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ABSTRACT 
 

      One of the interesting aspects of arithmetic is that mathematical proofs can be constructed without 
needing a large theoretical arsenal.  These proofs are supported by reasoning of a certain subtlety, playing 
with the notions of infinity and the absurd, and hence non-trivial results can be obtained.  This reasoning is 
easily accessible intuitively because it relates to the integers,  giving arithmetic a specific formative 
character to students undergoing  their apprenticeship in proof. 
 
     The history of mathematics offers us a large choice of proofs, some more formal, some less, some further 
from intuition, some closer. We have, moreover, commentaries by mathematicians regarding the elegance or 
the rigour of certain of these proofs, to which we can refer. 
 
      The corpus of texts we have chosen for reading revolves around  “Fermat’s Little Theorem” which is 
part of the final programme in secondary school.  The basic theoretical baggage is then limited to a single 
property which appears in different forms  – Euclid’s Lemma, Gauss’ Theorem, The Fundamental Theorem 
of Arithmetic –  according to one’s point of view and to the context.  The essential core of these methods of 
proof also manifests itself in different forms (infinite descent, the principle of recursion, the use of the 
smallest integer in a set of integers). 
 
      We shall set out the principal points of our analysis, supported by the reading of original excerpts .  A 
detailed article [7], including all the source texts, is available on the IREM site§§§§§. 
 
 

1 Introduction  
 
1.1 Our working group 
 

It is called M.:A.T.H., which stands for Mathematics : An Approach through Texts from 
History. It is composed by Alain Bernard, Martine Bühler, Philippe Brin, Renaud Chorlay, Odile 
Kouteynikoff, and Anne Michel-Pajus, and works within IREM  ( Institute for the Research in 
Mathematics Education) in the University of PARIS7 Denis Diderot.  

 
We are engaged in In-Service training for teachers of mathematics in secondary school, 

through organizing : 
� short training sessions ( 2 or 3 days) 
� an open group for collective reading of historical sources, presentations, discussions. 
and publishing : 
�  The Brochures M.:A.T.H :  collections of tested activities for students at secondary 

schools,  using historical sources. One example will be given at the end of this workshop. 
� Re-editions of old texts, some of which can be difficult to find.  
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� Mnémosyne, a journal whose objective is to give an opportunity for teachers to share their 
experiences and to provide food for thought across all areas concerning the history of mathematics. 
The n° 19 is dedicated to Arithmetic. Many related articles may be found in it. 

 
 

1.2 The subject : arithmetic. Why did we choose it ? 
 

Arithmetic, which was present in the curriculum set out in 1971 and disappeared for twenty 
years at the start of the eighties, has returned, as much in the college curriculum (Euclid’s 
algorithm) as in the last year of secondary school, for students majoring in mathematics.  

More precisely: 
• In the 3rd grade (students 15 years old)  :Euclid’s algorithm and GCD (on given 

numbers) 
• In the 2nd grade (16 years) : decomposition in prime numbers and GCD (on given 

numbers)  
• In the 1st grade  nothing ! 
• In Terminale (age 18 years, only for students majoring in mathematics)  

Congruence (modular arithmetic); GCD; Gauss and  Bézout’s Theorems. 
Applications to Diophantine equations, cryptography, and Fermat’s « Little »Theorem. 
Note that this curriculum is intended only for those students more interested in mathematics.1 

 
Arithmetic has interesting pedagogical characteristics.  We work with those familiar objects, 

the integers, obtaining non trivial but readily comprehensible results, which can be tested or 
discovered by experiment, but we deal with multiple, unusual, complex arguments.  

 
Some teachers were never taught arithmetic at Secondary School, and studied only “the theory 

of numbers” at University. None of the attendees at this workshop, coming from  Belgium, China 
(Hong-Kong), Israel, Italy, France, Portugal, United States, had ever been taught arithmetic in 
secondary school. It seems it is no longer taught in secondary School, except in France. 

 
So we use mathematical sources, and to be more precise, use the comparison between three 

different proofs or of Fermat’s Little Theorem, in order to give the teachers an opportunity to 
recall some past learning, to think more deeply about the issues involved, to better structure their 
knowledge, and to acquire a metaknowledge2  

 
This theorem is encountered in two equivalent forms.   
� If p is a prime and a an integer which is not divisible by p, then p divides ap-1 – 1 
� If p is a prime and a any integer, then p divides ap – a 
It is stated without proof by Fermat in his correspondence (in particular, in a letter to Frénicle 

of 16 October 1640).3   

                                                 
1 All secondary school French programs , with commentaries, are found online at www.eduscol.education.fr. 
2About metaknowledge, see, for instance : Groupe de travail « Math & Méta » 1990-1992. M. Baron, 
A.Robert (ed.) Cahier DIDIREM, numéro spécial mai 1993, IREM Paris 7. 
 
3 An earlier proof is found in Leibniz’s manuscripts, but it was  published only in 1863. You can find it in  
Mnémosyne 19. 
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2 A classification of the tools used in the proofs  
 

As a basis for discussion, we establish a classification of the tools used in the proofs4. These 
items will be better understood after reading the historical sources. 

 
Beyond the simple properties of divisibility (e.g. if an integer a divides both b and c, then a 

divides the sum b + c) and the Euclidean Algorithm, the theoretical arsenal reduces to a single 
fundamental result, found in diverse equivalent forms throughout history.  

� Euclid’s Proposition 32 called “Euclid’s Lemma”: if a prime number divides a 
product, then it divides one of the factors of the product 2. This is also encountered 
in the contrapositive form − if a prime number p divides neither a nor b, then it 
does not divide the product ab 

� Euclid’s Proposition 26:  If two numbers a and b are relatively prime to c, the product 
ab is also relatively prime to c.   

� Gauss’s Theorem: If a number divides a product and is relatively prime to one of the 
factors of the product, then it divides the other. 

The following is not found in the proofs studied here   : 
� The Fundamental Theorem of Arithmetic : the decomposition of an integer into a 

product of prime factors is unique.  (Note that the fundamental theorem often 
refers to the existence of the decomposition as well.  This does not concern us 
here.) 

These four theorems are logically equivalent5.  
 
We have also attempted to classify the methods we have met in the mathematical proofs 

studied.  They are of two types: 
 
Pigeonhole methods 

� The pigeonhole principle: The use of a finite number of pigeonholes to hold a strictly 
larger number of objects.  Thus at least one pigeonhole must contain at least two objects.  
This result is called the “pigeonhole principle” or the “Dirichlet principle”. 
� Disjunction of cases:  The situations studied are partitioned into a number of cases 
which are then examined exhaustively.  This is the method of “disjunction of cases”. 
� The bijection method:  Set up a bijection between two finite sets of the same 
cardinality. 

 
Staircase methods 

� Finite descent:  a finite descent arriving at a suitable integer which provides the 
conclusion either directly or by recourse to absurdity. 
� Fermat’s method of infinite descent: a descent which carries its own contradiction in 
itself as it represents a set of strictly decreasing positive integers.   
� Argument by recurrence (complete induction) 

                                                 
4 We have actually analysed a larger corpus of proofs than the ones shown in this paper. For more examples, 
see Mnémoyne 19 or [7] 
5 For a proof, see Mnémosyne 19 or [7]. 
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� The least integer method: this reasoning uses the least element of a non empty subset 
of ¥ . 

 
The last three methods are logically equivalent. 

 
 
3 Reading some proofs 
 

3.1 EULER (First proof) and LEGENDRE 
 

The first published proof, in 1736, is due to Euler.  He takes up the same idea in 1747, an idea 
taken again in Legendre in his “Théorie des Nombres” (Number Theory) of 1798 [5].  

Let’s begin by reading the proof by Legendre6 : 
 

Theorem. “If c is a prime number, and N any number not divisible by c, I state that the 

quantity 1 1cN − −  will be divisible by c,  so that we will have 
1 1cN

c

− −
= an integer (1)  ”  

Let x be any integer. If we consider the known formula 

2 3 1( 1) ( 1)( 2)
(1 ) 1 ...

1.2 1.2.3
c c cc c c c c

x cx x x cx x−− − −+ = + + + + + + , it is easy to see that all the 

terms of this series, with the exception of the first and the last, are divisible by c.  

Indeed, letting M be the coefficient of 
mx , we will have 

( 1)( 2)( 3)...( 1)

1.2.3...

c c c c c m
M

m

− − − − += , or .1.2.3... ( 1)( 2)( 3)...( 1)M m c c c c c m= − − − − + ; 

and since the second part is divisible by c, the first part must also be.  But the exponent m,  in 
the terms in question, does not exceed c-1.  So c, which is supposed prime, cannot divide the 
product 1.2.3...m ; thus it must divide M for every value of m from 1 to c-1.  Thus the quantity 
(1 ) 1c cx x+ − −  is divisible by c, for any integer x at all. 

Now let (1 )x N+ = ; the preceding quantity will become ( 1) 1c cN N− − − , and, since it is 
divisible by c, if we omit the multiples of c, we will have 1 ( 1)c cN N− = − , or 

( 1) ( 1)c cN N N N− = − − −  . But, on substituting ( 1)N − for N, and always neglecting the 
multiples of c, we will similarly have ( 1) ( 1) ( 2) ( 2)c cN N N N− − − = − − − . Continuing thus 
from equal remainders to equal remainders, we will necessarily arrive at the 
remainder( ) ( )cN N N N− − − , which is obviously zero.  Hence all the preceding remainders are 
zero; so cN N− is divisible by c. 

But cN N−  is the product of N with 1 1cN − − ; thus since N is supposed to be not divisible by 
c, 

1 1cN − −  must be divisible by c; which is what was to be proven. 
 
 (1) This theorem, one of the principal ones of number theory, is due to Fermat; it has been 

proved by Euler in various places in the Petersbourg Memoirs. 

 
The main tool is the binomial expansion. Euclid’s Lemma is used in the 2nd paragraph. It comes 

into the result via the divisibility of the binomial coefficients by a prime p. 

                                                 
6 Working translation from the original French edition, by Stuart Laird. 
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The method used for the conclusion is a finite descent  of equalities arriving at the suitable 
integer  0. Note the words “ by omitting the multiples by c”, a pre-notion of congruence. 

 
In the original proof, Euler too uses the binomial expansion, and Euclid’s Lemma. As he 

doesn’t use “omitting the multiples of c”, the proof is much longer. The conclusive method is 
somewhat different : 

 

Corollary 2 
[…] if we suppose that the form pa a− is divisible by p, the form( 1) 1pa a+ − −  is also 

divisible by p ; in the same way, under the same hypothesis, this form ( )2 2
p

a a+ − −  and so on 

( )3 3
p

a a+ − −  etc., and generally pc c− , will be divisible by p. 
théorème 3 : If p is a prime, every number like pc c−  will be divisible by p. 
If we take a = 1, as 0pa a− =  is divisible by p, it follows that the forms 2 2p − , 3 3p − , 

4 4p −  etc . and generally this one pc c−  will be divisible by the prime p. Q.O.D.7 

 
Here we find a complete induction although we would make it shorter today. As if this method 

was not well accepted, Euler gives more numbers than are necessary, as we sometimes do with our 
students. 

 
We have a third formulation of this proof, concisely explained by Gauss in his “Arithmetical 

Researches” in 1801 [4]. It is very close to Euler’s one. Note that he doesn’t explain the first part 
of the proof, but details the induction. 

 

This theorem, remarkable as much for its elegance as for its great utility,  is usually called 
Fermat’s Theorem after the name of its discoverer.  […] Fermat did not give a proof of it, although 
he was definite that he had found one.  Euler gave the first in a dissertation entitled “Proofs of 
some theorems relating to prime numbers”.[…]  It rests on the expansion of  ( 1)pa+ .  From the 
form of the coefficients it can be seen that  ( 1) 1p pa a+ − −  is always divisible by p ; so, as a 
consequence, ( 1) ( 1)pa a+ − +  will be also divisible by p if pa a−  is.  Now as 1 1p −  is 
divisible by p , 2 2p −  will be, consequently 3 3p − , and generally pa a− .  Thus, if p does not 
divide a , we will have pa a− is divisible by p  also.  What is just given suffices to make the 
spirit of the proof known.8 

 
 
 

3.2  TANNERY 
 

A new, very concise proof is found in the lectures given by Jules Tannery at the Ecole Normale 
Supérieure. His students Emile BOREL and Jules DRACH  gave it in [1] in 1894.   

 

In the case where m is a prime number p, each number not divisible by  p is prime to this 
number : so, if in the expression ax, where a is not divisible by p, one substitutes p – 1 numbers x 
which are mutually not congruent to each other and to 0 (mod.p), one will obtain p – 1 numbers 

                                                 
7 Working translation from the original latin edition, by A. Michel-Pajus. 
8 Working translation, from the french edition, by Stuart Laird. 
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congruent to these same numbers x1, x2,...xp−1 set out in another order.  The product of the 
numbers ax1, ax2,...axp−1 is thus congruent (mod.p) to the product x1x2...xp−1, and as the last 
product is prime to p, one concludes ap−1 −1≡ 0  (mod.p). 

This is the celebrated theorem of Fermat, which plays an essential role, in number theory, and  
we will incidentally meet other proofs of.  Observe that it can be immediately deduced from the 
following proposition: For any integer a and prime number p whatever, we have ap − a ≡ 0  
(mod.p). 

 
This proof rests on the bijection method. It reveals the power of the pigeonhole principle, a  

principle which appears so self evident, and which is here utilized by its avatar, the bijection 
principle, in setting up a bijection between two sets of the same cardinality. This method avoids 
recourse to  infinity and to recurrence.  

 
The Fundamental Theorem of divisibility is necessary in order to show that the 

ax1, ax2,...axp−1 are all different and different from 0 (mod p). But the rules of modular arithmetic 
avoid its explicitation. Tannery’s proof is seductive and elegant by means of its brevity and the 
magisterial way it uses congruence.   

 
This proof is found in the document accompanying the Terminal S syllabus. The advantage of 

using this proof in class is that, even if more than six lines of Tannery are necessary for our 
Terminal students’ understanding, by the end of our efforts the proof can be understood in its 
totality without forgetting the premises or losing the logical flow. 

 
 

3.3  EULER ( Second proof) and GAUSS 
 

In 1758 [2], Euler published an entirely different proof of Fermat’s Theorem that appeared, a 
priori, more complex than the first, and into which we shall go later on.  Euler utilized a 
classification of integer powers according to their remainder on division by the prime p. The 
method consists of partitioning the set under consideration into a finite number of pigeonholes 
until it is exhausted, coupled with the use of the least element of a non empty set.  At base the 
theorem rests on Euclid’s Lemma.  It is this proof that Gauss takes up in his “Arithmetical 
Researches” of 1801, but in a simpler form due to the language of congruence, and the use of 
Gauss’s Theorem that he proves in the same book. 

   
Why did Euler and Gauss choose a proof that is a priori much more complicated? 
Gauss takes up the explanation given by Euler himself: “the binomial expansion seems to be a 

stranger in number theory”.  The new proof respects the “purity of arithmetic’. 
We give here a summary on the proof9.  
 
Before entering on the proof of the theorem itself, Euler explored the remainders of the powers 

of 7 modulo 641.  
After experimenting with particular powers, Euler took up his exploration of the general case.  

Recall that, given a prime p and a number a  not divisible by p, it is a question of showing that the 

                                                 
9 The proof by Euler can be found in English on the web . 
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remainder of the division of ap-1 by p is 1.  The idea developed by Euler is to “classify” the powers 
of a according to the (p – 1) non null possible remainders modulo p.  We summarize the steps of 
the proof below. 

Euler begins by showing that there exist powers of a with remainder 1:  indeed, the series a ,a2 
,a3,…,aλ,… being infinite, and the number of possible non null remainders of  the divisions 
modulo p being finite and equal to (p-1), there exist powers aλ and aµ  with λ<µ, having the same 
remainder on division by p.  Thus the prime p divides am – aλ = aµ-λ(aλ-1).    As the prime p does 
not divide aµ-λ, p divides aλ-1, and the remainder of the division of aλ by p is certainly 1. 

Now consider the smallest, strictly positive integer λ, having this property (the remainder of the 
division of aλ by p is 1).  Then the λ powers 1, a, a2, a3,…,aλ-1 are all different, non null 
remainders in the division by p.  If not, the preceding argument gives an integer ′λ  such that p 
divides 1a

′λ − , which has been excluded.  If all the (p-1) possible remainders modulo p are 
obtained, then λ = p – 1 and the theorem is proved. 

If not, let r be one of the non null remainders which has not been obtained. Note that r is prime 
to p. Consider the λ numbers r ,ra,ra2,ra3,...,ra λ−1 ; these numbers are all the different 
remainders obtained in the p (if not p would divide raν − ra µ = raν −µ (aµ − 1) and thus aµ −1 
with µ < λ). In the same way, raµ

 et aν
 cannot have the same remainder;  if so, p divides 

r − aν −µ
 which contradicts the fact that r has not been obtained as a remainder in the division of a 

power of  a by p. If we add these remainders to the preceding, we thus obtain 2λ different, non null 
remainders modulo p. If we have all of them (p – 1) = 2λ . 

If not, consider a remainder s which has not been obtained yet and the numbers 
s,sa,sa2,sa3,...,saλ−1. In the same way we can show that all of these numbers have different 
remainders from those obtained before.   If all the possible non null remainders have been 
obtained, p – 1 = 3λ.  

If not, we continue… As the number of remainders is finite, the procedure must terminate. 
When all the possible remainders have been obtained, the same argument proves that there exists 
an integer t such that : p – 1 = tλ.  

Then 1)(111 −=−=−− ttp aaa λλ . Now 1−tx  is divisible by x – 1 for every integer x, as 
1...)(1(1 21 ++++−=− −− xxxxx ttt . Thus 11 −−pa  is divisible by 1−λa . As p divides 

1−λa , p divides 11 −−pa  also and the theorem is proved. 
 
In modern terms, this argument comes back again by making a partition of the multiplicative 

group (Z / pZ) *  formed from the equivalence classes according to the cyclic subgroups generated 
by a. This type of idea allows Lagrange’s Theorem to be proved: the order of a subgroup of a 
finite group divides the order of this group.  Or inversely, by using the Lagrange’s theorem, we 
find the classical proof of the Fermat’s Little Theorem taught at University. 

 
But the interest of this proof  not only lies in opening the way for subsequent developments ; in 

spite of its complexity, it also appears relatively natural, resulting from an experimental 
exploration of the powers of a number.  

 
This point of view returns us to the beginning, for it was in terms of powers that Fermat had 

stated his theorem in his letter to Frénicle of 18 October 1640. 
 

3.4  FERMAT’s Letter 
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It seems to me, after that, it is necessary to talk to you of the foundation upon which I base the 
proofs of everything concerning geometric progressions. 

 Every prime number infallibly measures [divides] one of the powers minus 1 of some 
progression or other, and the exponent of the said power is a factor of the prime number –1. After 
the first power that satisfies the question has been found, all those whose powers are multiples of 
the exponent of the first will satisfy the question in the same way. 

Example : let the given progression be 
1     2     3     4     5     6 
3    9    27   81  243  729 
etc. with its exponents below. 
 For example, take the prime number 13.  It measures the third power minus 1, of which the 

exponent, 3, is a factor of 12, which is one less than the number 13, and because the exponent of 
729, which is 6, is a multiple of the first exponent, which is 3, it follows that 13 also measures the 
said power 729-1.  

 And this proposition is generally true for all progressions and all prime numbers.  I will 
send you the proof of this, unless I fear it to be too long.   

 
The point at issue here seems to be working with the powers of an integer.  And the result is 

more precise than that generally called “Fermat’s Theorem”, since it is concerned with the smallest 
integer n such that the prime p divides an – 1.  One would love to know the path Fermat’s thought 
took in order to arrive at what he called “The foundation on which I support the proofs of 
everything concerning geometric progressions.” 

 
4 Commentaries and complements10 
 
4.1 About Gauss’s Theorem and modular arithmetic 
 
It is well known that the book by Gauss : Disquisitiones arithmeticae (1801) played a central 

role in the development of arithmetic. Euler and Legendre follow the euclidean tradition, even if 
Legendre gives a new proof of  Euclid’s Lemma in his Theorie des Nombres ( 1798). 

 Actually, Gauss was not the first in publishing the Gauss’s Theorem. We find it in Les 
Nouveaux elements de Mathematiques by Jean Prestet, 2nd edition, 1689. This book caused little 
stir because mathematicians at this time were more interested in “Infinitesimal Analysis” than in 
“Finite Analysis”. 

Anyway, Gauss began to work on the subject in 1795  “with no idea about what have had done 
on the subject”, as he explains in his preface. He begins ( Section I) by establishing the theory of 
congruence, then (Section II) Gauss’s theorem, proved with the method of the least element and an 
argument by absurdity. He explains why he proves this theorem:  “ The proof of this theorem was 
given by Euclide, El.VII,32. But we didn’t want to omit it, inasmuch as many modern authors 
have presented vague reasoning instead of a proof, or have neglected this theorem; in order to give 
a better understanding, in this very simple case, of the spirit of the method we will use later for 
very difficult points.” Then, Gauss proves the uniqueness of the decomposition into prime 
numbers. He studies the remainders of the powers in Section III ( here we find the proof of Little 
Fermat’s Theorem).  

                                                 
10 for any detail and reference, see [7] 
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He set up all the tools. However, it is doubtless not by chance that a century was needed after 
the publication of Gauss’s book in order for the Tannery’s proof to appear, as brief as it is striking.  
All this time was necessary for the theory of congruence, used implicitly by Legendre in 1798, 
then formalized by Gauss in 1801, to dominate completely arithmetic. 

For teachers ( and maybe for students) it is useful to prove the logical equivalence of the 
different forms of the Theorem of divisibility. 

 The syllabus of Terminale S includes Bézout’s Theorem. This theorem is stronger than our 
fundamental theorem of divisibility. Its principle is given by Bachet in “Problèmes plaisants et 
délectables”(1624), et taken again by Bézout in his “ Cours d’Algèbre” (1766). However, we 
didn’t encounter it in our authors.11 

 
 
4.2 About the methods 
 
The pigeonhole method is an elementary principle which students understand immediately, but 

would never think of using themselves.  We can show them that this principle allows prooving of 
non-trivial results. 

Disjunction of cases is very useful when working modulo an integer. When students have well 
understood its validity, it is greatly appreciated by certain students who use it spontaneously to 
solve certain exercises. 

 
The  diversity of staircase methods is worth examining more deeply.  
From an historical and epistemological point of view, we can question the fact that the 

mathematicians use one or the other.  
The method of complete induction is generally attributed to Pascal, even if we could find it 

earlier ( in Maurolycus, for instance)12. However, its use is not yet that natural and usual in Euler’ 
and even in Gauss’s time. 

 The complete induction is part of the curriculum, not that easy to appropriate for students. 
 
 Fermat prefers its method of infinite descent, but it is  strongly criticized by Wallis and others. 

Later on, Euler and Gauss avoid it , though they read very Fermat carefully. Finite descent avoids 
recourse to the infinite, often at the cost of  an argument by absurdity. ( This is not the case with 
Legendre). Moreover, the method of finite descent translates directly into useful algorithms . 

 
The least integer method too, avoids infinity, often with recourse to absurdity. It has a concise 

and smart appearance. At the tertiary level, students really like it.  
 
In line with the objective of training in logic, it is interesting to prove the equivalence of the 

three staircase methods13. 
 
4.3 A Homework assignment 
 

                                                 
11 See [9]  
12 See [13] 
13 See [7] 
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The history of mathematics shows us the interest of exploring the powers of a given integer 
before going on to further developments in Analysis. For our students, it is interesting to see that 
even great mathematicians use experimentation. 

As an example, we give a homework assignment here, using the beginning of the second proof 
by Euler. It allows to check students’ understanding about congruences. Question I.5 is a very 
classical question . 

 
“In an article published in 1758, Euler was interested in the remainders of powers of 7 

modulo 641. 

Preamble:  Read the text below and check all of Euler’s calculations.  Write down all the 
necessary calculations on your paper.  Are all of Euler’s calculations necessary to obtain the 
remainder of 7160?  Justify your answer. 

“ So here is a very rapid method of finding the remainders arising from the division of any 
power of any number.  For example, if we want to find the remainder arising from dividing 7160 by 
the number 641  

 
 

Powers Remainders 

71 7 

72 49 

73 343 

74 478 

78 288 

716 255 

732 284 

764 -110 

7128 -79 

7160 -1 

Indeed, since the first power 7 gives the 
remainder 7 the powers 72,73,74 give 49,343, 
and 478, i.e. –163, whose square 78 gives the 
remainder 1632 i.e. 288, and the square of 
which 716 gives the remainder 2882, i.e. 255. 
Similarly, the power 732 gives the remainder 
2552 i.e. 284 and the remainder of the power 
764  will be –110 and from 7128 comes 1102 i.e. 
–79, a remainder which multiplied by 284 will 
give the remainder of  7128+32 = 7160 which 
will be 640 i.e. –1. 

 
Thus we know that, if the power 7160 was 641, the remainder would be 640 i.e. –1, from which 

we conclude that the remainder of the power 7320 is +1. Thus, in general, the remainder of the 
power 7160n divided by 641 will be either +1 if n is an even number, or –1, if n is an odd number.” 

 
Part 1: A study of Euler’s text. 

1    Justify the replacement of 478 by –163 and explain the practical interest of this 
step. 

2   Quote the course result used to calculate the remainder of 78. 
3   Justify the result given for the remainder of the division 7320  by 641 as well as 

that of the division of 7160n by 641 ? 
4   What is the remainder of the division of 7320n  by 641 ?  By using Euler’s results 

without any additional calculations, determine the remainder of the division of 7648  
by 641.  
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5   Call rN  the remainder of the division of 7N  by 641. Show this sequence is periodic. 
From this deduce a method to simplify the calculation of the remainders of the division 
7N  by 641. 
 

Part II: And for cases other than 641? 
1    Calculate the remainders of 7,72,73,74, 75, 76,77 under division by 63. 
2   Show that the sequence (rN ) of remainders of division by 7N  (for N a strictly 

positive integer) by 63 is periodic. What is the remainder of the division of 79 by 63? 
3    Consider a strictly positive integer m. Is the sequence of remainders of the 

division of 7N  by m always periodic?  
4    Euler stated that the remainder of the division of 7320 by 641 is equal to 1. 

Does there exist a strictly positive integer h such that the remainder of the division of 
7h by m is equal to 1 for all strictly positive integers m? 

Justify your answers to questions 3 and 4 carefully. 
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