point M en E, et soit F' le point où la droite EP rencontre HG_j on aura $\nu = IG.J'\sigma'$. Si l'on place le point M en G, et qu'on appelle g le point de contact de la tangente HG, on aura $\nu = Ig.J'G$.

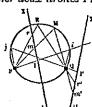
Ponisme CCIX. — Si autour d'un point p on fait tourner une corde MM' d'un cercle, et que d'un point P de la circonférence on mène PM, PM' qui rencontrent une droite fixe DX en deux points m, m'; il existera sur cette droite un point O, tel, que le rectangle Om.Om' sera constant.



(1) Dans ce Porisme XCIII, les deux séries de points m, a, b,..., m', a', b',... sont supposées sur deux droites différentes; mais il est évident que la relation démontrée subsiste quelle que soit la position relative des deux droites, et conséqueument quand elles coincident, comme rela a lieu ici,

(311)

ner deux droites PM, QM qui se coupent sur la circonfé-



rence et rencontrent, respectivement, deux droites fixes AX, A'Xi en deux points m, m'; si les parallèles à ces droites menées par les points P et Q ne se coupent pas sur la circonférence: on pourra trouver sur ces droites deux points I et Y, tels, que le rectangle I m. Y m' sera donné.

Qu'on mène la corde Qi parallèle à A'X', et Pi qui rencontre AX en I; puis la corde Pj parallèle à AX, et Qj qui rencontre A'X' en J'; ces deux points I et J' sont les points cherchés. r, r'étant les points d'intersection des droites AX, A'X' et des côtés PR, QR du triangle, respectivement, on aura

$$Im.J'm'=Ir.J'r'.$$

En esset, les quatre droites PM, PR, Pi et Pj sont entre elles des angles égaux à ceux des droites QM, QR, Qi et Qj. Par conséquent, si l'on conçoit que ces deux systèmes de quatre droites coupent une transversale menée arbitrairement en deux systèmes de quatre points m_1 , r_1 , l_1 , l_2 et m_1' , r_1' , l_1' , l_2' , on aura entre ces points l'équation

$$\frac{\mathbf{I}_{1}m_{1}}{\mathbf{I}_{1}r_{1}}:\frac{\mathbf{J}_{1}m_{1}}{\mathbf{J}_{1}r_{1}}=\frac{\mathbf{I}_{1}'m'_{1}}{\mathbf{I}_{1}'r'_{1}}:\frac{\mathbf{J}_{1}'m'_{1}}{\mathbf{J}_{1}'r'_{1}}.$$
 (Coroll. III, p. 84.)

Mais d'après le Corollaire II (p. 83), le premier membre de cette équation est égal à $\frac{Im}{Ir}$, et le second à $\frac{J'r'}{J'm'}$.

Done

$$\frac{\mathbf{I}m}{\mathbf{I}r} = \frac{\mathbf{J}'r'}{\mathbf{J}'m'}, \quad \text{ou} \quad \mathbf{I}m.\mathbf{J}'m' = \mathbf{I}r.\mathbf{J}'r'.$$

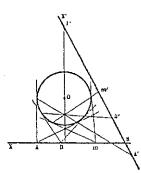
Ce qu'il fallait démontrer.

Observation. Si les parallèles à AX et A'X', menées par

les points P et Q, se coupaient sur la circonférence, le Porisme n'aurait-pas lieu, parce que les deux points I et J' n'existeraient plus; les droites qui les déterminent se tronvant alors parallèles, respectivement, aux droites AX, A'X'. Ce qu'on exprime dans la Géométrie moderne en disant que les points I et J' sont à l'infini. Ce cas a été le sujet du Porisme CLXXXVI.

XXII Genre. (Voir p. 229.)

Porisme CCXI. — Étant donnés deux droites SX, SX



non rectangulaires, dans le plan d'un cercle, et deux points A, B sur la première SX; si de chaque point m de SX on mène deux tangentes au cercle, et qu'on joigne les deux points de contact par une droite qui rencontrera SXI en un point m': on pourra trouver deux points A', B' sur cette seconde droite don-

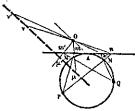
née, tels, que le rectangle Am. B'm' sera au rectangle A'm'. Bm dans une raison donnée.

Que par chacun des points A, B on mène deux tangentes au cercle, les cordes de contact rencontreront SX' aux points demandés A', B'. Soit J' le point où le diamètre du cercle perpendiculaire à SX coupe cette même droite SX'; la raison constante est B'J'; c'est-à-dire qu'on aura

$$\frac{Am,B'm'}{Bm,A'm'} = \frac{B'J'}{A'J'}.$$

(314)

existera une droite donnée de position, telle, que la seg-



ment up! forme sur cette droite par celles qui joignent le point donné O et les points m, m', sera toujours de la longueur donnée a.

En effet, on sait (Porisme

$$\frac{\mathbf{A}m.\mathbf{A}m'}{mm'} = \text{const.} = \frac{\mathbf{A}n.\mathbf{A}n'}{nn'},$$

Ott

$$\frac{Am}{An}: \frac{m'm}{m'n} = \frac{An'}{Am'}: \frac{nn'}{nm'}$$

Si d'un point donné O on mène des droites aux ciuq points A, m, m', n et n', et qu'une droite parallèle à la première OA les coupe aux points μ , μ' , ν , ν' , on aura (en vertu du Corollaire II, p. 83) les deux égalités

$$\frac{\frac{\Lambda m}{\Lambda n}}{\frac{\Lambda n'}{\Lambda m'}} : \frac{\frac{\mu' w}{m' n}}{\frac{\mu' \mu}{m'}} = \frac{\frac{\mu' v}{\mu' \mu}}{\frac{\nu \mu'}{\nu \nu'}}.$$

$$\frac{An'}{Am'}$$
: $\frac{nn'}{nm'} = \frac{\nu\mu'}{\nu\nu'}$

Il suit de là que

$$\frac{\mu' \, \nu}{\mu' \mu} = \frac{\nu \mu'}{\nu \nu'}, \quad \text{on} \quad \mu \mu' = \nu \nu'.$$

Il faut donc inscrire dans l'angle m O m' une droite de la longueur donnée a et parallèle à la droite OA. Cette droite satisfera à l'énoucé du Porisme.

Done, etc.

Porisme CCXIII. - Si par le centre de similitude de deux cercles on mêne une droite qui les rencontre en quatre points : les tangentes en ces points forment un pa-

En esset, les cordes de confact des tangentes menées par les trois points A, B, m et le diamètre perpendiculaire à SX, qu'on peut regarder comme la corde de contact des tangentes parallèles à SX, passent par un même point (Porisme CLXXVII). Or ces droites sont perpendiculaires respectivement aux droites menées du centre du cercle aux points $A,\,B,\,m,$ et parallèlement à SX. On a donc deux faisceaux de quatre droites, dont les quatre dernières font entre elles, deux à deux, les mêmes angles que les premières. Ces deux faisceaux sont coupés, respectivement, par les deux droites SX, SX', en des points qui, d'après les Corollaires du Lemme III, p. 83, ont entre eux la relation

$$\frac{\mathbf{A}\,\mathbf{m}}{\mathbf{B}\,\mathbf{m}} = \frac{\mathbf{A}'\,\mathbf{m}'}{\mathbf{B}'\,\mathbf{m}'} : \frac{\mathbf{A}'\,\mathbf{J}'}{\mathbf{B}'\,\mathbf{J}'}$$

$$\frac{\mathbf{A}\,\mathbf{m}\,\mathbf{.}\,\mathbf{B}'\,\mathbf{m}'}{\mathbf{B}\,\mathbf{m}\,\mathbf{.}\,\mathbf{A}'\,\mathbf{m}'} = \frac{\mathbf{B}'\,\mathbf{J}'}{\mathbf{A}'\,\mathbf{J}'}.$$

Ainsi le Porisme est démontré.

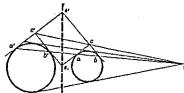
Observation. On cooçoit que la considération des deux points m et m' peut donner lieu à heaucoup d'autres Porismes qui se rapportent à la plupart des Genres du prenuier et du second Livre. Les deux points variables m, m' peuvent être pris sur une même droite, car il est permis de supposer que SX' coïncide avec SX. Il nous suffit d'indiquer ces Porismes, dont les démonstrations n'offriront aucune dissiculté, et qui néanmoins pourront faire le sujet d'exercices intéressants.

Porisme CCXII. - Autour de deux points P, Q d'un cercle on fait tourner deux droites qui se coupent sur la circonférence, et rencontrent une tangente fixe en m et m'; un point O étant donné ainsi qu'une ligne a : il

(315)

rallélogramme dont la diagonale ce' est sur une droite donnée de position.

En esset, les tangentes en a et a' sont parallèles, puisque

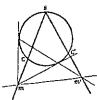


le point S est le centre de similitude des deux cercles (Porisme CLXXXIII, Remarque); les angles cab et c'a'b'

sont donc égaux. Or l'angle d'b'a' est égal à l'angle d'a'b'. Donc les angles en a et b' du triangle eab' sont égaux, et, par conséquent, ce triangle est isocèle. Ainsi ea = eb, et pareillement e'a' = e'b. De sorte que la diagonale ee' coïncide avec la droite lieu des points d'où l'on peut mener aux deux cercles des tangentes égales (Porisme CLXIII). Ce qui démontre le Porisme.

VIº Genre. (Voir p. 139.)

Porisme CCXIV. — Étant données dans un cercle deux



cordes SC, SC' qui partent d'un meme point S de la circonférence, on mène de chaque point 10 pris sur le prolongement de SC deux tangentes au cercle; la corde de contact rencontre SC' en un point m' : la droite mm' passe par un point donné.

En ellet, concevons que le point m prenne deux positions A, B sur la corde SC, puis vienne en S; les quatre cordes de contact, dont la dernière sera la tangente en S, passeront par un même point (Poiisme CLXXVII) et seront perpendiculaires aux droites menées du centre du cercleaux quatre points m, A, B, S. On aura done deux faisceaux

de quatre droites, dont les dernières qui partent du centre du cercle font entre elles, deux à deux, des angles égaux à ceux des premières. Par conséquent, ces deux faisceaux de quatre droites rencontrent, respectivement, les deux droites SC et SC en deux systèmes de quatre points m', A', B', S et m, A, B, S, entre lesquels a lieu l'équation suivante:

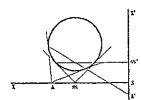
$$\frac{SA}{SB}: \frac{mA}{mB} = \frac{SA'}{SB'}: \frac{m'A'}{m'B'}$$
 (Corollaire III, p, 84.)

On conclut de là, d'après le Corollaire I du Porisme XXIV, que les trois droites AA', BB' et mm' passent par un même point.

. c. Q. F. D.

VII. Genre. (Voir p. 144.)

Ponisme CCXV. - Étant donnés deux droites rectan-



gulaires SX, SX' dans le plan d'un cercle, et un point A sur la première, si l'on mène de chaque point m de celle-ci deux tangentes au cercle, puis la vorde de contact qui rencontrera la seconde droite en un point m':

on pourra trouver sur cette droite un point A', tel, que le rapport des segments Am, A'm' sera donné.

La corde de contact des tangentes menées par le point A coupe SX' en A' qui est le point demandé. Soit S' le point où la corde de contact des tangentes menées par le point S coupe SX': on aura

$$\frac{Am}{A'm'} = \frac{AS}{A'S'}$$

En ellet, les cordes de contact des tangentes au cerclumenées par les trois points A, m, S passent par un même

(318)

XXIXª Genre. (Voir p. 257.)

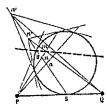
Porisme CCXVII. — Deux droites rectangulaires SX, SX' étant données dans le plan d'un cercle, si de chaque point m de la première on mène des tangentes au cercle, et qu'on joigne les points de contact par une droite qui rencontrera la seconde droite SX' en un point m': il existera un point O, tel, que chaque droite mm' fera un angle donné avec la droite menée du point m à ce point O.

Et si le point de concours S des deux droites données SX, SX' est situé sur la circonférence du cercle, la droite mm' sera parallèle à une droite donnée de direction.

Cette Proposition est une conséquence du Porisme CČXV et du CLV². Car, d'après le CCXV³, les deux points m, m' forment deux divisions semblables et par conséquent le Porisme devient le même que le CLV⁴.

II* Genre. (Voir p. 117.)

Ponisme CCXVIII. - Étant pris deux points P, Q



sur une tangente à un cercle, on fait tourner autour du premier une droite Pu qui rencontre le cercle en deux points, et l'on mène les tangentes en ces points, lesquelles se coupent en u': le point de concours m des droites Pu, Qu est sur une droite donnée de posi-

tion.

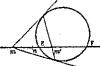
Soient S le point de contact de la tangente sur laquelle sont pris les points P, Q; B le point de contact de la seconde tangente issue du point P. Le point n' est situé sur la corde SB (Corollaire du Porisme CLXXVII). Supposons le point n de la droite Pn situé aussi sur SB: d'après le Porisme CLX,

point (Porisme CLXXVII), et rencontrent SX' en A', m', S'. Mais les droites menées du centre du cercle aux points A, m, S sont perpendiculaires à ces cordes, respectivement. On a donc deux systèmes de droites passant par deux points fixes, et faisant entre elles, deux à deux, des angles droits. Or les deux droites SX, SX' sont elles-mêmes à angle droit; et il en résulte, d'après le Porisme CLXXXVI, que les points A, m, S et A', m', S' divisent les deux droites SX, SX' en parties proportionnelles, c'est-à-dire que l'on a

$$\frac{Am}{AS} = \frac{A'm'}{A'S'}$$
, ou $\frac{Am}{A'm'} = \frac{AS}{A'S'}$.

IX' Genre. (Voir p. 149.)

Porisme CCXVI. — Si de chaque point in pris sur le



prolongement d'une corde EF d'un cercle on mène deux tangentes, et qu'on joigne les points de contact par une droite qui rencontre la corde EF en un point m', le milieu du segment mm'

étant n : le rectangle Em.Em' sera au segment En dans une raison donnée µ.

Cela résulte des Lemmes XXVIII et XXXIV; car, d'après le premier de ces Lemmes, on a l'équation

$$\frac{\mathbf{E}m}{\mathbf{E}m'} = \frac{\mathbf{F}m}{\mathbf{F}m'};$$

et par conséquent, d'après le second,

$$Em.Em' = En.EF$$

ou

$$\frac{\mathbb{E}\,m,\mathbb{E}\,m'}{\mathbb{E}\,n}=\mathbb{E}\,\mathbb{F}\,.$$

Done, etc.

les points n et n' seront liés par la relation

$$\frac{Sn}{nB} = \frac{Sn'}{n'B};$$

puisque le point n est situé sur la corde de contact des tangentes menées par le point n'.

Soient a, a' les points analogues à n et n', pour une autre droite menée par le point P. On a, de même,

$$\frac{Sa}{aB} = \frac{Sa'}{a'B}.$$

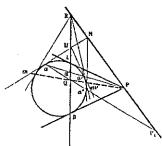
Ces deux équations donnent

$$\frac{Sn}{nB}: \frac{Sa}{aB} = \frac{Sn'}{n'B}: \frac{Sa'}{a'B}.$$

Et cette relation prouve, d'après le Corollaire III du Porisme XXIV, que les points d'intersection des trois droites Pa, PB, Pn, par les trois Qa', QB, Qa', une à une, respectivement, sont en ligne droite. C'est-à-dire que le lieu du point m est une droite qui passe par le point B.

Donc, etc.

Porisme CCXIX. - Étant donnés un cercle et deux



droites RA, RP, dont l'une rencontre le cercle en deux points A, B, et dont l'autre passe par le point de concours P des tangentes en ces points; une autre tangente quelconque aM rencontre ces deux droites en deux points M, N par les-

quels on mène les tangentes Ma', Na": le point de con-

En esset, cette corde passe par le point P (Porisme CLXXVII, Corollaire), et rencontre la droite AB en un point Q. La corde aa' passe de même par le point P et ren-

contre la corde AB en un point a : et l'on a $\frac{Pa}{Pa'} = \frac{aa}{aa'}$. (Porisme CLX.)

Les deux tangentes Ma, Ma' rencontrent la droite PQ en deux points m, m' : et de la relation précédente, eu vertu du Lemme XIX, on déduit celle-ci :

$$\frac{\mathrm{P}\,m}{\mathrm{Q}\,m} = \frac{\mathrm{P}\,m'}{\mathrm{Q}\,m'}$$

D'autre part, la corde de contact a a" passe par le point Q et rencontre RP en un point P, qui fournit la relation

$$\frac{P_1 a}{P_1 a''} = \frac{Q a}{Q a''}.$$

En appliquant encore le Lemme XIX, et en appelant m" le point où la tangente Na" rencontre PQ, on obtient

$$\frac{\mathbf{P}\,m}{\mathbf{P}\,m''} = \frac{\mathbf{Q}\,m}{\mathbf{Q}\,m'''}.$$

Si maintenant on compare cette équation qui détermine le point m", à celle qui a été établie tout à l'heure pour le point m', on en conclut que

$$\frac{\mathbf{P}\,m'}{\mathbf{Q}\,m'} = \frac{\mathbf{P}\,m''}{\mathbf{Q}\,m''}.$$

Ce qui prouve que les deux points m', m" coïncident. Donc les deux taugentes Ma', Na" se coupent sur la droite PQ.

Done, etc.

qui sera tantot du même genre que le premier, et tantot de genre différent; tantot place semblablement au premier, par rapport à la droite (qui joint les deux points), et tantot place différemment. Ces divers résultats dépendrent des différences des hypothèses.

Simson a développé cet énoncé général dans son Traité des Lieux plans d'Apollonius, et il en a fait le sujet de seize Propositions (IV-XIX). Ce nombre peut paraître, de nos jours, considérable. Cependant il est à croire, d'après les expressions de Pappus, et le grand nombre (cent quarantesept) des Propositions des deux Livres des lieux plans, qu'Apollonius en avait employé bien plus de seize pour exposer avec sa rigueur habituelle tontes les circonstances résumées dans cet énoncé.

(321)

Porisme CCXX. - Si sur les rayons menés d'un point O aux différents points M d'une droite L, on construit des triangles OMm semblables à un triangle donné : leurs sommets m seront sur une droite donnée de position.

En effet, l'angle en O de chaque triangle OMm est de grandeur donnée $\Omega,$ et chaque côté Om est dans un rapport donné avec le côté OM. Il s'ensuit que si, autour du point O, on fait tourner tous les côtés Om, d'une même quantité angulaire égale à $\Omega,$ pour les amener en Om' sur les côtés OM, les points m' seront sur une droite L' parallèle à la droite L; puisque le rapport de OM à Om' sera constant. Or les côtés Om ont tourné de l'angle Ω en conservant leurs inclinaisons respectives, et comme une figure de forme constante : donc le lieu des points m est une droite qui est venue s'appliquer sur la droite L'. Cette droite fait avec celle-ci un angle égal à l'angle Ω ; et sa distance au point O est à la distance de la droite L à ce point, dans le rapport connu des côtés Om, OM.

Ainsi le Porisme est démontré.

Remarque. Cette question est comprise dans l'énoncé général suivant, par lequel Pappus résume en grande partie, selon ce qu'il nous apprend, les Propositions du premier Livre des lieux plans d'Apollonius.

Si par un meme point, ou par deux points disserents, on mene deux droites qui soient coincidentes ou parallèles, ou qui fassent entre elles un angle donné, et que ces droites soient dans un rapport donné, ou bien qu'elles comprennent un espace donné: lorsque l'extrémité de la première droite sera sur un lien plan (une droite ou un cercle) donné de position, l'extrémité de la seconde droite sera aussi sur un autre lieu plan donné de position,

(323)

OMISSION.

XXIII Genre. (Voir p. 239.)

Porisme CXXXVI bis. - Des cercles passent par un même point Q, et d'un point donné Pon mène une tangente à chaque cercle; puis on prend sur PQ un segment Pm égal à cette tangente, et le point m' milieu de la corde

Qn que le cercle intercepte sur PQ : le carré de Pm est à l'abscisse mm' dans un rapport donné.

Ce rapport est 2 PQ; de sorte qu'on a

$$\frac{\overline{Qm}^{1}}{mm'} = 2 PQ.$$

En effet, puisque Pm est égal à la tangente menée du point P, on a

$$\overline{Pm}' = PQ \cdot Pn = (Pm' + m'Q) (Pm' - m'Q)$$
$$= \overline{Pm'} - \overline{Qm'};$$

ou

$$\overline{Pm'}^{i} = \overline{Pm'} + \overline{Om'}^{i}$$
:

Or, d'après le Lemme XXII (proposition 142, dans laquelle les lettres A, C, D, B correspondent à P, m, m', Q), on conclut de cette équation, que

$$\frac{\overline{Qm}}{mm'} = 2PQ.$$

c. Q. F. D.

Si le cercle auquel on mêne la tangente rencontrait le prolongement de PQ, auquel cas le point m' serait aussi suce prolongement, c'est-à-dire au delà du point Q, ainsi que le point m, ce serait le Lemme XXIV que l'on invoquerait. Dans ce Lemme (proposition 150) ce sont les lettres A, D, B, C qui correspondent à P, m, m', Q (1).

(1) On peut penser qu'il y a eu, dans le texte de Pappus, transposition des Lomines XXIII et XXIV, et que ce dernier devraitsuivre immédiatement le XXIII et XXV qui expriment aussi une même proposition dans deux états différents de la figure, se tronvocalont l'un à la suite de l'antre, comme cefa semble naturel; et il en est effectivement ainsi des deux Lemmes XXVI et XXVII qui expriment da mêma una scule proposition.

ERRATA.

Paga 63, ligna 3; après ces mots: à tous les points de la circonférence, ajoutes : ou de certaines parties de la circonférence,

Page 66, ligne 3 en remontant; au lieu de ces mois : n'ont pour la plupart, les deux premiers notamment, lises : n'ont pour la plupart, sauf le troisième qui se représente souvent,

Page 67, lique 2; après ect mots: les dix cas de la proposition des quatre droites; ajoutes: ou du moins une partie de ces dix cas,

Page 215, à la suite du Corollaire; ajoutes ce qui suit :

Observation. La promière partie du Porisme précédeut est le Lemme XXIII du les Livre des Principes mathématiques de la Philosophia naturelle, de Newton; et il n'est pas hers de propos de remarquer ici que l'illustre auteur énonce cotto proposition sous la forme mêma des Parismes, en ces termes : LEMMA XXIII. — Si recta dua positione data AC, BD ad data puncta A, В

terminentur, datamque habeant rationem ad invicem, et recta CD, qua puncta indeterminata C, D junguntur, secesur in ratione data in K : dico quod punctum K locabitur in recta positione data.

um K locabitur în recta positione casa. Page 223, ligne (4; au lieu de VIIIº Genre; lises : IXº Genre. Page 233, avant-dernière ligne; au lieu de AC.A'C', BC : AC.B'C'

Pour tout renseignement sur les publications diffusées par notre IREM

Vous pouvez soit:

- Consulter notre site WEB

http://www.irem-paris7.fr.st/

- Demander notre catalogue en écrivant à

IREM Université Paris 7 Case 7018 2 Place Jussieu 75251 Paris cedex 05

TITRE:

Les porismes d'Euclide

AUTEUR:

Michel CHASLES

RESUME:

Parmi les ouvrages perdus des mathématiciens Grecs, dont nous ne connaissons l'existence que par des commentateurs, les livres de porismes d'Euclide posent une énigme quant à leur contenu. Le mathématicien et historien des mathématiques M. Chasles a tenté une reconstitution de ce que pouvait être cet ouvrage. Une préface très détaillée retrace sa démarche.

MOTS CLES:

Histoire - épistémologie

Editeur: IREM

Université PARIS 7-Denis Diderot

Directeur responsable de la publication: M. ARTIGUE Case 7018 - 2 Place Jussieu

75251 PARIS Cedex 05

Dépôt légal : 1986 ISBN : 2-86612-042-6