INSTITUT DE RECHERCHE SUR L'ENSEIGNEMENT DES MATHÉMATIQUES

Université Montpellier II

UTILISATION D'UN TABLEUR POUR DES ETUDES STATISTIQUE

Monique BELLAY Geneviève COUDERC Michel JANVIER Jean-Gilbert MOIGNARD Henri VIGUIÉ

- 1996 -

1.

INSTITUT DE RECHERCHE SUR L'ENSEIGNEMENT DES MATHÉMATIQUES

Université Montpellier II Place Eugène Bataillon cc 040 34095 MONTPELLIER Cedex 05 Tél : 67.14.33.83 - 67.14.33.84 Fax : 67.14.39.09 e.mail : irem@math.univ-montp2.fr

UTILISATION D'UN TABLEUR POUR DES ETUDES STATISTIQUES

Monique BELLAY Geneviève COUDERC Michel JANVIER Jean-Gilbert MOIGNARD Henri VIGUIÉ Les auteurs de cette brochure sont des membres du groupe informatique de l'IREM de Montpellier. Ils animent des stages de formation continue à l'intention des professeurs de collège et de lycée dans le cadre du Plan Académique de Formation.

Ce document présente un certain nombre de notions statistiques usuelles et propose pour chacune d'entre elles des activités utilisant un tableur. Les enseignants trouveront des propositions pour présenter les notions, des fichiers statistiques permettant de mettre en oeuvre les concepts proposés soit à l'aide d'une exploitation manuelle soit à l'aide d'une exploitation informatique.

La brochure est accompagnée d'une disquette contenant 23 fichiers, chacun ayant une feuille énoncé, une feuille correction, et si besoin une feuille graphique. Il vous est recommandé de copier les fichiers sur le disque dur de votre ordinateur. Ces fichiers ont été réalisés sous EXCEL 5 (version PC) mais peuvent être éventuellement lus par d'autres tableurs (voir leur documentation). La manière dont les fichiers ont été construits est expliquée dans le document et ils pourront ainsi être facilement transposés sous d'autres tableurs.

La majeure partie des activités proposées ont été utilisées dans leur classe par les enseignants qui ont rédigé la brochure. Ils souhaiteraient connaître vos observations et vos propositions pour enrichir ce travail.

1. Introduction au tableur.

Nous avons voulu, sur quelques exemples, montrer des possibilités d'utilisation d'un tableur en statistiques. Les exemples donnés ci-après concernent EXCEL, mais sont aisément utilisables avec d'autres tableurs.

1.1. Eléments d'une feuille de calcul.

1.1.1. Le tableau.

Un tableur (ou feuille de calcul) se présente sous la forme d'un tableau constitué par des lignes et des colonnes. Dans EXCEL, les lignes sont numérotées et les colonnes sont repérées par des lettres : A, B, C,... AA, AB,...

1.1.2. La cellule.

L'intersection d'une ligne et d'une colonne est une cellule qui est donc repérée par son adresse (ex: C8, AD45, ...). La cellule active apparaît en inversion vidéo.

1.1.3. Contenus d'une cellule.

Une cellule peut contenir un texte, une valeur numérique ou une formule. S'il s'agit d'une formule, c'est son résultat qui est affiché. La formule elle-même apparaît seulement dans la barre d'édition. Cette formule peut éventuellement faire référence à d'autres cellules et utiliser des fonctions prédéfinies du tableur.

•Alpha numérique.

Par défaut, tout texte commençant par une lettre est justifié à gauche, tout nombre est justifié à droite. La commande format permet de pré-définir la position dans la cellule, de définir l'écriture du nombre : date, nombre de décimales, pourcentage, monnaie...

Opérateurs.

Les opérations sont définies par :

- + addition
- soustraction
- multiplication
- / division
- ^ puissance

•Fonctions.

Remarque : La liste de toutes les fonctions disponibles peut être obtenue avec l'aide. Nous avons noté des erreurs et des imprécisions dans certaines définitions de fonctions. Par contre, les fonctions donnent les valeurs attendues.

Mathématiques :

=ENT(x)	Partie entière de x
=EXP(x)	Exponentielle de x
=LN(x)	Logarithme naturel de x
=MOD(x,y)	Reste de la division y/x
=PI()	π
=RACINE(x)	Racine carrée de x
etc	

Trigonométriques : Les angles doivent être exprimés en radians =SIN(x) =COS(x) =TAN(x) =ASIN(x) =ACOS(x) =ATAN(x) etc...

Statistiques

Les fonctions statistiques permettent de calculer tous les résultats classiques d'une série statistique, simple ou double : maximum, minimum, moyenne, médiane, somme, somme des produits, droite de régression, variance, écart-type, etc...

CROISSANCE	Les valeurs de y en fonction d'une courbe exponentielle ($y = b \times m^{X}$).
DROITEREG	Les paramètres d'une droite de régression $(y = m \times x + b)$
ECARTYPE	L'écart type d'une population à partir d'un échantillon.
ECARTYPEP	L'écart type d'une population à partir de la population entière.

Remarque : Dans nos classes, on travaille presque toujours sur la population entière. On utilisera donc la fonction ECARTYPEP.

La fonction ECARTYPE est réservée à l'estimation de l'écart-type d'une population à partir d'un échantillon.

Si x; est la valeur observée sur le ième individu de l'échantillon, et si l'échantillon est de taille

n, on estime l'écart-type de la population par le nombre $\sqrt{\frac{1}{n-1}\sum_{i=1}^{n} x_i - x^2}$

La même remarque peut être faite pour la variance : Dans nos classes, nous utiliserons la fonction VAR.P.

1.2. Références.

Ecrire une formule de calcul dans une cellule nécessite un mode de désignation de la ou des cellules argument.

On désigne une cellule par ses coordonnées, qui se notent par la lettre de la colonne et le numéro de la ligne ; par exemple A1, ou G55, ou AV48, ou bien par le code suivant (explicite) L1C1, L7C42...

Les références sont de deux types : références absolues et références relatives.

1.2.1. Référence absolue.

Un argument de la fonction est une cellule repérée par un numéro de ligne et de colonne du tableau de calcul.

1.2.2. Référence relative.

Un argument de la fonction est une cellule repérée par rapport à la cellule qui contient la formule (par ex : 2 lignes plus haut et 2 colonnes plus à gauche).

Il est important de distinguer les différents types de références à une cellule. Pour cela, on se place dans la cellule A1, et on veut y mettre ce qui est dans la cellule D6 :

• référence relative, par exemple : =D6 (ou =L(5)C(3)). La cellule D6 est repérée par rapport à la cellule active A1. Pour Excel, il s'agit de la cellule qui est 5 lignes plus bas et 3 lignes à droite (le haut et la gauche sont notés négativement, le zéro étant omis). Ainsi, si l'on copie cette cellule en B1, on obtiendra =E6 (ou =L(5)C(3)), si on la copie dans A2, on obtiendra =D7 (ou L(5)C(3)).

- référence absolue ex : \$D\$6 ou L6C4
- référence semi-absolue ex : \$D6 ou D\$6.

Cette distinction est particulièrement importante lorsque l'on désire "recopier" des formules.

1.2.3. Exemples

•TVA.

	Â	В	C	D
1		Taux de T	20,60%	
2				
3	Articles	Prix HT	TVA	Prix TTC
. 4				
5	N°1	45		
6	N°2	32,5		
7	N°3	120		
8			r	
9	Totaux			

Ainsi, dans ce premier exemple TVA.XLS, il s'agit de calculer le montant de la TVA et le prix TTC d'articles dont on connait le prix HT.

La formule contenue dans la cellule D5 (=B5+C5) pourra être recopiée dans les cellules D6 et D7 et deviendra automatiquement en D6 (=B6+C6) et en D7 (=B7+C7). Ce sont des références relatives.

Par contre, la formule contenue dans la cellule C5, utilisant le taux de TVA contenu dans la cellule D1 doit faire référence à cette cellule de manière absolue. Ce sera donc : (=B5*\$D\$1), qui après recopie donnera : en C6 (=B6*\$D\$1) et en C7 (=B7*\$D\$1).

Le calcul des totaux est fait aussi en références relatives en B9 de façon à pouvoir être recopié en C9 et D9, par la formule : (=somme(B5:B7)), qui devient : en C9 (=somme(C5:C7)) et en D9 (=somme(D5:D7)).

	A	В	C I	D
1		Taux de T	20,60%	
2				
3	Articles	Prix HT	TVA	Prix TTC
4				
5	N°1	45,00 F	9,27 F	54,27 F
6	N°2	32,50 F	6,70 F	39,20 F
7	N°3	120,00 F	24,72 F	144,72 F
8				
9	Totaux		40,69 F	238,19 F

•Carnet de notes du professeur principal.

Ouvrir le fichier CARNOT.XLS

	A	В	Ċ	D	Е	F	G	H	T I	J	K	L.	M
1		Nom	FRA	MAT	LV1	HG	BIO	MUS	DES	TEC	EPS	EC	LAT
2	1	AMEHDAR	6	6	7	7	8	10	15	13	13	6	7
3	2	BERANGER	14	14	13	13	13	14	13	14	12	13	11
4	3	BRETON	11	15	5	12	8	8	7	12	17	9	7
5	4	CAMELIO	11	9	12	6	11	13	14	12	9	10	13
6	5	CASTEL	5	6	6	4	4		0		11		
7	6	CHALIFOUR	11	10	10	13	12	13	10	15	13	10	15
8	7	COTTALORDA	11	13	10	11	11	12	14	15	12	10	
9	8	DELCAMBRE	12	13	10	8	15	11	11	16	13	9	
10	9	EMERY	8	4	5	3	8	9	13	14	9	7	
11	10	ESCAICH	9	9	7	6	10	9	9	12	11	10	
12	11	GASC	10	10	8	8	12	15	9	16	12	13	
13	12	JACONO	7	15	7	5	10	10	10	12	16	8	
14	13	JIMENEZ	12	14	11	11	9	13	11	16	15	10	
15	14	LOLO	10	10	13	12	16	10	10	9	13	11	
16	15	MARINO	15	11	12	10	16	15	12	14	11	13	
17	16	MARIO	10	12	9	14	12	13	17	13	14	10	
18	17	MAURRAS	11	11	6	5	7	13	11	15	11	7	
19	18	METGE	10	14	10	10	13	15	10	13	13	13	
20	19	PETRONILHO	8	7	7	7	9	13	13	16	14	8	
21	20	RAMADIER	11	11	7	9	11	11	10	13	11	8	
22	21	RODRIGUES	9	7	7	7	11	11	13	15	12	9	
23	22	SOULIER	11	1	7	5	3	9	14	12	8	3	
24	23	VERDIER	10	12	12	9	11	14	8	13	13	7	
25			FRA	MAT	LVI	HG	BIO	MUS	DES	TEC	EPS	LV2	LAT
26		minimum							ļ	.,,	_		
27		moyenne											
28		maximum		1									

Il s'agit de compléter les lignes 26, 27 et 28 à l'aide des formules:

- en C26=MIN(C2:C24)
- en C27=MOYENNE(C2:C24)
- en C38=MAX(C2:C24)

Elles sont ensuite recopiées vers la droite jusqu'à la colonne M.

25		FRA	MAT	LV1	HG	BIO	MUS	DES	TEC	EPS	LV2	LAT
26	minimum	5	1	5	5,2	3	8	0	9	8	3	7
27	moyenne	10	10,2	8,5	8,3	10,2	11,7	10,9	13,5	12,3	9,3	10,6
28	maximum	15	15	13	13,5	15,5	15	16,5	16	17	13	15

2. Représentation des séries statistiques.

2.1. Diagramme en bâtons.

2.1.1. Objectif.

L'objectif est de représenter sous forme de diagramme en bâtons ou en tuyaux d'orgue des données statistiques.

Chaque modalité du caractère est représentée par un bâton dont la longueur est proportionnelle à l'effectif de cette modalité.

Remarque : En statistiques, si on considère une population, on appelle variable statistique ou caractère toute application définie sur la population. Un caractère peut prendre des valeurs numériques (on parle alors de variable quantitative) ou non (et on parle de variable qualitative). Dans la cas d'une variable statistique qualitative, ses valeurs sont appelées les modalités de la variable.

2.1.2. Mise en route.

•Découverte de la notion.

Cartes grises

Ouvrir le fichier CARGRI.XLS, il apparaît alors le nombre de cartes grises délivrées par la préfecture de l'Hérault de décembre 1993 à janvier 1994.

	A	B
1	Décembre-93	8 646
2	Janvier-94	7 307
3	Février-94	7 200
4	Mars-94	9 404
5	Avril-94	7 650
6	Mai-94	7 848
7	Juin-94	8 624
8	Juillet-94	7 938
9	Août-94	7 762
10	Septembre-94	8 162
11	Octobre-94	8 427
12	Novembre-94	9 169

Quel est le nombre total de cartes grises délivrées durant cette période ?

Modifier les nombres affichés dans la colonne B, et observer les modifications du graphique.

•Apprentissage.

Quel est le nombre de cartes grises délivrées de décembre 93 à janvier 94 ?

On se posera la même question de décembre 93 à février 94, de décembre 93 à mars 94, etc...

Les effectifs ainsi définis sont appelés les effectifs cumulés croissants.

On pourra les indiquer dans le tableau de données :

	EFFECTIF	E.C.C.
Décembre-93	8 646	
Janvier-94	7 307	
Février-94	7 200	
Mars-94	9 404	
Avril-94	7 650	
Mai-94	7 848	
Juin-94	8 624	
Juillet-94	7 938	
Août-94	7 762	
Septembre-94	8 162	
Octobre-94	8 427	1
Novembre-94	9 169	ander ander warmen an aller warden bester voor aller oor ook ander oor

Remarque : Le nombre caractérisant les effectifs cumulés croissants correspondants à novembre 94 est en fait l'effectif total.

2.1.3. Exploitation.

•Exploitation manuelle.

Fréquentation de cinémas

On a demandé à 125 personnes combien de fois elles sont allées au cinéma durant le dernier trimestre 94. On a recueilli les réponses suivantes :

1	0	2	5	6	1	3	3	3	1	5	4	2	4	3	3	1	6	2	2	3	0	1	2	3
4	2	1	3	2	4	3	1	3	2	0	4	3	1	3	3	2	5	2	4	3	1	0	4	2
1	3	3	3	2	3	2	0	2	3	2	1	2	3	2	5	1	2	4	0	1	2	3	3	1
3	2	0	3	3	0	4	3	0	2	4	2	4	3	5	1	0	3	2	4	5	1	2	0	3
2	3	2	3	1	2	3	3	2	1	4	2	5	1	2	5	1	0	3	1	4	2	3	2	1

Effectuer le dépouillement pour compléter le tableau statistique ci-dessous :

Caractère x _i	Effectif n _i	Effectifs Cumulés	Effectifs Cumulés
		Croissants	Décroissants
$\mathbf{x}_1 = 0$	n1 =		
$x_2 = 1$	n ₂ =		

$x_3 = 2$	n3 =	
x ₄ = 3	n4 =	
x 5 = 4	n5 =	
$x_6 = 5$	n ₆ =	
x 7 = 6	n7 =	
	N =	

Combien de personnes ne sont-elles jamais allées au cinéma ?

Combien de personnes sont-elles allées au plus 2 fois au cinéma ?

Combien de personnes sont-elles allées au moins 3 fois au cinéma ?

Nous remarquons que la lecture du tableau permet de répondre facilement aux questions posées.

Représentation graphique

Tracer le diagramme en bâtons représentant cette série : Sur Oy : 1 cm représente 4 personnes.

•Exploitation avec Excel.

Ouvrir le fichier CINEMA.XLS.

Nous retrouvons les données dans A1..Y5.

En A8..A14, nous allons recopier la série 0..6

Pour cela :

• En A8 taper 0 ; Sélectionner A8:A14 ; Edition ; Série ; Valider (la valeur du pas par défaut est 1).

• Sélectionner la zone B8:B14 ; En B8 taper =Frequence(A1:Y5;A8:A14) et valider cette formule par Ctrl-Maj-Entree ; la fonction est alors entre accolades :{}.

• En B16, nous pouvons calculer l'effectif total : Cliquer sur l'icône Σ et valider ; dans la cellule B16, Excel écrit alors =SOMME(B8:B15).

Remarque : les tableurs, et en particulier Excel, utilise (à tort) le nom FREQUENCE pour désigner un effectif.

Séances	0	1	2	3	4	5	6	total
effectifs	12	22	32	35	14	8	2	125
ECC	12	34	66	101	115	123	125	
ECD	125	113	91	59	24	10	2	

Représentation graphique

Sélectionner A8:B14 ; Assistant Graphique (le déroulement se fait sur 5 étapes) :

1 - Placer la fenêtre et donner la taille voulue ; confirmer en cliquant sur suivant

2 - Choisir un type de graphique : Histogramme.

Remarque : les tableurs, et en particulier Excel, utilise (à tort) le nom HISTOGRAMME pour désigner un diagramme en bâtons.

- 3 Sélectionner 1.
- 4 Utilisez les 1 premières colonnes pour l'axe des x.
- 5 Titre du graphique : CINEMA ; X : séances ; Y : personnes ; FIN

•Lecture d'un diagramme en bâtons.

Le diagramme ci-dessous donne la répartition de 245 véhicules suivant leur puissance administrative.

On peut représenter les effectifs cumulés croissants par un diagramme en bâtons, ou mieux par un polygone des effectifs cumulés croissants.

Compléter le tableau ci dessous :

Puissance administrative	Nombre de véhicules	Effectifs cumulés croissants
		an a na an

2.2. Diagramme en secteurs.

2.2.1. Objectif.

L'objectif est de représenter sous forme de diagramme en secteurs des données statistiques.

On divise un disque en autant de secteurs que le caractère étudié possède de modalités. L'angle au centre de chaque secteur est proportionnel à l'effectif ou à la fréquence de la modalité qui lui est affectée.

2.2.2. Mise en route.

•Découverte de la notion.

Ouvrir le fichier SPORTS XLS, il apparaît alors :

	A	В	С	D
1	Sport	Nombre d'élèves	(2)	(3)
2	Natation	6	0,2	20%

3	Volley	9	0,3	30%
4	Tennis	12	0,4	40%
5	Autres	3	0,1	10%
6	Total	30	1	100%

Modifier le nombre d'élèves affiché dans la colonne B. Que constatez-vous ?

Quel nom donneriez-vous à la colonne C (case (2))?

Quel nom donneriez-vous à la colonne D (case (3)) ?

•Apprentissage.

Comment calcule-t-on l'angle au centre correspondant à chaque groupe d'élèves ?

2.2.3. Exploitation.

•Exploitation manuelle. *Qualité des élèves d'un L.P* Les élèves d'un L.P. se répartissent de la façon suivante :

Qualité	Effectif	Fréquence	Pourcentage	Angle
Interne	252			• • • • • • • • • • • • • • • • • • •
D,P.	261			
Externe	135			
Total				

• Quel est l'effectif total de ce lycée ?

• Compléter la colonne fréquence du tableau.

On remarquera que le total des fréquences est égal à 1.

- Ecrire ces résultats en pourcentage dans la colonne appropriée.
- Compléter la colonne angle.

On remarquera que le total des angles est égal à 360°.

Construction du graphique :

Sur un cercle de rayon 4 cm, tracer chacun des trois secteurs représentant les qualités des élèves de ce lycée.

•Exploitation avec Excel. Ouvrir le fichier SECT1.XLS

En **B6** : on veut que la machine calcule la somme des effectifs. Pour cela, cliquer sur l'icône Σ . La machine écrit dans la cellule B6 "=**SOMME(B3:B5)** "

En C3 : on veut calculer le quotient du contenu de B3 par le contenu de B6 et fixer la cellule B6 pour que la fonction "Recopie" prenne ce contenu de B6 toujours en compte ; pour cela : taper = ; *cliquer sur* B3 ; *taper* /\$B\$6 et valider. (On pourra faire écrire ce résultat avec deux chiffres après la virgule en utilisant l'icône correspondante).

En C4 et C5 : il s'agit de recopier ce calcul ; pour cela : Sélectionner C3:C5 ; Edition. Recopier. Vers le bas.

En D3 : il s'agit d'écrire le résultat de C3 en pourcentage : - Ecrire la formule =C3 ; Format Nombre Choisir 0% (ou l'icône correspondante).

En D4 et D5 : on recopie ce calcul.

En E3 il s'agit d'écrire la formule = $D3 \times 360$ De E4 à E5 il s'agit de recopier ce calcul ; pour cela: Sélectionner E3:E5 ; Edition .Recopier . Vers le bas De C6 et E6 : il s'agit de recopier la fonction somme ; pour cela : Sélectionner B6: E6 ; Edition. Recopier. Vers la droite. On remarquera que 1 s'affiche en D6, on changera le format pour avoir 100%.

GRAPHIQUE

- Sélectionner A3:B5

- Cliquer sur Insertion. Graphique.comme nouvelle feuille : l'assistant graphique s'ouvre... et on demande un diagramme en secteurs (Cinq étapes comme précédemment).

»Lecture d'un diagramme en secteurs.

La répartition des 80 employés d'un hôtel est donnée par le diagramme en secteur suivant :

A l'aide de cette représentation graphique, compléter le tableau ci dessous :

Emploi	Pourcentage	Fréquence	Effectif
Cuisiniers			
Aide cuisiniers			
Serveurs	nanna an ga ann an an ann an Carpanya an Suisean fran d'an sua	ana uti, ata ang pata ata ang pana ta ang pana ta ang pang pang pang pang pang pang pang	
Femmes de chambre	lada panah menyadar a ka-da ka manahasi da anaka ka manahasi na manana sa an	namen der Tel anzum einen zu führten des Symmetrikenskenskenskensken den	and an a second of the or data we about the gradient of the
Total			80

2.3. Diagramme polaire.

2.3.1. Objectif.

L'objectif est de représenter sous forme de diagramme polaire des séries de données statistiques.

2.3.2. Mise en route.

A partir d'un point, on trace des rayons régulièrement espacés, qui forment une étoile (on trace autant de rayons que de données dans chaque série).

•Découverte de la notion de diagramme polaire. *Etude de l'évolution de l'indice de la production industrielle de 1984 à 1987.* Ouvrir le fichier INDICE.XLS, il apparaît alors :

	A	В	C	В	Е
1		1984	1985	1986	1987
2	jan	110	119	134	153
3	fév	109	123	130	145
4	mar	109	122	133	137
5	avr	114	130	141	163
6	mai	120	128	147	153
7	jun	117	128	140	162
8	jul	105	113	133	170
9	aoû	84	93	93	98
10	sep	112	120	135	155
11	oct	115	126	142	148
12	nov	122	135	148	160
13	déc	123	131	146	163

Remarque : On n'utilisera un diagramme polaire que pour des données positives. Excel ne gérant pas ces diagrammes, le graphique est réalisé dans un repère classique. On lira donc les valeurs absolués des nombres.

•Apprentissage.

Comment calcule-t-on l'angle entre deux rayons consécutifs,

- en degrés ?
- en radians ?

2.3.3. Exploitation.

•Exploitation manuelle. (En utilisant les données du tableau précédent)

Construction du graphique :

Tracer, au crayon, un cercle de rayon 6 cm. Tracer 12 rayons de ce cercle, formant des angles de 30° (effacer le cercle). Reporter, sur chaque rayon, les longueurs du mois correspondant. Joindre les points de chaque série par une ligne (on pourra utiliser des couleurs).

•Exploitation avec un tableur.

Ouvrir le fichier INDICE.XLS

Pour faciliter l'écriture des formules, on mettra les données sur une seule colonne de G2..G49.

Pour cela :

en G2 écrire =B2 puis Edition.Recopier.Vers le bas jusqu'à G13

en G14 écrire = C2 puis Edition. Recopier. Vers le bas jusqu'à G25

en G26 écrire =D2 puis Edition.Recopier.Vers le bas jusqu'à G37

en G38 écrire =E2 puis Edition.Recopier.Vers le bas jusqu'à G49

Dans la colonne H, il s'agit de reporter les 48 mesures d'angles où chacune est déduite de la précédente en ajoutant 30°. C'est une série dont le pas est 30.

Pour cela :

en H2 taper 0

Sélectionner les 48 cellules H2:H49 ; Edition ; Recopier ; Série ; 30. Dans la cellule H49 est inscrit 1410.

Dans la colonne I, il suffit de transformer ces mesures d'angles en radians (sachant que $180^\circ = \pi$ rad)

Pour cela :

en **I2** écrire =H2 * Pi()/180

Dans les colonnes J et K, nous allons calculer les coordonnées polaires de chacun des points soit $X = R \cos \alpha$ et $Y = R \sin \alpha$.

Pour cela :

en J2 écrire =G2 * cos(I2) et en K2 écrire =G2*sin(I2).

Sélectionner I2:K49 ; Edition.Recopier.Vers le bas.

Formater ces nombres en 0,00.

Représentation graphique :

Sélectionner J2:K49. Insertion. Graphique. comme nouvelle feuille

- 1. suivant
- 2. Choisir un type de graphique : Nuage de points. (suivant)
- 3. Sélectionner 2 (suivant)
- 4. Suivant.
- 5. fin

•Lecture d'un diagramme polaire.

Nombre de naissances

Ŀ,

Dans une ville, on a relevé le nombre de naissances au cours des années 1992, 1993, 1994. On obtient le diagramme polaire suivant :

A l'aide de ce diagramme polaire, compléter le tableau statistique ci-dessous :

	1992	1993	1994
ler trimestre			
2ème trimestre			
3ème trimestre			
4ème trimestre			

2.4. Comparaison de séries.

2.4.1. Objectif.

L'objectif est de comparer deux séries.

2.4.2. Mise en route.

•Découverte de la notion.

On considère les surfaces (aires) agricoles dans les départements de l'Aude et des Pyrénées Orientales (en ha). Selon leurs types d'utilisation, elles se répartissent ainsi.

	AUDE	P.O.
Terres labourables	108 300	12 900
Cultures fruitières	1 900	11 500
Prairie permanente	69 000	58 200
Vigne	114 800	55 900
Autres	400	100
Totaux	294 400	138 600

•Apprentissage.

On a réalisé un diagramme en bâtons des deux séries, par juxtaposition des barres. On peut aisément comparer les valeurs de chaque type. Par exemple, les terres labourables sont beaucoup plus importantes dans l'Aude que dans les P.O. Par contre, les cultures fruitières sont plus importantes dans les P.O. que dans l'Aude.

2.4.3. Exploitation.

•Exploitation manuelle.

Prix du super à la pompe

D'après la publication Petit x numéro spécial activités novembre 1992 ? Grenoble. Le tableau suivant donne le prix du super en francs par litre au 1^{er} février 1988

PRIX MOYEN DU SUPER A LA POMPE						
		Prix HT	Prix TTC	TAXE	% taxe	
FRANCE	F	1,02	4,63			
RFA	D	1,12	3,31			
ITALIE	I	1,21	6,19			
PAYS BAS	NL	1,21	4,50		4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	
BELGIQUE	В	1,29	3,86		alah di baharan majat dagi kuasa dagi kata bahara d	

LUXEMBOURG	L	1,32	2,96	
G.B.	GB	1,29	3,71	
ESPAGNE	Е	1,32	4,07	

Quels sont les trois pays d'Europe où l'essence est la plus chère ?

Calculer le montant des taxes dans les différents pays, puis les pourcentages des taxes par rapport au prix du super H.T. Ecrire les résultats dans le tableau ci-dessus.

On obtient le graphique suivant :

•Ce fichier existe pour une exploitation avec tableur : ESSNCE.XLS Nous obtenons les résultats suivants:

PRIX MOYEN DU SUPER A LA POMPE					
	ngeneran angeneraly ny ngeneralganistan	Prix HT	Prix TIC	TAXE	% taxe
FRANCE	F	1,02 F	4,63 F	3,61 F	353,92%
RFA	D	1,12 F	3,31 F	2,19 F	195,54%
ITALIE	I	1,21 F	6,19 F	4,98 F	411,57%
PAYS BAS	NL	1,21 F	4,50 F	3,29 F	271,90%
BELGIQUE	В	1,29 F	3,86 F	2,57 F	199,22%
LUXEMBOURG	L	1,32 F	2,96 F	1,64 F	124,24%
G.B.	GB	1,29 F	3,71 F	2,42 F	187,60%
ESPAGNE	E	1,32 F	4,07 F	2,75 F	208,33%

•Exploitation avec le tableur.

Densité de population en France

Ouvrir le fichier REGION.XLS. Il apparaît alors les 22 régions françaises ainsi que leurs superficies en km² et leurs populations en nombre d'habitants.

	A	В	С	D
1		Superficie	Population en	Densité en
		en km ²	nombre d'habitants	habitants par
				km²
2	Alsace	8 3 1 0	1 624 372	
3	Aquitaine	41 407	2 795 830	
4	Auvergne	26 179	1 321 214	
5	Basse Normandie	18 248	1 391 318	
6	Bourgogne	31 592	1 609 653	
7	Bretagne	27 184	2 795 638	
8	Centre	39 000	2 371 036	
9	Champagne	25 740	1 347 848	2013
10	Corse	8 721	249 737	
11	Franche Comte	16 189	1 097 276	
12	Haute Normandie	12 379	1 737 247	
13	Ile de France	12 053	10 660 554	
14	Languedoc Roussillon	27 770	2 114 985	
15	Limousin	16 931	722 850	
16	Lorraine	23 539	2 305 726	
17	Midi-Pyrénées	45 603	2 430 663	
18	Nord	12 126	3 965 058	
19	Pays de Loire	32 670	3 059 112	
20	Picardie	19 443	1 810 687	
21	Poitou-Charentes	25 590	1 595 081	
22	Provence-Côte d'Azur	31 396	4 257 907	141 141
23	Rhône-Alpes	43 694	5 350 701	-

Activités de classement.

Les régions sont ici classées par ordre alphabétique. On se propose de classer ces données par ordre croissant de leur superficie.

- Sélectionner A2:C23.
- Données. Trier. Colonne C (croissant par défaut)

De même, on classera ces données par population, puis on reviendra au classement alphabétique.

Attention : Si les données ne sont pas toutes sélectionnées, il n'y aura plus correspondance. On peut ainsi trier une colonne sans modifier les autres, ce qui est, dans ce cas, catastrophique.

Dans la colonne D, nous allons calculer les densités de population dans ces 22 régions. En D2, taper =C2/B2.

Recopier. Vers le bas jusqu'à D23.

On pourra, évidemment, classer ces régions par ordre décroissant de densité de population. En utilisant les données précédentes, répondre aux questions suivantes :

- Combien de régions ont une superficie de plus de 15 000 km² ?
- Combien de régions ont une population de moins de 2 000 000 habitants ?
- Quelle est la région qui a la plus grande densité de population ? la plus petite ?

2.5. Séries chronologiques.

2.5.1. Objectif.

L'objectif est de représenter deux séries dont les données n'ont pas le même ordre de grandeur.

2.5.2. Mise en route.

•Découverte de la notion. Evolution de la population de l'Hérault et de la France de 1901 à 1991.

	and the second	
	France en	Hérault
	milliers	en milliers
	d'habitants	d'habitants
1901	40 700	489
1911	41 500	480
1921	39 200	488
1931	41 800	515
1936	41 900	502
1946	40 500	461
1954	42 800	471
1962	46 500	513
1968	49 800	590
1975	52 700	648
1982	54 300	722
1991	55 000	700

•Apprentissage.

On remarque sur le graphique ci-dessus que ces deux séries ne peuvent être comparées ainsi, les nombres de la deuxième étant trop faibles par rapport à ceux de la première.

Pour pouvoir les comparer, et étudier, par exemple, l'évolution, on utilise la notion d'indice.

L'indice est calculé à partir de l'indice de référence, qui est 100, et que l'on placera sur une ligne choisie.

Par exemple, ici, on pourra décider que 100 représente la population de la France en 1901, et on complétera.

	France en milliers d'habitants	Indice
1901	40 700	100
1911	41 500	41 500 ×100 40 700

2.5.3. Exploitation.

•Exploitation manuelle.

1) Compléter la colonne indice du tableau suivant.

2) Quelle aurait été la population de l'Hérault aux différentes dates, si elle avait évolué comme celle de la France depuis 1901? (Les résultats seront notés dans la colonne "Population attendue de l'Hérault").

3) Compléter la colonne "Comparaison" avec les signes < ; = ; >

2	France en	Indiaa	Hérault en	Comparaison	Population
4	d'habitants	muice	d'habitants		l'Hérault
1901	40 700	100	489		
1911	41 500		480		
1921	39 200		488		
1931	41 800		515		·
1936	41 900		502		
1946	40 500		461		21
1954	42 800		471		
1962	46 500		513		2
1968	49 800		590		
1975	52 700		648		
1982	54 300		722		
1991	55 000		700		

•Exploitation avec le tableur.

Calcul des indices et graphique.

Ouvrir le fichier POP34.XLS

Dans la cellule C3, on veut écrire l'indice correspondant (comme ci-dessus)

On tape la formule $=B3*C^2/B^2$, et on la recopie vers le bas.

Dans la cellule E3, on fait le même calcul (=D3*\$E\$2/\$D\$2), et on la recopie vers le bas. Construction du graphique : Sélectionner la colonne des dates, celle des indices France, et celle des indices Hérault (Pour une sélection multiple de cellules non contiguës, on utilise la touche Ctrl) et demander le graphique.

•Exploitation des données. Evolution du change de 1960 à 1970

Ouvrir le fichier CHANGE.XLS. Ce tableau donne les variations de quelques monnaies : le Dollar, le Deutsch-Mark, le Franc Belge, la Livre, la Lire et la Peseta, en Francs Français de 1960 à 1990.

	1960	1970	1980	1990
USA	4.94	5.55	4.23	5.45
Allemagne	1.18	1.52	2.32	3.37
Belgique	0.10	0.11	0.14	0.16
U.K.	13.83	13.33	9.82	9.67
Italie (1000 lires)	7.91	8.89	4.93	4.54
Espagne 100 PTA	8.23	7.93	5.89	5.34
Suisse	1,13	1.27	2.52	3.92

Il est difficile de comparer l'évolution des différentes monnaies tant elles sont disproportionnées. On leur attribue la même valeur pour 1960 (indice 100) et on recalcule le tableau de proportionnalité (cf POP34.XLS).

na har yezh a dala dala a Bayya kinan an yezh a an a	1960	1970	1980	1990
USA	100,00	112,50	85,59	110,29
Allemagne	100,00	129,10	197,76	286,71
Belgique	100,00	112,50	146,35	165,02
U.K.	100,00	96,41	71,03	69,93
Italie (1000 lires)	100,00	112,32	62,36	57,44
Espagne 100 PTA	100,00	96,43	71,62	64,92
Suisse	100,00	112,50	223,36	347,19

Grâce à cette méthode, on peut visualiser toutes les évolutions sur un même graphique.

3. Séries quantitatives à variable discrète.

3.1. Objectif (Situation) ;

On donne un fichier informatique du nombre d'enfants par famille pour 60 familles. On va traiter ces données pour en extraire des informations plus significatives.

3.2. Mise en route.

3.2.1. Découverte de la notion.

A partir d'une série statistique quantitative discrète, il s'agit d'obtenir le tableau où les familles ont été triées en fonction du nombre de leurs enfants

- y-a-t-il des familles sans enfant?
- y-a-t-il des familles de 8 enfants?
- Entre quelles valeurs varie le nombre des enfants ?

On va déterminer l'effectif de chacune des valeurs de cette série, c'est à dire le nombre de famille ayant K enfants.

3.2.2. Apprentissage :

Utilisation d'un tableur à l'aide d'un micro-ordinateur pour ;

- Donner en extension l'ensemble des valeurs de la série statistique ;
- Déterminer les effectifs.
- Calculer des fréquences et des pourcentages.
- Etablir le tableau des fréquences.
- Calculer les effectifs cumulés
- Construire les diagrammes en bâtons des effectifs et des fréquences.
- Construire la courbe des fréquences cumulées
- Calculer la moyenne de la série statistique (moyenne pondérée)

3.3. Exploitation

Remarque : Si on utilise un tableur où la fonction fréquence n'est pas définie, on pourra employer le procédé suivant.

On va se servir d'un tableau de nombres ne comportant que des 0 ou des 1 :

- le nombre de colonnes est égal au plus grand nombre d'enfants plus un.
- le nombre de lignes est égal au nombre de familles.

• la colonne représentant le nombre d'enfants par famille, a la valeur 1 dans la cellule qui correspond au nombre d'enfants, sinon 0. Pour cela, il suffit de taper dans la cellule C2, la formule =(\$B2=C\$1), et de recopier cette formule dans la zone C2:I61. L'expression entre parenthèses a la valeur logique 0 si l'égalité est fausse, et 1 si l'égalité est vraie.

	A	B	C	D	E	F	G	H	I
1	N° Famille	Nb. enfants	0	1	2	3	4	5	6
2	1	0	1	0	0	0	0	0	0
3	2	1	0	1	0	0	0	0	0
4	. 3	2	0	0	1	0	0	0	0
5	4	5	0	0	0	0	0	1	0
6	5	1	0	1	0	0	0	0	0
7	6	2	0	0	1	0	0	0	0
8	7	4	0	0	0	0	1	0	0
9	8	3	0	0	0	1	0	0	0

Ouvrir le fichier ENFAM . XLS

Mettre avant toutes les cellules à 0. L'effectif de chacune des valeurs s'obtient en faisant la somme des 1 de la colonne correspondante.

Nombre d'enfants	Effectif	Fréquence	Pourcentage	Effectifs Cumulés Croissants
0	10	0,17	16,67%	10
1	18	0,30	30,00%	28
2	18	0,30	30,00%	46
3	7	0,12	11,67%	53
4	3	0,05	5,00%	56
5	3	0,05	5,00%	59
6	1	0,02	1,67%	60
Total	60	1	100,00%	

Remarque : La valeur totale calculée par la machine est de 100,00%. Le calcul à la main ne donne pas cette valeur exacte, car les valeurs affichées dans le tableau sont des valeurs arrondies au centième.

4. Séries quantitatives à variable continue.

4.1. Classes d'égales amplitudes.

4.1.1. Objectif.

En raison de la diversité des valeurs observées, il peut-être pertinent d'opérer des regroupements utilisant des intervalles appelés classes. Par convention, une classe regroupant des valeurs de variable continue est un intervalle fermé à gauche et ouvert à droite : [a,b].

4.1.2. Mise en route.

•Découverte de la notion.

On relève une cote x sur des pièces usinées par une machine à commande numérique. On a les résultats suivants :

Cote en mm	Effectif
[49,5 ; 49,7[1
[49,7;49,9[3
[49,9;50,1[4
[50,1 ; 50,3[11
[50,3 ; 50,5[11
[50,5 ; 50,7[13
[50,7 ; 50,9[15
[50,9;51,1[13
[51,1;51,3[12
[51,3;51,5[10
[51,5;51,7[4
[51,7;51,9[3

[49,5; 49,7] est une classe.

49,5 est la **borne inférieure**, l'intervalle est fermé, la borne est donc comprise. 49,7 est **la borne supérieure**, l'intervalle est ouvert, la borne n'est pas comprise. Une pièce qui mesure 49,7 mm est comptabilisée dans l'intervalle [49,7 ; 49,9[. L'amplitude (l'étendue) de cette classe est 0,2 (49,7-49,5). Chaque classe de cette série a la même amplitude.

•Apprentissage.

Comme dans le cas d'une série statistiques à variable discrète, nous pouvons calculer les fréquences, les effectifs cumulés croissants et décroissants, les fréquences cumulées croissantes et décroissantes.

Combien de pièces mesurent moins de 51,3 mm? Combien de pièces mesurent au moins 50,9 mm? Combien de pièces mesurent 51,5 mm ou plus?

4.1.3. Exploitation

•Exploitation manuelle.

Voici la taille des joueurs d'un club de basket.

175	201	170	185	168	170	188	185	167
176	185	180	181	187	178	172	181	174
193	189	177	186	190	182	168	172	197
181	191	175	170	204	187	180	173	188
191	198	190	175	192	186	185	178	169

Organiser ces données dans le tableau statistique suivant, les classes étant d'amplitude 5 cm.

Classe	Effectif	Fréquence	E.C.C.	E.C.D	F.C.C.	F.C.D
[160 ; 165[99999 999 999 999 999 999 999 999 999			**************************************	
annan tha gha ann an an Alb Alban gha a tha ann an Alban gha ann an A					******	
a da anna a bait an tar far far an an staine ann an						

and a second				
				and the second se
£		1 1		- t
				· · · · · · · · · · · · · · · · · · ·
1		1		1
1		1 1		1 1
1 I		1 1		1
		1	and the second second second second second	end constant and constant and constant
		The second se	and the second se	and a subscription of the second s
5 I				
1				
1		1	1	1
	1	1 1		1
	1	1 1	1	1 1
		the second	1	1

Questions :

- Que représente le nombre de la troisième ligne de la colonne E.C.C. ?
- Que représente le nombre de la deuxième ligne de la colonne E.C.D. ?
- Que représente le nombre de la quatrième ligne de la colonne F.C.C. ?
- Que représente le nombre de la huitième ligne de la colonne F.C.D. ?

Représentation graphique

Nous pouvons représenter cette série statistique par :

• un histogramme

Sur Ox : 1 cm pour 5 cm de taille Sur Oy : 1 cm pour 2 joueurs Chaque rectangle a une aire proportionnelle à l'effectif de la classe.

• un polygone des effectifs

A partir de l'histogramme, il suffit de joindre les milieux des classes successives.

• un polygone des effectifs cumulés croissants

Sur Ox : 1 cm pour 5 cm de taille. Sur Oy : 1 cm pour 5 joueurs Remarque : Chaque point a pour abscisse la borne supérieure de la classe, et pour ordonnée la valeur de E.C.C.

•EXPLOITATION AVEC EXCEL

Ages des 592 élèves d'un lycée Ouvrir le fichier AGE.XLS

Ce fichier donne la date de naissance des 592 élèves d'un L.P. pour l'année 95-96. Après avoir calculé l'âge de ces élèves au 1 novembre 1995, nous allons établir une série statistique à variable continue d'égale étandue.

Les dates de naissance sont données dans les cellules A2:A593. Le 1/11/95 est écrit en B2.

En **B2**, nous allons tout d'abord calculé l'âge des élèves en jours (EXCEL calcule la différence entre deux dates en prenant des années de 360 jours.) Taper = \$B\$1-A2 (les références absolues de B1 permettront de recopier cette formule 591 fois.)

En C2, il s'agit de transformer ce nombre de jours en années, taper =ENT(B2/360). Sélectionner B2:C593 et recopier vers le bas.

En C595, nous pouvons calculer l'âge moyen d'un élève au 1/11/95, il suffit de taper = MOYENNE(C2:C593).

Répartissons ces données en classes d'amplitude 1 an ; nous allons compléter le tableau donné.

Sélectionner F2:F11 et taper =FREQUENCE(C2:C593;D2:D11) CTRL-MAJ-ENTREE. La formule s'écrit alors entre {}. Les effectifs s'affichent.

Calculons la moyenne de cette série statistique.

En G2 "CENTRES "taper =(D2+E2)/2; en H2 "PRODUITS " taper =F2*G2. Sélectionner G2:H11 et recopier vers le bas. En F12 Σ des effectifs ; en H12 Σ des produits ; en H13 taper

=H12/F12.

L'âge moyen au 1/11/95 est 17,9 ans.

Remarques : avec les versions antérieures à EXCEL5, où la fonction FREQUENCE n'existe pas, nous pourrons utiliser un tableau de dénombrement identique à celui de l'exemple ENFAM.XLS.

MINIMUM	MAXIMUM	EFFECTIFS
15	16	22
16	17	143
17	18	186
18	19	131
19	20	67
20	21	28
21	22	8
22	23	4
23	24	2
24	25	1
25		592

•Lecture d'un polygone des effectifs,

Le polygone des effectifs représenté ci-dessous donne le nombre d'élèves en fonction de la distance en km du domicile au lycée. Les classes sont d'amplitude 2 km, le minimum de la série est 0 km, son maximum 20 km.

Reconstituer le tableau statistique suivant :

Distances	Effectifs	Centres des classes	E.C.C.	E.C.D.
	_			

4.2. Classes d'amplitudes inégales

Ouvrir le fichier VIL34.XLS.

Population de l'Hérault en 1991

Ce fichier donne la population des 343 communes de l'Hérault. Le minimum de cette série est 14, le maximum est 210 866. Faisons une répartition de ces données en classes d'amplitude 10 000 habitants.

En C2 taper 0 ; en D2 taper 10 000. Sélectionner C2:D23 ; Edition ; Recopier ; Série ; Pas : 10 000. Sélectionner E2:E23 ; taper =FREQUENCE(B2:B345;D2:D23) MAJ-CTRL-ENTREE. Nous obtenons 334 communes de [0 ; 10 000] 6 communes de]10 000 ; 20 000] 1 commune de]40 000 ; 50 000] 1 commune de]70 000 ; 80 000] 1 commune de]210 000 ; 220 000]

Toutes les autres classes ont un effectif nul.

Cette répartition n'offre pas trop d'intérêt. Le choix des classes n'est pas judicieux. Si l'amplitude est 5 000 habitants, le problème est le même, l'exploitation est difficile.

Nous sommes donc amenés à faire une répartition par classes d'amplitudes inégales. Pour cela, classons cette série dans l'ordre croissant du nombre d'habitants. Nous constatons la position de Montpellier. Supprimons cette valeur extrême, nous constatons

Supprimons cette valeur extrême,

Nous constatons la présence de deux villes (Béziers et Sète) dont la population est proche de 50 000 habitants. Supprimons ces deux villes, nous obtenons :

Supprimons les six villes entre 10 000 et 20 000 habitants, nous obtenons :

Supprimons les villes entre 5 000 et 10 000 habitants, nous obtenons :

Nous constatons un trou vers 2 000. Si nous supprimons les villes dont la population est supérieure à 2 000 habitants, nous obtenons :

Nous pouvons supprimer les villes dont la population est supérieure à 1 500 habitants.

Nous constatons un "trou" vers 600 habitants.

Supprimons les communes de moins de 300 habitants :

Supprimons les communes de moins de 150 habitants.

Nous pouvons supprimer les communes de plus de 60 habitants.

Par cette méthode, nous avons déterminé des classes d'amplitudes inégales. Nous avons défini les 11 classes : de 0 à 60 ; de 60 à 150 ; de 150 à 300 ; de 300 à 600 ; de 600 à 1 500 ; de 1 500 à 2 000 ; de 2 000 à 5 000 ; de 5 000 à 10 000 ; de 10 000 à 20 000 ; de 20 000 à 100 000 ; de 100 000 à 220 000.

Borne inf	Borne sup	EFFECTIFS
0	60	20
60	150	46
150	300	56
300	600	54
600	1500	71
1500	2000	21
2000	5000	53
5000	10000	13
10000	20000	6
20000	100000	2
100000	220000	1

Dans cet exemple la construction d'un histogramme ne serait pas pertinente en effet dans un histogramme les aires des rectangles sont proportionnelles aux effectifs et les bases des rectangles ont pour largeur les étendues des classes. Ici les rectangles représentant les quatre dernières classes seraient aplatis.

En remplacement nous proposons la construction des polygônes des effectifs cumulés croissants et décroissants.

Remarque:Certaines de ces classes correspondent à des réalités géographiques: la capitale régionale Montpellier, les deux villes Beziers et Sète, des gros bourgs (Lunel et Agde) et des banlieues(Frontignan, Mauguio, Castelnau le Lez et Lattes), puis les bourgs les stations balnéaires, quelques banlieues, puis les gros villages et enfin des villages de différentes tailles.

A partir de la cellule C32, il s'agit de constituer le tableau statistique avec ces nouvelles classes, de donner la répartition des 343 villes. Les formules sont exactement les mêmes que si les classes étaient d'amplitudes égales.(Voir fichier AGE.XLS)

Exemple : Une entreprise a relevé le nombre de demandes d'emploi en fonction de l'âge des demandeurs :

Borne inf	Borne sup	Effectifs
[20	25 [20
[25	30 [15
[30	40 [12
[40	55 [9

Méthode :

On choisit une intervalle élémentaire (classe de la plus petite amplitude)

On calcule le nombre d'intervalle de chaque classe On calcule les effectifs corrigés (Effectifs / nombre d'intervalles) La hauteur des rectangles est égale aux effectifs corrigés.

Borne	Borne	Effectifs	Nombre	Effectifs	Aire
Inf	Sup		d'intervalles	corrigés	du rectangle
[20	25 [20	1		
[25	30 [15	1		
[30	40 [12	2		·
ſ 40	55 [9	3		

L'aire de chaque rectangle est proportionnelle aux effectifs des classes correspondantes. Construire l'histogramme de cette série :

Sur Ox : 1 cm pour 5 ans.

Sur Oy : 1 cm pour 2 demandeurs.

Paramètres de position et de dispersion. 5.

5.1. Movennes.

5.1.1. Moyennes arithmétiques

Ouvrir le fichier VIL34.XLS

Les données sont la population de toutes les communes du département de l'Hérault, recensement 1983.

Avec les données brutes

Calculer la moyenne arithmétique de cette série statistique. C'est la somme des 343 données divisée par 343. Notée aussi $\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_i}{N}$.

En B347 taper =moyenne(B3:B345). La moyenne de cette série est 2341 habitants à l'unité près.

Si on enlève une de ces valeurs au hasard, la moyenne est alors...

Il peut être intéressant d'ordonner cette suite de valeurs. Pour cela, sélectionner A3:B345 ; Données, Trier, \$B\$2, Croissant.

Que devient cette moyenne si on supprime le maximum ?

Que devient cette moyenne si on supprime le minimum ?

Quelle est la précision avec laquelle il convient d'écrire le résultat ?

Avec les données rangées par classes

Calculer la moyenne dans le cas où les données sont rangées par classes comme l'indique le tableau. Pour cela, il faut calculer le centre de chaque classe noté x_i dans F26 : =(C26+D26/2) et recopier vers le bas ; puis dans la colonne G, calculer le produit du centre de la classe par l'effectif correspondant $x_i n_i$. Dans G26 : =F26*E26 et recopier vers le bas. La moyenne est alors la somme des produits que l'on calculera dans E36 divisée par l'effectif total soit $\frac{1}{x} = \frac{n_1 x_1 + n_2 x_2 + n_3 x_3 + \dots + n_i x_i}{1 + n_1 x_1}$. La moyenne est alors

Que deviendrait cette moyenne si on change une borne supérieure ?

5.1.2. Moyennes pondérées

Ouvrir le fichier MCOEF.XLS

	Α	В	С	D	E	F	G	H	1	J	K	L	M
1		EG1	EG2	EG3	EG4	EG5	EP1	EP2	EP3	EP4			
2	Coefficients	2	2	2	1	1	6	3	2	1	EG	EP	TOTAL
3	ARBONES Elodie	17	16	18	18	15	18	15	12	14			
4	ARMENGOL Peggy	17	15	14	18	13	15	12	11	10			
5	AUBIN Jean Pierre	19	14	17	13	12	10	9	8	5			
6	BELMONTE Nicolas	10	4	5	0	4	12	14	5	6			
7	BILON Emmanuel	16	7	9	11	11	12	7	12	11			
8	BRINIO Cédric	16	17	20	16	15	12	13	15	14			
9	CAZAU Sandrine	13	10	10	20	14	12	15	14	16			
10	DEALMEIDA Sandra	13	15	11	15	4	12	10	9	11			
11	DELAUNEY Mathieu	15	14	12	16	13	5	2	3	4			
12	DJAFARI Hélène	13	12	11	12	12	10	12	15	10			
13	FERRAND Jérôme	15	13	17	13	15	15	12	13	16			
14	GAY Alexandra	6	7	7	14	8	5	7	8	5			
15	MARIN Séverine	6	5	7	10	9	2	3	5	8			
16	MARTY Stéphane	11	7	15	11	10	11	12	15	12			
17	REDON Perrine	19	20	17	10	12	14	12	11	10			
18	REILLES Delphine	17	16	12	12	14	15	16	14	15			
19	RODA vanessa	1	2	7	5	3	3	2	1	5			
20	ROULLIN Yoan	8	15	11	13	14	15	16	14	15			
21	WYROBNIK Lise	14	19	15	12	15	12	11	10	8			

Ce tableau donne le résultat de 19 candidats à un examen. Chacune des 9 épreuves est affectée d'un coefficient, le Domaine Général est donc sur un total de 160 points ; le Domaine Professionnel sur 240 points.

Calculons le total dans chaque domaine des 19 candidats.

En K3 := B3*\$B\$2+C3*\$C\$2+D3*\$D\$2+E3*\$E\$2+F3*\$F\$2.

En L3 : =G3*\$G\$2+H3*\$H\$2+I3*\$I\$2+J3*\$J\$2.

En M3 : ≠K3+L3

Sélectionner K3:M3, recopier vers le bas jusqu'à la ligne 21.

Nous obtenons les résultats sur 400 points à cet examen.

Que deviennent ces résultats si vous changez une donnée coefficient 1 ?

Que deviennent ces résultats si vous changez une donnée coefficient 6 ?

Un autre exercice obtenu avec des devoirs maisons et des devoirs surveillés vous est présenté dans le fichier MCOEFF.XLS

5.1.3. D'autres calculs de moyenne.

•Exemple 1

Sur un parcours aller-retour, un mobile a une vitesse de 20 km/h à l'aller et 30 km/h au retour.

Quelle est la vitesse moyenne sur le parcours aller-retour ?

temps aller-retour = temps aller + temps retour

$$\frac{2d}{V} = \frac{d}{20} + \frac{d}{30}$$

soit V = 24 km/h

24 est la moyenne harmonique de 20 et de 30.

•Exemple 2

Deux carrés ont pour côté 16 mm et 12 mm. Quel est le côté du carré d'aire moyenne ?

```
aire moyenne = \frac{\text{aire } 1 + \text{aire } 2}{2}

aire moyenne = \frac{256 + 144}{2}

aire moyenne = 200

côté = \sqrt{200}

côté ≈ 14,14 mm
```

 $\sqrt{200}$ est la moyenne quadratique de 16 et 12.

•Exemple 3

Une population augmente de 3% une année et de 8% l'année suivante.

Quel est en pourcentage l'augmentation annuelle moyenne ?

Une population qui augmente de 3% est multipliée par 1,03

Soit P_0 la population initiale, P_1 à la fin de la 1ère année, P_2 à la fin de la 2ème année. $P_2 = P_1 * 1,08$

 $P_1 = P_0 * 1,03$ d'où $P_2 = P_0 * 1,08 * 1,03$

soit k le coefficient moyen. $P_2 = P_0 * k * k$

donc $k^2 = 1,1124$ et $k \approx 1,0547$.

L'augmentation annuelle moyenne est donc d'environ 5,47%

Il s'agit ici d'une moyenne géométrique.

•Exemple 4

On mélange 2 litres d'alcool à 70° et 3 litres d'alcool à 90°. Quel est le degré d'alcool du mélange ? 1 litre d'alcool à 70° contient 0,70 l d'alcool pur. les 5 litres du mélange contiennent : 2*0,7 + 3*0,9 = 4,1 litres d'alcool pur. Un litre de mélange contient : 4,1 / 5 = 0,82 litre d'alcool pur. Le degré du mélange est donc 82°. Il s'agit ici d'une **moyenne pondérée**.

5.2. Ecart-type et Variance.

La moyenne d'une série statistique n'est intéressante que si nous connaissons la dispersion des données autour de cette moyenne.

Les déviations par rapport à la moyenne sont notées $x_i - \overline{x}$; la moyenne des déviations est nulle, les déviations positives compensent les déviations négatives. Cependant elles peuvent être plus ou moins grandes en amplitude. Cette amplitude en valeur absolue est appelée **écart**. Plutôt que d'utiliser l'écart moyen (moyenne des écarts), on se sert de la moyenne des carrés des écarts, on extrait la racine carrée.

$$\sqrt{\frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+\ldots+(x_n-\overline{x})^2}{n}}$$

Cette mesure est appelée **écart-type** est notée σ . L'écart-type est une mesure de dispersion des données autour de la moyenne, plus l'écart-type est grand, plus les données sont dispersées autour de la moyenne.

Le carré de l'écart-type représente la moyenne des carrés des écarts et est appelé variance et notée V.

Ouvrir le fichier CABLE.XLS.

Ce fichier donne la longueur de raccourcissement de 25 cables dans le cas d'un refroidissement rapide ou d'un refroidissement lent.

Cable	Refroidissement	Refroidissement		
	rapide	lent		
Numéro	Raccourcissement	Raccourcissement		
1	0.274	0.222		
2	0,269	0.293		
3	0,223	0.204		
4	0.174	0.239		
5	0.122	0.322		
6	0.284	0.256		
7	0.236	0.287		
8	0.271	0.257		
9	0.248	0.280		
10	0.313	0.259		
11	0,279	0.231		
12	0.388	0.265		
13	0.261	0.298		
14	0.351	0.241		
15	0.344	0.236		
16	0,297	0.281		
17	0.186	0.218		
18	0.217	0.269		
19	0,262	0.243		
20	0.219	0.291		
21		0.265		

22	0.232
23	0.248
24	0.261
25	0.292

Nous allons calculer les écarts à la moyenne dans chacun des cas et en faire une représentation graphique.

En B30 et B31, calculer la moyenne des séries.

En D4, calculer les écarts à la moyenne = B4 - \$B\$30.

En E4, calculer le carrés de ces écarts = $D4^2$

Répéter ces formules en F4 et G4. Recopier vers le bas dans D4:G28.

Recopier vers la droite le calcul de la moyenne dans B30:G30.

Nous constatons que la moyenne des écarts dans les deux cas est nulle.

Vérifions que la moyenne des carrés des écarts (en E30 et G30) est égale à la variance. Pour cela, en E31 utilisons la fonction statistique VARIANCE : =VAR.P(B4:B28). Recopier en G31.

Représentation graphique :

De H4 à H28, fabriquons une série de 0.

Sélectionner les plages non connexes : A4:A28 ; D4:D28 ; H4:H28. Prendre une représentation graphique : COURBE puis la représentation 7. Nous obtenons la représentation graphique suivante :

Refroidissement rapide

Refroidissement lent

La dispersion est plus grande dans le cas d'un refroidissement rapide que dans le cas d'un refroidissement lent, donc l'industriel qui fabrique les cables a intérêt à utiliser un refroidissement lent.

5.3. Coefficient de variation.

Lorsque l'on compare les écarts-types et les moyennes de plusieurs ensembles de données, on constate généralement que l'écart-type a tendance à être plus grand lorsque la moyenne est plus grande. Nous sommes amenés à utiliser le coefficient de variation qui est une mesure de

dispersion utilisant la moyenne comme unité de mesure et qui est défini par le rapport : $\frac{\sigma}{r}$.

Ouvrir le fichier FLEUVE.XLS.

	Seine à Paris	Rhône	Rhône	Hérault au
		à Genève	à Beaucaire	Moulin de
				Bertrand
Janvier	510	163	2296	32
Février	545	175	2050	26
Mars	445	177	2280	46
Avril	323	180	1673	31
Mai	229	223	1968	25
Juin	157	370	1558	10
Juillet	112	413	1230	5
Août	94	379	1148	4
Septembre	99	269	1427	15
Octobre	124	197	1066	32
Novembre	244	180	1591	40
Décembre	309	166	1378	27
Moyenne				
Ecart-type				
Variance				
Coefficient				
de variation.				

Ce fichier donne le débit moyen de certains fleuves.

Il s'agit de calculer	en C15	la moyenne : =moyenne(C3:C14)
	en C16	l'écart type : =ecartypep(C3:C14)
	en C17	la variance : = $racine(C16)$ ou = $var.p(C3:C14)$
	en C18	le coefficient de variation : $\frac{\text{écart - type}}{\text{moyenne}}$: = <i>C16/C15</i> .

Et de recopier ces formules vers la droite de C15 à F18.

MOYENNE	265,83	241,00	1638,75	24,42
ECART-TYPE	155,25	89,40	406,15	12,80
VARIANCE	24103,81	7993,00	164955,69	163,91
COEFFICIENT DE VARIATION	0,58	0,37	0,25	0,52

Nous constatons que le coefficient de variation de l'Hérault au Moulin de Bertrand est peu différent de celui de la Seine à Paris.

Dans cet autre exemple qui donne le nombre de visiteurs en Nouvelle-Zélande en 1960 et 1980, on observe une augmentation considérable (plus de 1 000 %). Ces variations sont plus importantes en 1980 qu'en 1960. Mais qu'en est-il du coefficient de variation ?

	Jany	Fev	Mars	Avril	Mai	Juin	Juillet	Août	Sept	Oct	Nov	Déc
1960	4391	4598	3951	2453	1783	1568	1599	1944	2874	3862	3952	6159
1980	48224	51353	46784	31284	26681	22817	26944	32902	25567	37113	44788	70706

	the second se			
	1960	1980		
movenne	3 261	38 764		
écart-type	1 389	13 466		
coefficient	0.426	0.347		
de variation	0,120			

Le coefficient de variation est plus petit en 1980 qu'en 1960. On en conclut que le nombre de visiteurs en 1980 est moins affecté par des facteurs saisonniers.

Ces données sont celles du fichier VISIT.XLS ; les calculs sont exactement les mêmes que ceux de FLEUVE.XLS.

5.4. Mode, médiane, quartile.

La médiane joue un rôle primordial car elle désigne le "milieu" des données lorsque celles-ci sont placées dans l'ordre croissant ou décroissant.

Voyons deux exemples :

```
Exemple 1
```

On a relevé les températures maximales au cours des 11 dernières journées :

journées	1	2	3	4	5	6	7	8	9	10	11
températures	25	25	26	26	27	28	29	29	30	30	31

Il y a ici 11 valeurs rangées en ordre croissant. La sixième valeur est "au milieu" de la série. La médiane sera donc la sixième valeur. Il y aura cinq valeurs avant la médiane et cinq valeurs après.

Dans le cas général, avec un nombre impair (2k+1) de données disposées en ordre croissant, la médiane M correspond à la valeur du milieu donc la k+1ème donnée. Il y a alors k données avant la médiane et k données après la médiane.

La médiane est donc 28°.

Exemple 2

On a relevé les températures maximales au cours des 12 dernières journées :

journées	1	2	3	4	5	6	7	8	9	10	11	12
températures	25	25	26	26	27	28	29	29	30	30	31	31

Il y a ici 12 valeurs rangées par ordre croissant. La sixième valeur et la septième valeur sont "au milieu" de la série. On pourra prendre comme médiane toute valeur comprise entre la sixième et la septième, donc entre 28 et 29 (inclus). Pratiquement, on prendra la moyenne de ces deux valeurs, soit 28,5. La médiane est donc 28,5°.

Avec un nombre pair (2k) de données disposées en ordre croissant, on peut considérer autant la k-ième que la (k+1)-ième comme se situant à mi-chemin. Toute valeur située entre ces deux valeurs peut être considérée comme la médiane. Pour lever toute ambiguïté, on convient de choisir pour médiane, la valeur qui est la moyenne de la k-ième et de la (k+1)-ième donnée.

Avec un nombre pair de valeurs, la médiane peut être définie par :

$$M = \frac{k^{e} donnée + (k+1)^{e} donnée}{2}$$

METHODE DE CALCUL :

Nous allons calculer la médiane des tailles de 45 joueurs de basket données dans le fichier TAILLE.XLS

175	201	170	185	168	170	188	185	167
176	185	180	181	187	178	172	181	174
193	189	177	186	190	182	168	172	197
181	191	175	170	204	187	180	173	188
191	198	190	175	192	186	185	178	169

Avec EXCEL

Fonction médiane

Dans la cellule A18, écrire "MEDIANE :"; en B18 : =médiane(A1:I5); EXCEL donne pour résultat 181.

• Ordre croissant ou décroissant.

Recopier les 45 tailles verticalement dans le pavé A25:A69. Sélectionner ce pavé, classer les données dans l'ordre croissant. Les numéroter, en insérant une colonne avant A, en A25 taper 1 puis sélectionner et recopier une série de pas 1.

Constater que la 23ème taille est 181 cm.

En utilisant la profondeur •

Dans les cellules C25 et C69, recopier les 45 tailles, les ranger dans l'ordre décroissant ; pour trouver la médiane, il suffit de repérer les valeurs égales dans B25:B69 et C25:C69.

(Constater	que cette	valeur est 181 cm.
ſ	1	167	
ſ	2	168	
ſ	3	168	
Γ	4	169	
Γ	5	170	
ſ	6	170	
ſ	7	170	
	8	172	
ſ	9	172	
ſ	10	173	
ſ	11	174	
ſ	12	175	
ſ	13	175	
I	14	175	
ſ	15	176	
Ī	16	177	
I	17	178	
ſ	18	178	
ſ	19	180	
I	20	180	
ſ	21	181	
I	22	181	
Î	23	181	→ Médiane ←
	24	182	
1	25	185	
	26	185	
I	27	185	
	28	185	
	29	186	
	30	186	
	31	187	
	32	187	
	33	188	
	34	188	
	35	189	
	36	190	
	37	190	
	38	191	-9
	39	191	
	40	192	ļ
	41	193]
	42	197]
	43	198]
	44	201]
	45	204	

Constater que cette valeur e	est	181	cm.
------------------------------	-----	-----	-----

167	204
168	201
168	198
169	197
170	193
170	192
170	191
172	191
172	190
173	190
174	189
175	188
175	188
175	187
176	187
177	186
178	186
178	185
180	185
180	185
181	185
181	182
181	181
182	181
185	181
185	180
185	180
185	178
186	178
186	177
187	176
187	175
188	175
188	175
189	174
190	173
190	172
191	172
191	170
192	170
193	170
197	169
198	168
201	168
204	167

5.5. Diagramme tige-feuille.

Le diagramme tige-feuille consiste à classer les données dans des classes d'égales amplitudes et à conserver l'ordre des données. Il a l'allure d'une sorte d'histogramme couché, on peut y repérer facilement la médiane et les quartiles de la serie statistique.

Frais professionnels

Ouvrir le fichier TIGEFFLE.XLS

On trouve les données sur la colonne B, ce sont les frais professionnels exprimés en KF déclarés aux contributions par 35 personnes. Le diagramme tige feuille se trouve en P11, l'amplitude des classes est de 10 KF.

Individus	KF
1	46
2	49
3	53
4	56
5	56
6	57
7	58
8	60
9	60
10	63
11	63
12	64
13	64
14	65
15	66
16	67
17	67
18	67
19	68
20	70
21	71
22	71
23	72
24	73
25	74
26	77
27	78
28	78
29	79
30	80
31	83
32	85
33	88
34	90
35	90

Classe :	Feuilles :
4	69
5	36678
6	003344567778
7	0112347889
8	0358
9	00

	médiane 67	
quartile 1 61,5		quartile 3 77,5
minimum : 46		maximum : 90

5.6. Boîte à moustaches.

Ouvrir le fichier BTM.XLS

Notes d'élèves

Les données sont des notes d'élèves. Nous nous proposons de les représenter par une boite de dispersion.On obtient alors un graphique de ce type.

Les boites de dispersion ou boîtes à moustache utilisent des indicateurs , la médiane et les quartiles robustes, c'est à dire non sensibles aux valeurs extrêmes comme le sont la moyenne et l'écart type. Sur la boîte à dispersion on peut lire l'intervalle interquartile, les valeurs extrêmes, et en comparant la position de la médiane par rapport au quartile inférieur et supérieur on a une idée de la symétrie de la série statistique étudiée. Les boites à dispersion sont particulièrement utiles pour la comparaison des caractéristiques de plusieurs séries.

En E1 taper =MOYENNE(B2:B28) En E2 taper =MAX(B2:B28) En E3 taper =MIN(B2:B28) En E4 taper =MEDIANE(B2:B28) En E5 taper =QUARTILE(B2:B28;1) En E6 taper =QUARTILE(B2:B28;3) En E7 taper = NB(B2:B28) En E8 taper =1+RACINE(E7)/2En E9 taper =1+RACINE(E7)En D12, D13, D19, D20, D21, D25 taper = E8 En D14, D15, D17, D18 taper 1 En D16, D22, D23, D24 taper =E9 En E12 taper = E3 En E13, E14, E24, E25 taper =E5 En E15, E16, E17, E23 taper =E4 En E18, E19, E21, E22 taper =E6 En E20 taper = E2

Représentation graphique

Sélectionner D11:E25.Insertion. Graphique .comme nouvelle feuille.

- 1. Suivant
- 2. Choisir un type de graphique: nuage de points(suivant)
- 3. Sélectionner 2 (suivant)
- 4. Suivant
- 5. Fin

Comparaison d'écarts de températures:

Ouvrir le fichier BTMTEM.XLS.

Climat de Marrakech, 466m, Maroc, Lat 31° Nord Climat de North Platte, Nebraska(USA) 850 m, Lat 42° Nord Climat de Alert, Canada Lat 80° Nord

			·····		.						****	*****	
2.4 S X		J	F	M	A	M	J	J	A	S	0	N	D
Marrakech	Temp °C	11.5	13.4	16.1	18.6	21.3	24.8	28.7	28.8	25.4	21.2	16.5	12.5
	Pr. mm	28	29	32	31	17	7	2	3	10	21	28	33
North	Temp °C	-4.4	-2.3	1.7	8.7	14.7	20.6	24.5	23.6	17.6	10.6	1.9	-2.6
Platte	Pr. mm	11	13	25	51	75	84	63	54	42	23	13	10
Alert	Temp ℃	-31.9	-33	-32.9	-23.9	-11.3	-0.1	3.9	0.8	-9.5	-19.8	-25.8	-30.2
	Pr. mm	6	6	6	6	9	12	15	29	30	16	6	7

La représentation graphique s'obtient par la même méthode que ci-dessus en ajoutant 5 aux x de Marrakech et 10 aux x de Alert.

Remarque : Il faut annuler les traits reliant chaque boîte à moustache.:

1) Sélectionner le segment à supprimer

- 2) Format de point de données selectionnées
- 3) Trait aucun

ou Laisser une ligne vide entre chaque série de données

Comparaison d'écart de températures sur trois pays

Remarque:

Certaines calculatrices donnent ce type de représentation en permutant abscisses et ordonnées.

5.7. Droite de régression.

Ouvrir le fichier VILLR.XLS.

Evolution de la population du Languedoc Roussillon de 1881 à 1990

Ce fichier donne l'évolution de la population des 48 villes de la région Languedoc Roussillon avant plus de 5000 habitants en 1990.

	1881	1901	1921	1954	1962	1968	1975	1982	1990
Narbonne	28134	28852	28956	32060	35899	40035	40543	42657	47086
Carcassonne	27512	30720	29314	37035	43709	46329	44623	42450	44991
Castelnaudary	10059	9397	7921	8765	10788	10844	10847	11381	11725
Limoux	6283	7084	6640	8334	10115	11329	11713	10885	10217
Lézignan-									
Corbières	6286	4951	7039	6682	7120	7719	7431	7681	8029
Trêbes	2171	1840	2000	2179	2343	3011	4072	5607	5683
Nimes	63552	80620	82774	89130	105199	129866	133942	129924	133607
Alès	22555	24940	36455	36893	43370	44607	48787	44343	42296
Bagnols/Cèze	4666	4461	3918	5546	13031	16761	17772	17777	18179
Beaucaire	9724	9143	7916	10197	11211	12836	12997	13015	13600
Saint Gilles	5268	6381	5924	5789	7034	9247	9755	10845	11765
Villeneuve-									
Avignon	2630	2922	2561	5157	6834	7371	8977	9535	10785

Nous nous proposons de comparer l'évolution de cette population entre 1982 et 1990.

A partir de la colonne B51, recopier dans la colonne B les villes, dans la colonne C les populations en 1982, dans la colonne D les populations en 1990. Sélectionner **B51:D99**, trier par ordre croissant sur la colonne D.

Evolution des villes de la Région entre 82 et 90

En utilisant une représentation graphique, nous obtenons ce nuage de points :

Les points semblent à peu près alignés, il existe donc une corrélation linéaire entre les deux variables X, population en 1982 et Y, population en 1990.

On cherche à construire une droite d'équation y = m x + p passant "au plus près " des points du nuage. Si M_i de coordonnées $(x_i ; y_i)$ est un point du nuage, et si $\vec{y}_i = mx_i + p$ alors $\vec{y}_i - y_i$ s'appelle le résidu. On choisit m et p de telle sorte que la somme des carrés des résidus soit minimale.

On montre qu'il faut prendre $m = \frac{\sum_{i=1}^{n} x_i y_i - n \overline{xy}}{\sum_{i=1}^{n} x_i^2 - n \overline{x}^2}$. De plus cette droite passe par le

barycentre du nuage de points, donc son équation est:

 $y-\overline{y} = m(x-\overline{x})$ ou y = mx + p avec $p = \overline{y} - m\overline{x}$

En E102, taper C102*D102; en F102, taper $C102^2$; en G102 taper $D102^2$. Sélectionner E102:G149, recopier vers le bas.

En C153 taper = $(E151-48*C151*D151)/(F151-48*C151^2)$ ce nombre est le coefficient de la droite de régression. Pour déterminer p, il suffit de calculer en E153 : =D151-C153*C151.

Remarques : La version 5 d'EXCEL permet d'obtenir directement les caractéristiques de la droite de régression. Pour cela, sélectionner C156:D156 et taper =DROITEREG(D102:D149;C102:C149) MAJ+CTRL+ENTREE.

1. INTRODUCTION AU TABLEUR.	3
1.1. ELEMENTS D'UNE FEUILLE DE CALCUL	4
2. REPRESENTATION DES SERIES STATISTIQUES	8
2.1. DIAGRAMME EN BATONS	
2.3. DIAGRAMME POLAIRE.	17
2.4. COMPARAISON DE SERIES.2.5. SERIES CHRONOLOGIQUES.	20 23
3. SERIES QUANTITATIVES A VARIABLE DISCRETE	26
 3.1. OBJECTIF (SITUATION) : 3.2. MISE EN ROUTE 3.3. EXPLOITATION 	26 26 27
4. SERIES QUANTITATIVES A VARIABLE CONTINUE	
4.1. CLASSES D'EGALES AMPLITUDES4.2. CLASSES D'AMPLITUDES INEGALES	28 32
5. PARAMETRES DE POSITION ET DE DISPERSION	38
5.1. MOYENNES.	
5.3. COEFFICIENT DE VARIATION.	
5.4. MODE, MEDIANE, QUARTILE	45 48
5.6. BOITE A MOUSTACHES	
5.7. DROITE DE REGRESSION.	

BIBLIOGRAPHIE

WONNACOTT Thomas H., WONNACOTT Ronald J., Mars 1995, Statistique, Economica.

BOURSIN Jean-Louis, Avril 1988, Comprendre les statistiques, Armand Colin

BIGOT Bernard, VERLANT Bernard, 3ème trimestre 1980, Mathématiques, BTS Comptabilité et Gestion, BTS Informatique de Gestion, Editions Foucher.

GRAIS Bernard, Octobre 1984, Statistique descriptive, Dunod.

BERTRAND Richard, 1988, Analyse statistique des données, Presses de l'Université du Québec.

CHASE Warren, BROWN Fred, 1992, General Statistics, John Wiley and Sons.

SABIN, LESARD, MONGA, 1993, Statistique Concepts et méthodes, Presse de l'Université de Montréal, Masson.

CALLENDER J.T., JACKSON R., 1995, Exploring Probability and statistics with spreadsheets, Prentice Hall..

TITRE UTILISATION D'UN TABLEUR POUR DES ÉTUDES STATISTIQUES

AUTEURS

Monique BELLAY - Geneviève COUDERC - Michel JANVIER - Jean-Gilbert MOIGNARD - Henri VIGUIÉ

DATE

MARS 1996

EDITEUR

IREM de MONTPELLIER

MOTS CLÉS

STATISTIQUE - TABLEUR - DIAGRAMMES - PARAMÈTRES DE POSITION -PARAMÈTRE DE DISPERSION - ACTIVITÉS - COLLÈGES - LYCÉES

RÉSUMÉ

Ce document présente un certain nombre de notions statistiques usuelles et propose pour chacune d'entre elles des activités utilisant un tableur. Les enseignants trouveront des propositions pour présenter les notions, des fichiers statistiques permettant de mettre en oeuvre les concepts proposés soit à l'aide d'une exploitation manuelle soit à l'aide d'une exploitation informatique.

La brochure est accompagnée d'une disquette divisée en deux répertoires l'un comportant les énoncés et l'autre les corrigés. Il vous est recommandé de copier les fichiers sur le disque dur de votre ordinateur. Ces fichiers ont été réalisés sous EXCEL 5 (version PC) mais peuvent être éventuellement lus par d'autres tableurs (voir leur documentation). La manière dont les fichiers ont été construits est expliquée dans le document et ils pourront ainsi être facilement transposés sous d'autres tableurs.

La majeure partie des activités proposées ont été utilisées dans leur classe par les enseignants qui ont rédigé la brochure.

NOMBRE DE PAGES

54 pages

ISBN

2 - 909916 - 20 - 0