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ABSTRACT

One of the interesting aspects of arithmistibat mathematical proofs can be constructedowith
needing a large theoretical arsenal. These parefsupported by reasoning of a certain subtlédy;ing
with the notions of infinity and the absurd, anah&® non-trivial results can be obtained. Thisoaag) is
easily accessible intuitively because it relatethéointegers, giving arithmetic a specific forimat
character to students undergoing their apprertipes proof.

The history of mathematics offers us a lafgaiae of proofs, some more formal, some less, Somntieer
from intuition, some closer. We have, moreover, c@ntaries by mathematicians regarding the elegance
the rigour of certain of these proofs, to whichaaa refer.

The corpus of texts we have chosen for repdinolves around “Fermat’s Little Theorem” whish
part of the final programme in secondary schodie Basic theoretical baggage is then limited togles
property which appears in different forms — Euslidemma, Gauss’ Theorem, The Fundamental Theorem
of Arithmetic — according to one’s point of viewdato the context. The essential core of theséoaist of
proof also manifests itself in different forms (imife descent, the principle of recursion, the ofsthe
smallest integer in a set of integers).

We shall set out the principal points of analysis, supported by the reading of original epise. A
detailed article [7], including all the source t&xt available on the IREM site§8888.

1 Introduction

1.1 Our working group

It is called M.:A.T.H., whichstands foiM athematics An Approach througi extsfrom
History. It is composed by Alain Bernard, Martinehigér, Philippe Brin, Renaud Chorlay, Odile
Kouteynikoff, and Anne Michel-Pajus, and works witlREM ( Institute for the Research in
Mathematics Education) in the University of PARIS&nis Diderot.

We are engaged in In-Service training for teacbh&rmathematics in secondary school,
through organizing :

+«+ short training sessions ( 2 or 3 days)

« an open group for collective reading of historsalirces, presentations, discussions.

and publishing :

% The Brochures M.:A.T.H : collections of tested activities for students atondary
schools, using historical sources. One examplieb&ifjiven at the end of this workshop.

< Re-editions of old texts some of which can be difficult to find.
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« Mnémosyne a journal whose objective is to give an oppotufor teachers to share their
experiences and to provide food for thought acatlssreas concerning the history of mathematics.
The n° 19 is dedicated to Arithmetic. Many relateticles may be found in it.

1.2 The subject : arithmetic. Why did we choose 2

Arithmetic, which was present in the curriculumeetin 1971 and disappeared for twenty
years at the start of the eighties, has returredjuch in the college curriculum (Euclid’'s
algorithm) as in the last year of secondary schoolstudents majoring in mathematics.

More precisely:

* Inthe 3rd grade (students 15 years old) :Euchdt®rithm and GCD (on given
numbers)

* Inthe 2nd grade (16 years) : decomposition in ermambers and GCD (on given
numbers)

* Inthe 1st grade nothing!

* In Terminale (age 18 years, only for students nirapin mathematics)

Congruence (modular arithmetic); GCD; Gauss andoBgs Theorems.

Applications to Diophantine equations, cryptogramnyd Fermat'’s « Little »Theorem.

Note that this curriculum is intended only for taatudents more interested in mathemaitics.

Arithmetic has interesting pedagogical charactesstWe work with those familiar objects,
the integers, obtaining non trivial but readily goehensible results, which can be tested or
discovered by experiment, but we deal with multipleusual, complex arguments.

Some teachers were never taught arithmetic at $acpischool, and studied only “the theory
of numbers” at University. None of the attendeethigtworkshop, coming from Belgium, China
(Hong-Kong), Israel, Italy, France, Portugal, Uditgtates, had ever been taught arithmetic in
secondary school. It seems it is no longer taugkecondary School, except in France.

So we use mathematical sources, and to be mors@rese the comparison between three
different proofs or of Fermat’s Little Theorem,arder to give the teachers an opportunity to
recall some past learning, to think more deeplyuabite issues involved, to better structure their
knowledge, and to acquire a metaknowlédge

This theorem is encountered in two equivalent forms

» |f pis a prime an@ an integer which is not divisible tpy thenp dividesa™ — 1

* |If pis a prime ana@ any integer, thep dividesa’—a

It is stated without proof by Fermat in his cormsgence (in particular, in a letter to Frénicle
of 16 October 1640).

! All secondary school French programs , with comaxées, are found online at www.eduscol.education.f
’About metaknowledge, see, for instance : Grouperaeail « Math & Méta » 1990-1992. M. Baron,
A.Robert (ed.) Cahier DIDIREM, numéro spécial ma93, IREM Paris 7.

3 An earlier proof is found in Leibniz’'s manuscriptsit it was published only in 1863. You can finih
Mnémosyne 19.
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2 A classification of the tools used in the proofs

As a basis for discussion, we establish a classifin of the tools used in the pro‘bf§hese
items will be better understood after reading tistohical sources.

Beyond the simple properties of divisibility (eifgan integera divides bothb andc, thena
divides the surb + ¢) and the Euclidean Algorithm, the theoretical aed@educes to a single
fundamental result, found in diverse equivalentf®throughout history.

= Euclid’s Proposition 32 called “Euclid’s Lemma”:afprime number divides a
product, then it divides one of the factors of pneduct®. This is also encountered
in the contrapositive form if a prime numbep divides neither norb, then it
does not divide the produab

= Euclid’s Proposition 26: If two numbeasandb are relatively prime to c, the product
abis also relatively prime to.

= Gauss’s Theorem: If a number divides a productisinelatively prime to one of the
factors of the product, then it divides the other.

The following is not found in the proofs studiedde:

= The Fundamental Theorem of Arithmetic : the decasitjom of an integer into a
product of prime factors is unique. (Note thatfinedamental theorem often
refers to the existence of the decomposition ab Wélis does not concern us
here.)

These four theorems are logically equivalent

We have also attempted to classify the methodsave et in the mathematical proofs
studied. They are of two types:

Pigeonhole methods
» The pigeonhole principle: The use of a finite humifepigeonholes to hold a strictly
larger number of objects. Thus at least one pigelenmust contain at least two objects.
This result is called the “pigeonhole principle”tbe “Dirichlet principle”.
= Disjunction of cases: The situations studied amifpned into a number of cases
which are then examined exhaustively. This isnie¢hod of “disjunction of cases”.
= The bijection method: Set up a bijection betweem finite sets of the same
cardinality.

Staircase methods
= Finite descent: a finite descent arriving at @atlé integer which provides the
conclusion either directly or by recourse to abiyrd
= Fermat’s method of infinite descent: a descent wbarries its own contradiction in
itself as it represents a set of strictly decrappiositive integers.
= Argument by recurrence (complete induction)

* We have actually analysed a larger corpus of griwin the ones shown in this paper. For more ebesmp
see Mnémoyne 19 or [7]
® For a proof, see Mnémosyne 19 or [7].



A.Michel-Pajus Actesague 16/08/07

» The least integer method: this reasoning usestst Element of a non empty subset
of ¥ .

The last three methods are logically equivalent.

3 Reading some proofs
3.1 EULER (First proof) and LEGENDRE
The first published proof, in 1736, is due to Eulele takes up the same idea in 1747, an idea

taken again in Legendre in his “Théorie des Nonibfidember Theory) of 1798 [5].
Let's begin by reading the proof by Legerfdre

Theorem. “If cis a prime number, and N any number not divisibleby c, | state that the
c-1 _

guantity N°™ =1 will be divisible by ¢, so that we will have 1 an integer® ~

Let x be any integer. If we consider the known formpla
(1+x)° =1+ cx+ C(;_Zl) X + C(C_ll)z((;_ 2) X+..+ cX'+ X, it is easy to see that all the

terms of this series, with the exception of thstfand the last, are divisible by

Indeed, lettingVl be the coefficient oiXm, we will have

_cem(em2)(e=3). (= M D) o\ 123.m=c - De- 26 3.6~ 7
1.2.3.m

and since the second part is divisibledyyhe first part must also be. But the expomantin

the terms in question, does not exceetd Soc, which is supposed prime, cannot divide the

product1.2.3..m; thus it must divideM for every value oim from 1 toc-1. Thus the quantity

1+ x)° —1- X is divisible by c, for any integerat all.

Now let (1+X)= N; the preceding quantity will becomi®—(N-1)° -1, and, since it is
divisible by c, if we omit the multiples ofc, we will have N°—=1=(N-1)°, or
N°=N=(N-1)°-(N-1) . But, on substituting(N —1)for N, and always neglecting the
multiples ofc, we will similarly have (N —1)° = (N-1)= (N- 2) = (N- 2). Continuing thus
from equal remainders to equal remainders, we wilecessarily arrive at th
remaindefN — N)° —(N— N), which is obviously zero. Hence all the precediagainders arg
zero; soN° — Nis divisible byc.

But N°— N is the product of N witiN°™ —1; thus since N is supposed to be not divisible by
¢, N°? =1 must be divisible byg; which is what was to be proven.

M

D

154

@ This theorem, one of the principal ones of numihewory, is due to Fermat; it has been
proved by Euler in various places in thetersbourg Memoirs

The main tool is the binomial expansion. Euclidanima is used in thé%paragraph. It comes
into the result via the divisibility of the binonhieoefficients by a prime.

® Working translation from the original French ediitj by Stuart Laird.
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The method used for the conclusion is a finite des®f equalities arriving at the suitable
integer 0. Note the words “ by omitting the mukipby c”, a pre-notion of congruence.

In the original proof, Euler too uses the binongigbansion, and Euclid’s Lemma. As he
doesn't use “omitting the multiples of ¢”, the pfé®@much longer. The conclusive method is
somewhat different :

Corollary 2

[...] if we suppose that the form” — ais divisible byp, the form(a+1)? —a-1is also
divisible byp ; in the same way, under the same hypothesistdhis(a+ Z)p —a-—2 and soon
(a+3)p —a- 3 etc., and generallg® — ¢, will be divisible byp.

théoréme 3 :If pisa prime, every number like ¢® — ¢ will be divisible by p.

If we takea = 1, asa” —a=0 is divisible byp, it follows that the forms2” =2, 3 -3,
4P — 4 etc . and generally this ore® — ¢ will be divisible by the prim@. Q.0.D’

Here we find a complete induction although we wauktke it shorter today. As if this method
was not well accepted, Euler gives more numbers déin@ necessary, as we sometimes do with our
students.

We have a third formulation of this proof, concisekplained by Gauss in his “Arithmetical
Researches” in 1801 [4]. It is very close to Edeme. Note that he doesn’t explain the first part
of the proof, but details the induction.

This theorem, remarkable as much for its eleganderats great utility, is usually called
Fermat's Theorem after the name of its discovefer] Fermat did not give a proof of it, although
he was definite that he had found one. Euler glagdirst in a dissertation entitled “Proofs of
some theorems relating to prime numbers”.[...] #tsen the expansion ofa+1)". From the
form of the coefficients it can be seen th@+1)° —a’ — 1 is always divisible byp ; so, as a
consequencegla+1)° — (a +1) will be also divisible bypif a” —ais. Now asl® -1 s
divisible by p, 2° — 2 will be, consequenthB® — 3, and generallya” —a. Thus, if p does not
divide a, we will havea® - ais divisible by p also. What is just given suffices to make the
spirit of the proof knowA.

3.2 TANNERY

A new, very concise proof is found in the lectugesen by Jules Tannery at the Ecole Normale
Supérieure. His students Emile BOREL and Jules DRAgave it in [1] in 1894.

In the case wheren is a prime numbep, each number not divisible by is prime to thi
number : so, if in the expressian, wherea is not divisible byp, one substitutep — 1 numbers
which are mutually not congruent to each other @n@ (modp), one will obtainp — 1 number

"Working translation from the original latin editioby A. Michel-Pajus.
8 Working translation, from the french edition, biyi&rt Laird.
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congruent to these same numbegsx,,..X, ; set out in another order. The product of fhe
numbersax,, ax,,...ax,_; is thus congruent (mag). to the productx,X,..X,_;, and as the last
product is prime t@, one concludes Pl_1=0 (modp).

This is the celebratetheorem of Fermatwhich plays an essential role, in number theand
we will incidentally meet other proofs of. Obsemat it can be immediately deduced from the
following proposition:For any integer a and prime number p whatever, weeha” —a =0
(mod.p).

This proof rests on the bijection method. It reseak power of the pigeonhole principle, a
principle which appears so self evident, and wigdmere utilized by its avatar, the bijection
principle, in setting up a bijection between twessef the same cardinality. This method avoids
recourse to infinity and to recurrence.

The Fundamental Theorem of divisibility is necegsarorder to show that the
axy, ax,,...ax,_; are all different and different from 0 (mod p).tBe rules of modular arithmetic
avoid its explicitation. Tannery’s proof is seduetiand elegant by means of its brevity and the
magisterial way it uses congruence.

This proof is found in the document accompanyireggTerminal S syllabus. The advantage of
using this proof in class is that, even if morentki lines of Tannery are necessary for our
Terminal students’ understanding, by the end ofaffarts the proof can be understood in its
totality without forgetting the premises or lositing logical flow.

3.3 EULER ( Second proof) and GAUSS

In 1758 [2], Euler published an entirely differgmbof of Fermat’'s Theorem that appeared, a
priori, more complex than the first, and into whigh shall go later on. Euler utilized a
classification of integer powers according to tliemainder on division by the prinpe The
method consists of partitioning the set under a@rsition into a finite number of pigeonholes
until it is exhausted, coupled with the use ofl#eest element of a non empty set. At base the
theorem rests on Euclid’s Lemma. It is this pribait Gauss takes up in his “Arithmetical
Researches” of 1801, but in a simpler form dudéolanguage of congruence, and the use of
Gauss’s Theorem that he proves in the same book.

Why did Euler and Gauss choose a proof that isaai pnuch more complicated?

Gauss takes up the explanation given by Euler Hinfdge binomial expansion seems to be a
stranger in number theory”. The new proof resptws'purity of arithmetic’.

We give here a summary on the proof

Before entering on the proof of the theorem itdelfler explored the remainders of the powers
of 7 modulo 641.

After experimenting with particular powers, Euleok up his exploration of the general case.
Recall that, given a primeand a numbea not divisible byp, it is a question of showing that the

® The proof by Euler can be found in English oneb .
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remainder of the division @ bypis 1. The idea developed by Euler is to “clagdife powers
of a according to thep(— 1) non null possible remainders modploWe summarize the steps of
the proof below.

Euler begins by showing that there exist powers with remainder 1: indeed, the serieg’
... a,... being infinite, and the number of possible naii remainders of the divisions
modulop being finite and equal t@{1), there exist powers' anda” with A<z, having the same
remainder on division bg. Thus the prime p divides'—a' = a&*(a*1). As the prime p does
not dividea*”?, p dividesa’-1, and the remainder of the divisionadfby p is certainly 1.

Now consider the smallest, strictly positive intedehaving this property (the remainder of the
division ofa" by pis 1). Then thel powers 14, &, &,...,a*"* are all different, non null
remainders in the division gy If not, the preceding argument gives an intexjesuch that p
dividesa* — 1, which has been excluded. If all theel() possible remainders moduyare
obtained, thenl = p — 1 and the theorem is proved.

If not, letr be one of the non null remainders which has nehl@btained. Note thatis prime
to p. Consider theh numbers r,ra,raz,rag,...,ra/'_l : these numbers are all the different
remainders obtained in the(if not p would dividera’ —ra* =ra"#(a* —1) and thusa” -1
with L <A). In the same wayra” et @’ cannot have the same remainder; if pajivides
r —a” " which contradicts the fact thahas not been obtained as a remainder in the olivisi a
power of a by p. If we add these remainders to the precedinghwe obtain 2 different, non null
remainders modulp. If we have all of themp(— 1) = A .

If not, consider a remaindes which has not been obtained yet and the numbers
S,sa,saz,saS,...,sa(‘_l. In the same way we can show that all of thesebmusnhave different
remainders from those obtained before. If all gussible non null remainders have been
obtainedp—1 = 3\

If not, we continue... As the number of remainderdinge, the procedure must terminate.
When all the possible remainders have been obtathedsame argument proves that there exists
an integer t such thap:— 1 =tA.

Thena®* -1=a" -1=(a’)' —1. Now x' -1 is divisible byx — 1 for every integex, as
X' =1=(x-D(x"™"+x"?+...+x+1. Thus aP* -1 is divisible by a’ —=1. As p divides
a’ -1, pdividesa®" -1 also and the theorem is proved.

In modern terms, this argument comes back agaimding a partition of the multiplicative
group(Z/ pZ)* formed from the equivalence classes accordingaayclic subgroups generated
by a. This type of idea allows Lagrange’'s Theorem topbaved: the order of a subgroup of a
finite group divides the order of this group. @weérsely, by using the Lagrange’s theorem, we
find the classical proof of the Fermat's Little Tnem taught at University.

But the interest of this proof not only lies ineming the way for subsequent developments ; in
spite of its complexity, it also appears relativebatural, resulting from an experimental

exploration of the powers of a number.

This point of view returns us to the beginning, itowas in terms of powers that Fermat had
stated his theorem in his letter to Frénicle ofQ@ober 1640.

3.4 FERMAT's Letter
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It seems to me, after that, it is necessary tottajfou of the foundation upon which | base the
proofs of everything concerning geometric progi@ssi

Every prime number infallibly measures [dividespmf the powers minus 1 of some
progression or other, and the exponent of the saickr is a factor of the prime number —1. Aftgr
the first power that satisfies the question hasilieend, all those whose powers are multiples ¢
the exponent of the first will satisfy the questiorihe same way.

Example : let the given progression be
1 2 3 4 5 6

3 9 27 81 243 729

etc. with its exponents below.

For example, take the prime number 13. It meastie third power minus 1, of which the
exponent, 3, is a factor of 12, which is one lbssitthe number 13, and because the exponent jof
729, which is 6, is a multiple of the first expotemhich is 3, it follows that 13 also measures the
said power 729-1.

And this proposition is generally true for all gressions and all prime numbers. | will
send you the proof of this, unless | fear it tadielong.

—

The point at issue here seems to be working wighpthwers of an integer. And the result is
more precise than that generally called “Fermakisdrem”, since it is concerned with the smallest
integern such that the prime p divideS— 1. One would love to know the path Fermat'sutia
took in order to arrive at what he called “The fdation on which | support the proofs of
everything concerning geometric progressions.”

4 Commentaries and complement$
4.1 About Gauss’s Theorem and modular arithmetic

It is well known that the book by GausBisquisitiones arithmeticagl801) played a central
role in the development of arithmetic. Euler angdrdre follow the euclidean tradition, even if
Legendre gives a new proof of Euclid’'s Lemma imTtieorie des Nombrgsl798).

Actually, Gauss was not the first in publishing tBauss’s Theorem. We find itlires
Nouveaux elements de Mathematigogsean Prestet’2edition, 1689. This book caused little
stir because mathematicians at this time were méeessted in “Infinitesimal Analysis” than in
“Finite Analysis”.

Anyway, Gauss began to work on the subject in 1788h no idea about what have had done
on the subject”, as he explains in his prefacebétgins ( Section I) by establishing the theory of
congruence, then (Section Il) Gauss’s theorem,gaavith the method of the least element and an
argument by absurdity. He explains why he provesttteorem: “ The proof of this theorem was
given by Euclide, EL.VII,32. But we didn’t want tomit it, inasmuch as many modern authors
have presented vague reasoning instead of a pmob&ve neglected this theorem; in order to give
a better understanding, in this very simple caktheospirit of the method we will use later for
very difficult points.” Then, Gauss proves the wggess of the decomposition into prime
numbers. He studies the remainders of the poweBsation Il ( here we find the proof of Little
Fermat's Theorem).

1% for any detail and reference, see [7]
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He set up all the tools. However, it is doubtlessby chance that a century was needed after
the publication of Gauss’s book in order for thefiery’s proof to appear, as brief as it is striking
All this time was necessary for the theory of camrgice, used implicitly by Legendre in 1798,
then formalized by Gauss in 1801, to dominate cetep/ arithmetic.

For teachers ( and maybe for students) it is usefatove the logical equivalence of the
different forms of the Theorem of divisibility.

The syllabus of Terminale S includes Bézout's Theo This theorem is stronger than our
fundamental theorem of divisibility. Its principi given by Bachet inProblémes plaisants et
délectableq1624), et taken again by Bézout in hi€burs d’Algébré (1766). However, we
didn’t encounter it in our authots.

4.2 About the methods

The pigeonhole method is an elementary principlefwhtudents understand immediately, but
would never think of using themselves. We can stiwmn that this principle allows prooving of
non-trivial results.

Disjunction of cases is very useful when workingdulo an integer. When students have well
understood its validity, it is greatly appreciatgdcertain students who use it spontaneously to
solve certain exercises.

The diversity of staircase methods is worth examgimore deeply.

From an historical and epistemological point ofaieve can question the fact that the
mathematicians use one or the other.

The method of complete induction is generally bttréd to Pascal, even if we could find it
earlier (in Maurolycus, for instanc¢&)However, its use is not yet that natural and LisuBuler’
and even in Gauss’s time.

The complete induction is part of the curriculurat that easy to appropriate for students.

Fermat prefers its method of infinite descent,ibigt strongly criticized by Wallis and others.
Later on, Euler and Gauss avoid it , though they neery Fermat carefully. Finite descent avoids
recourse to the infinite, often at the cost ofasgument by absurdity. ( This is not the case with
Legendre). Moreover, the method of finite desceamdlates directly into useful algorithms .

The least integer method too, avoids infinity, ofteith recourse to absurdity. It has a concise
and smart appearance. At the tertiary level, stisderally like it.

In line with the objective of training in logic, it interesting to prove the equivalence of the
three staircase methdds

4.3 A Homework assignment

1 See [9]
2 5ee [13]
B see [7]
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The history of mathematics shows us the intereskpforing the powers of a given integer
before going on to further developments in AnalyS@ our students, it is interesting to see that
even great mathematicians use experimentation.

As an example, we give a homework assignment kbisneg the beginning of the second proof
by Euler. It allows to check students’ understagdibout congruences. Question 1.5 is a very
classical question .

“In an article published in 1758, Euler was intéedsn the remainders of powers of 7
modulo 641.

Preamble: Read the text below and check all of Euler's dalitons. Write down all the
necessary calculations on your paper. Are all ofieEs calculations necessary to obtain the
remainder of #% Justify your answer.

“So here is a very rapid method of finding the aémders arising from the division of any
power of any number. For example, if we want tmifihe remainder arising from dividing*7by
the number 641

Powers| Remainders Indeed, since the first power 7 gives the

7 7 remainder 7 the powers, 7°,7* give 49,343

= 29 and 478, i.e. =163, whose squa?egﬁ(/es the

- remainder 163i.e. 288, and the square |of
7 343 |which 7° gives the remainder 238.e. 255

7 478 | Similarly, the power # gives the remainder
78 ogg | 255 i.e. 284 and the remainder of the power
216 JeE 7°* will be =110 and from *?® comes 11di.e.

= —79, a remainder which multiplied by 284 will
7 284 give the remainder of 742532 = 7180 \hich
7 -110 | will be 640 i.e. —1.
7% -79
7160 1

Thus we know that, if the powet®?was 641, the remainder would be 640 i.e. —1, fwdith
we conclude that the remainder of the povv'gP i +1. Thus, in general, the remainder of the
power 7°°"divided by 641 will be either +1 if is an even number, or —1 rifis an odd number.”

Part 1: A study of Euler’s text.

1 Justify the replacement of 478 by —163 andaéxpghe practical interest of this
step.

2 Quote the course result used to calculatesimainder of ¥,

3 Justify the result given for the remaindertef division 7° by 641 as well as
that of the division of #*"by 641 ?

4 What is the remainder of the division 8f°7 by 641 ? By using Euler's results
without any additional calculations, determine theainder of the division of?%
by 641.

10
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5 Callry the remainder of the division a by 641. Show this sequence is periodic.
From this deduce a method to simplify the calcatawf the remainders of the division
7™ by 641.

Part 1l: And for cases other than 641?

1 Calculate the remaindersb,f72,73,74, 75, 76,77under division by 63.

2 Show that the sequenag, § of remainders of division bVN (for N a strictly
positive integer) by 63 is periodic. What is theneénder of the division of® by 637

3  Consider a strictly positive integar Is the sequence of remainders of the
division of 7" by m always periodic?

4  Euler stated that the remainder of the divisid 7 by 641 is equal to 1.
Does there exist a strictly positive intedresuch that the remainder of the division of
7" by mis equal to 1 for all strictly positive integer®

Justify your answers to questions 3 and 4 carefully

32(

11
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