NOMBRES HYPER-REELS.

I - Introduction.

Le but de cet exposé est de donner un sens précis à l'expression : "x est infiniment près de x_0 ".

Ceci permettra de remplacer la définition de limite classique, dans laquelle on va à la "pêche aux η " par une définition plus algébrique. (le côté existentiel disparait).

Comme, dans \mathbb{R} , le seul élément susceptible de recevoir le label "infinement petit" est 0, on va être amené à construire un corps \mathbb{R}^* , contenant \mathbb{R} , et contenant aussi des infiniment petits et infiniment grands.

La construction de ${\rm I\!R}^*$ va être tout à fait analogue à la construction de ${\rm I\!R}$ par les suites de Cauchy de nombres rationnels.

Nous allons rappeler brièvement comment on peut construire les corps classiques : $\mathbb{Z}_{p\mathbb{Z}}$ (p ler); \emptyset ; \mathbb{R} et \emptyset .

II - Construction des corps classiques.

 $\mathbb{Z}/_{p\mathbb{Z}}$ = ensemble des entiers modulo p. C'est un anneau (commutatif) pour les lois \overline{x} + \overline{y} = $\overline{x+y}$

$$\overline{x} \cdot \overline{y} = \overline{x \cdot y}$$

 \overline{x} désignant la classe de $x \in \mathbb{Z}$, modulo p; c'est-à-dire $\overline{x} = x + p\mathbb{Z}$. Si p est premier, $\mathbb{Z}/p\mathbb{Z}$ est un corps (commutatif), c'est-à-dire l'équation $\overline{a}.\overline{x} = \overline{1}$ ($\overline{a} \neq o$) a une et une seule solution dans $\mathbb{Z}/p\mathbb{Z}$.

Commentons un peu ce résultat.

L'ensemble $\mathbb Z$ des entiers relatifs est un anneau (commutatif, unitaire). Dans $\mathbb Z$, l'équation a·x = 1 n'a pas toujours de solution.

Puisque l'on ne peut trouver de solution exacte, on va se contenter de solutions approchées a x = 1 + ϵ , ϵ parcourant un ensemble $\mathcal W$ d'éléments considérés comme négligeables.

Il est clair que plus \mathcal{N} est gros, plus on a de chances de pouvoir résoudre l'équation a $x = 1 + \varepsilon$, ε convenable dans \mathcal{N}

On veut bien travailler à ϵ près, mais comme on est raisonnable on demande :

d'abord que la somme de 2 négligeables soit un négligeable, puis que le produit d'un négligeable par un entier quelconque soit encore négligeable.

Enfin qu'il y ait quand même des éléments que l'on ne va pas négliger ; c'est-à-dire que $\mathcal{N}\neq\mathbb{Z}$.

Les deux premières conditions traduisent le fait que \mathcal{W} est ce que l'on appelle un idéal, la troisième condition dit que l'idéal est propre, c'est-à-dire $\# \mathbb{Z}$.

Dans \mathbb{Z} , il se trouve que tout idéal \mathcal{C} est de la forme \mathcal{C} = n \mathbb{Z} .

Le fait remarquable est que si \mathscr{N} est le plus gros possible, c'est-àdire est maximal, ce qui se produit si $\mathscr{N}=p\mathbb{Z}$, p ler, alors, si a n'est pas négligeable, l'équation a x + 1 a une solution approchée à ε près, unique à ε près ($\varepsilon\varepsilon\mathscr{N}$). Ce qui se traduit algégriquement par : \overline{a} \overline{x} = $\overline{1}$ a une et une seule solution dans $\mathbb{Z}/p\mathbb{Z}$. (c'est-à-dire $\mathbb{Z}/corps$).

Le corps $\mathbb{Z}_{p\mathbb{Z}}$; c'est \mathbb{Z} dans lequel on travaille à $\varepsilon \in p\mathbb{Z} = \mathcal{W}$ (ensemble négligeable maximal) près.

On remarque en passant que tout ensemble négligeable $\mathcal{N}(= n\mathbb{Z})$ est contenu dans un ensemble négligeable maximal $\mathcal{N}'=p\mathbb{Z}$, p ler divisant n.

2) Les constructions de Q, R et ¢ sont (peuvent être) tout à fait analogues.

En effet
$$Q = \mathbb{Z} \times \mathbb{Z}_{\mathcal{N}}^*$$
; $\mathcal{N} = \{0\} \times \mathbb{Z}^*$

$$\mathbb{Z} \times \mathbb{Z}^*$$
 étant muni d'une structure d'anneau par :
(a,b) + (c,d) = (ad + bc, bd) ("addition croisée")
(a,b) . (c,d) = (ac,bd)

On vérifie facilement que \mathcal{C} est un idéal maximal. ϕ est un corps pour les lois $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$; $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ (a/b désignant la classe de (a,b)).

$$\mathbb{R} = \mathcal{W}$$
 avec \mathcal{C} = ensemble des suites de Cauchy de nombres rationnels et \mathcal{W} = ensemble des suites tendant vers 0

 ${\cal C}$ est un anneau pour la somme et le produit composantes par composantes.

On vérifie aussi que \mathcal{W}^{e} est un ensemble négligeable maximal.

Enfin on a $\ \ = \mathbb{R}[x]_{/\mathcal{W}}$ avec \mathcal{W} : ensemble des multiples de $x^2 + 1$. $\mathbb{R}[x]$ anneau des polynomes à une indéterminée sur \mathbb{R} .

Remarque : les constructions de \emptyset , \mathbb{R} , \emptyset se font sur le principe suivant : on commence par agrandir par des produits cartésiens, puis on compresse par des quotients.

III - Construction du corps \mathbb{R}^* des nombres hyper-réels.

On considère l'ensemble ${\mathscr C}$ de toutes les suites réelles.

C'est un anneau pour l'addition et le produit composante par composante (D'est commutatif et unitaire).

On considère l'ensemble F des suites nulles à partir d'un certain rang. Alors F vérifie les propriétés des ensembles négligeables c'est-àdire c'est un idéal, ≠ Ø. Mais F n'est pas le plus gros possible. On admet qu'il est contenu dans un ensemble négligeable (idéal) maximal Ø.

On note \mathbb{R}^* le corps quotient $\mathscr{N}: \mathbb{R}^*$ c'est \mathscr{O} où l'on travail à ε près, $\varepsilon \in \mathscr{O}$

Rappelons donc qu'un élément de \mathbb{R}^* est la classe modulo $\dot{\mathcal{W}}$ d'une suite réelle. C'est-à-dire : a $\in \mathbb{R}^*$ est de la forme a = $\overline{(x_n)}$ = (x_n) + \mathcal{W}

Si $x = (x_n)$ et $y = (y_n) \in S$, la somme et le produit dans \mathbb{R}^* sont définis par :

$$\frac{\overline{x}}{x} + \frac{\overline{y}}{y} = \frac{\overline{x+y}}{x \cdot y} = \frac{\overline{(x_n + y_n)}}{\overline{(x_n \cdot y_n)}}$$

Propriété : \mathbb{R}^* contient bien \mathbb{R} , quand on identifie le réel r avec la classe de la suite constante égale à r.

IV - Structure de \mathbb{R}^* .

Il va être commode d'introduire les définitions suivantes :

 $\underline{\text{Définition}} : \text{soit } X \subset \mathbb{N}. \text{ On note } \varphi_X \text{ la suite définie par } \varphi_X(n) = \begin{cases} 1 & n \in X \\ 0 & n \notin X \end{cases}$

 $\frac{\text{Déf.}}{\text{soit } X \subset \mathbb{N}} \begin{cases} \text{Si } ^{\varphi} x \text{ est négligeable, i.e. } ^{\varphi} x \in \mathcal{W}, \text{ x est dit négligeable} \\ \text{Si } ^{\varphi} x \notin \mathcal{W} \text{ ; x est dit gros} \end{cases}$

Proposition : soit X et Y ⊂ IN. Alors :

- i) X et Y gros \Rightarrow X n Y gros
- ii) X gros et Y ⊃ X ⇒ Y gros
- iii) X ∪ Y gros ⇒ X ou Y gros
- iv) X gros <⇒ N\X négligeable
- v) $\mathbb{N} \setminus X$ fini \Rightarrow X gros (en particulier \mathbb{N} est gros).
- i) Supposons φ_{x} et φ_{y} $\notin \mathcal{N}$. En prenant les classes modulo \mathcal{N} on a : $\overline{\varphi_{x}} \neq 0$ et $\overline{\varphi_{y}} \neq 0$ donc $\overline{\varphi_{x \cap y}} = \overline{\varphi_{x}} \cdot \overline{\varphi_{y}} \neq 0$ puisque $\mathcal{N} = \mathbb{R}^{*}$ est un corps.

Donc $\varphi_{X \cap Y} \notin \mathcal{U}$ et $X \cap Y$ est gros.

ii) Soit $\varphi_X \notin \mathcal{W}$ c'est-à-dire $\overline{\varphi_X} \neq 0$. Si $Y \supset X$ alors $\varphi_X = \varphi_Y \cdot \varphi_X$ d'où $\overline{\varphi_X} \cdot \overline{\varphi_Y} \neq 0$. Donc $\overline{\varphi_Y} \neq 0$ et $\varphi_Y \notin \mathcal{W}$ c'est-à-dire Y gros.

- iii) On a $\varphi_{X \cup Y} = \varphi_X + \varphi_Y \varphi_{XY}$. Si X et Y sont négligeables alors φ_X et φ_Y sont dans \mathcal{N} c'est-à-dire $\overline{\varphi_X} = \overline{\varphi_Y} = o$ et $\overline{\varphi_{X \cup Y}} = o$ c'est-à-dire xuy négligeable
- iv) Soit $\overline{\varphi}_X \neq 0$ on a $\overline{\varphi}_X$. $\varphi_{N_*}X = 0$, donc $\overline{\varphi}_X$. $\overline{\varphi}_{N_*}X = 0$ et donc $\overline{\varphi}_{N-X} = 0$ car \mathbb{R}^* est un corps. D'où N-X négligeable

Réciproquement si $\overline{\varphi_{\mathbb{N}-X}}=0$, comme $\varphi_X+\varphi(\mathbb{N}-X)=1$ on a $\overline{\varphi_X}=1$. et ainsi $\varphi_X\notin\mathcal{N}$ c'est-à-dire X gros.

v) Si X est fini alors par définition on a $\varphi_X \in \mathcal{N}$, donc X est négligeable et \mathbb{N} - X est gros.

Proposition: soit $\overline{(x_n)}$ et $\overline{(y_n)} \in \mathbb{R}^*$ alors: $\overline{(x_n)} = \overline{(y_n)} \iff \{n, x_n = y_n\} = X \text{ gros}$

on a
$$\varphi_X(n) = \begin{cases} 1 & n \in x \text{ c'est-a-dire } x_n - y_n = 0 \\ 0 & n \notin x \text{ c'est-a-dire } x_n - y_n \neq 0 \end{cases}$$

$$\text{donc } \varphi_X + (x_n - y_n) n \ge 0 \neq 0 \quad \forall n \in \mathbb{N} \text{ donc inversible donc } \notin \mathcal{N}$$

$$\text{donc } \overline{\varphi_X} + \overline{(x_n - y_n)} \neq \overline{0} \quad \text{comme } \overline{(x_n - y_n)} = 0, \text{ on a } \overline{\varphi_X} \neq 0$$

c'est-à-dire φx ∉ N° c'est-à-dire : x gros.

<u>Définition d'une relation d'ordre sur \mathbb{R}^* .</u> Soit $a = \overline{(x_n)}$ et $b = \overline{(y_n)} \in \mathbb{R}^*$

On définit une relation $\leq \sup \mathbb{R}^*$ par : $a \leq b \iff \{n, x_n \leq y_n\}$ est gros c'est bien une définition car si $\overline{(x_n)} = \overline{(x'_n)}$, alors $\{n, x_n = x'_n\}$ est gros

- i) $a \le a$ car $\{n \in \mathbb{N}, x_n \le x_n\} = \mathbb{N}$ gros
- ii) Soit $a \le b$ et $b \le c$ alors : $\{n, x_n \le y_n\}$ et $\{n, y_n \le z_n\}$ sont gros donc $\{n, x_n \le y_n\} \cap \{n, y_n \le z_n\} = \{n, x_n \le y_n \le z_n\}$ est gros donc on $a : a \le c$.
- iii) Soit $a \le b$ et $b \le a$ alors $\{n, x_n \le y_n\}$ et $\{n, y_n \le x_n\}$ sont gros, donc $X = \{n, x_n = y_n\}$ est gros; donc $\varphi x \notin \mathcal{N}$ mais $(x_n y_n) \times \varphi x(n) = 0$ quelque soit n; donc la suite $n \mapsto x_n y_n$ est dans \mathcal{N} ; donc $\overline{(x_n y_n)} = \overline{0}$ c'est-à-dire $\overline{(x_n)} = \overline{(y_n)}$ c'est-à-dire a = b

iv) Soit $a = \overline{(x_n)}$ et $b = \overline{(y_n)}$ soit $X = \{n, x_n \le y_n\}$; alors X ou $\mathbb{N} \setminus X$ est gros. Si X est gros on a a \leq b; si $\mathbb{N} \setminus X$ est gros on a a > b.

La compatibilité de "≤" avec "+" et "×" se démontre d'une manière analogue.

Définition : soit $a \in \mathbb{R}^*$. On pose |a| = a si $a \ge 0$; |a| = -a si $a \le 0$.

Définition : soit a \mathbb{R}^{\star} . On dit que a est

- i) fini, s'il existe $r \in \mathbb{R}$ tel que $|a| \le r$
- ii) infiniment petit si |a| < r pour tout r > o
- iii) infiniment grand si |a| > r pour tout r > o

Exemple: soit $x_n = \frac{1}{n+1}$ et $y_n = n$; alors $a = (x_n)$ est infiniment petit et b = (y_n) est infiniment grand.

Montrons que a est infiniment petit. Soit r réel > o $a < r \iff \{n, x_n < r\}$ est gros. Or il existe n_0 tel que $\{n, x_n < r\} \supset \{n, n \ge n_0\}$. Ce dernier ensemble est gros d'où le résultat. On procède d'une manière analogue pour montrer que b est infiniment grand.

- Proposition : soit $(x_n)_{n=0}$ une suite réelle. Alors :

 i) $x_n \to 0 \iff \forall k \ge 0$, $\{n, |x_n| \le \frac{1}{k}\}$ est cofini (c'est-à-dire est le complémentaire d'un ensemble fini)
 - ii) (x_n) est infiniment petit $\iff \forall k \ge 0, \{n, |x_n| \le \frac{1}{k}\}$ est gros.
 - i) est évident,
- ii) est aussi évident car la condition $\{n, |x_n| \le \frac{1}{k}\}$ gros est équivalente au fait que (xn) est inférieur à 1/k

Corollaire: si x_n tend vers 0, alors (x_n) est infiniment petit. En effet tout sous ensemble cofini de IN est gros.

Remarque : O est le seul infiniment petit réel. Il n'y a pas d'infiniment grand dans IR.

Notation : $x \sim y \iff x - y$ infiniment petit.

<u>Proposition</u>: La somme de deux infiniment petits est un infiniment petit, le produit d'un infiniment petit par un hyper-réel fini est un infiniment petit.

Théorème de structure. Soit a $\in \mathbb{R}^*$, a fini, il existe un réel r unique tel que a \circ r (c'est-à-dire tel que a = r + ε , avec ε infiniment petit).

Ce réel r s'appelle la partie réelle, ou la partie standard ou encore l'ombre de a et se note a^0 .

Démonstration : soit donc a $\in \mathbb{R}^*$, a fini

soit $X = \{s \in \mathbb{R}, s \le a\}$ X est une partie majorée de \mathbb{R} donc admet une borne supérieure que l'on va noter r. Montrons que a - r est infiniment petit. Supposons pour cela le contraire, c'est-à-dire : il existe r' > 0, réel, tel que |a - r| > r'

ler cas :
$$a < r$$
 alors $r - a > r'$

$$c'est-a-dire \qquad a < r - r' < r$$

mais r étant une borne supérieure, il existe s ϵ X tel que a < r - r' < s \leq r ce qui est impossible d'après la définition de X.

2ème cas :
$$a > r$$
 alors $a - r > r'$ c'est-à-dire $a > r + r' > r$ mais ceci est impossible car on aurait $r + r' \in X$ et $r + r' > \sup_{x \in X} X$.

Exemple: soit
$$x_n = 0,9...9$$
 et $a = \overline{(x_n)}$ alors $a^0 = 1$ et $a \ne 1$

En effet $x_n \to 1$ donc $a \sim 1$; $a \ne 1$ car $\{n, x_n = 1\} = \emptyset$.

Exercice : Soit a et b $\in \mathbb{R}^*$, finis. Alors

- i) si a \sim b on a a⁰ = b^o
- ii) si a \leq b alors $a^0 \leq b^0$
- iii) $(a+b)^0 = a^0 + b^0$
- iv) $(ab)^0 = a^0b^0$

- i) $a = r + \epsilon$; $b = r' + \epsilon'$; si $a \sim b$ alors $a b = r r' + \epsilon \epsilon'$ est infiniment petit donc r - r' aussi donc r = r'.
- ii) a^0 sup. $\{s \in \mathbb{R}, s \le a\} \le \sup \{s \in \mathbb{R}, s \le b\} = b^0$.

iii)
$$a = r + \varepsilon$$
, $b = r' + \varepsilon'$ $a + b = r + r' + \varepsilon + \varepsilon'$ \Rightarrow $a.b = rr' + r\varepsilon' + \varepsilon\varepsilon'$

On conclu à l'aide de l'unicité de la partie standard.

Remarque : si \mathbb{R}_f^* = ensemble des éléments finis de \mathbb{R}^* alors \mathbb{R}_f^* est un anneau et l'application "0" est un homomorphisme de $\mathbb{R}_{\mathbf{f}}^{\star}$ dans (et sur) \mathbb{R} de noyau l'idéal I des infiniment petits.

On a donc
$$\mathbb{R}_f^*/_{\mathbb{I}} \simeq \mathbb{R}$$
.

Remarque : si a et b finis
$$a^0 \le b^0 \ne > a \le b$$
.
prendre b = 0 ; $a = \varepsilon$ et $a' = -\varepsilon$

V - Extensions et prolongements.

Soit $f: \mathbb{R} \to \mathbb{R}$. On veut caractériser la continuité de f en $x_0 \in \mathbb{R}$ par les valeurs que f prend en des points infiniment près de x_0 .

Pour cela il faut avant tout que f puisse être définie (prolongée) en de tels points. C'est ce dont nous allons nous occuper.

<u>Définition</u>: soit $A \subset \mathbb{R}$. On pose : $A^* = \{a = \overline{(x_n)} \in \mathbb{R}^*, \{n, x_n \in A\} \text{gros}\}$ C'est bien une définition.

Exercice : Montrer que

- i) $[a,b]^* = [a,b]_{\mathbb{R}}^* = \{x \in \mathbb{R}^*, a \le x \le b\}.$ ii) $x \in [a,b]^* \Rightarrow x^0 \in [a,b] \text{ et } x \text{ fini.}$
- i) $x = \overline{(x_n)} \in [a,b]^* \Rightarrow \{n, a \le x_n \le b\}$ gros $\iff a \le x \le b$.
- ii) si $x \in [a,b]^*$ alors $a \le x \le b$ d'où $a = a^0 \le x^0 \le b^0 = b$.

Proposition : Soit $A \subset \mathbb{R}$ et $B \subset \mathbb{R}$. On a alors :

- i) $(A \cup B)^* = A^* \cup B^*$
- ii) $(A \cap B)^* = A^* \cap B^*$,
- iii) (IR \ A)* = IR*\ A*

Exercice : soit $A \subset \mathbb{R}$. Si A est fini alors $A^* = A$.

<u>Définition</u>: Soit $f = A \subset \mathbb{R} \to \mathbb{R}$. On définit un prolongement de f, soit $f^* : A^* \to \mathbb{R}^*$, par :

si a =
$$(x_n) \in A^*$$
 alors f^* (a) = (y_n) avec $y_n = \begin{cases} \text{élemt. qcq. si } x_n \notin A \\ f(x_n), \text{ si } x_n \in A \end{cases}$

Ceci est bien une définition car l'ensemble des n ϵ IN tels que x_n ϵ A est gros et l'on sait que : $\overline{(\alpha_n)} = \overline{(\beta_n)}$ si et seulement si $\{n, \alpha_n = \beta_n\}$ est gros.

Remarque : f* est bien un prolongement de f

Proposition:

- i) $(gof)^* = g^* of^*$
- ii) $(g+f)^* = g^*+f^*$; $(gf)^* = g^*.f^*$
- iii) $f \le g \text{ sur } A \implies f^* \le g^* \text{ sur } A^*$.

Démonstration laissée en exercice.

VI - Limite et Continuité.

 $\frac{\text{Proposition}: \text{soit } f: A \subset \mathbb{R} \to \mathbb{R}, \text{ soit } x_0 \in \overline{A} \text{ et } 1 \in \mathbb{R}. \text{ Alors}:}{1 = \lim_{x \to x_0} f(x) \iff \text{pour tout } a \in A^*: a \sim x_0 \implies f(a) \sim 1.}$

sens $\Rightarrow \varepsilon > 0$ donné, on prend $\eta > 0$ tel que $\begin{cases} x \in A \\ |x-x_0| < \eta \Rightarrow |f(x)-1| < \varepsilon \end{cases}$ soit $a = (\alpha_n) \in A^*$ avec $a \sim x_0$. Alors $|a-x_0| < \eta$. Donc on a:

$$\left\{ \begin{array}{ll} \{n, \mid \alpha_n - x_0 \mid < \eta\} \text{ gros} \\ \{n, \alpha_n \in A\} & \text{gros} \end{array} \right\} \Longrightarrow \left\{ n, \alpha_n \in A \text{ et } |\alpha_n - x_0| < n \right\} \text{ gros}$$

donc $\{n, |f(\alpha_n) - 1| < \epsilon$. Ceci étant vrai pour tout ϵ réel $>_0$, on a bien $f^*(a) \sim 1$.

Réciproque : supposons $1 \neq \lim_{x \to x_0} f(x)$. Alors il existe $\epsilon > 0$ tel que pour

tout n > 0, il existe $x \in A$ et $|x-x_0| < n$ tel que $|f(x)-1| > \varepsilon$. En prenant n = 1/n on met en évidence une suite $x_n \in A$; $x_n \to x_0$ et $|f(x)-1| > \varepsilon$. Posons alors $a = \overline{(x_n)}$; on a $a \in A^*$ et $a \sim x_0$ mais $|f^*(a)-1| > \varepsilon$ car $\{n, |f(x_n)-1| > \varepsilon\} = \mathbb{N}$ est gros; donc $f^*(a) \not\sim 1$.

Corollaire: soit $f = A \subset \mathbb{R} \to \mathbb{R}$. Alors f est continue sur A si et seulement si: pour tout $a \in A^*$ et tout $x \in A$: $a \circ x \Rightarrow f^*(a) \circ f(x)$.

<u>Proposition</u>: soit $f: A \subset \mathbb{R} \to \mathbb{R}$, alors f est uniformément continue sur A si et seulement si pour tout $a \in A^*$ et tout $b \in A^*$ on a: $a \sim b \implies f^*(a) \sim f^*(b)$

sens \Rightarrow soit ε donné et $\eta > 0$ tel que $|x-y| < \eta \Rightarrow |f(x)-f(y)| < \varepsilon$ soit $a = \overline{(\alpha_n)}$ et $b = \overline{(\beta_n)} \in A^*$, avec $a \sim b$; on $a |a-b| < \eta$ et donc: $\{n, |\alpha_n - \beta_n| < \eta\}$ gros $\{n, \alpha_n \in A\}$ gros $\Rightarrow \{n, \alpha_n \in A\}$ gros $\Rightarrow \{n, \alpha_n \in A\}$ gros

donc $\{n, |f(\alpha_n)-f(\beta_n)| < \epsilon\}$ gros, c'est-à-dire $|f^*(a)-f^*(b)| < \epsilon$

Ceci étant vrai pour tout réel $\epsilon > o$; on a bien $f^*(a) \sim f^*(b)$.

Réciproque : si f n'est pas uniformément continue sur A alors on peut mettre en évidence deux suites α_n et β_n ϵ A telles que :

 $\begin{array}{lll} \alpha_n-\beta_n \rightarrow o & \text{et} & |f(\alpha_n)-f(\beta_n)| \geq r > o. \\ \text{si on pose: } a=\overline{(\alpha_n)} \text{ et } b=\overline{(\beta_n)} \text{ ; on } a: a \in A^*, \ b \in A^*, \ a \sim b \text{ et} \\ |f^*(a)-f^*(b)| \geq r > o \text{ ; c'est-a-dire } f^*(a) \not\sim f^*(b). \end{array}$

<u>Corollaire</u> : soit $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ une application continue. Alors f est uniformément continue.

Soit x et y \in [a,b]*, avec x \circ y. Alors x et y sont finis donc x⁰ et y⁰ existent et on a : x⁰ = y⁰ = r \in [a,b] donc puisque f est continue en r on a : f* (x) \circ f(r) \circ f*(y) et f est uniformément continue sur [a,b].

Corollaire : soit $f : [a,b] \rightarrow \mathbb{R}$ continue. Si $f (a) \le 0$ et $f (b) \ge 0$, il existe $r \in [a,b]$ avec f(r) = 0.

Soit n un entier quelconque (>o). On partage l'intervalle [a,b] en n parties égales. Il existe alors 2 points consécutifs du partage que l'on note x_n et y_n tels que $f(x_n) \le 0$; $f(y_n) \ge 0$ (et $(x_n - y_n) = \frac{b-a}{n}$).

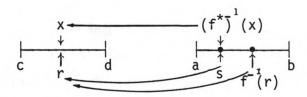
Cette construction étant valable pour tout $n \in \mathbb{N}$ - $\{o\}$, par extension, ω étant un entier infiniment grand, on a deux points x_{ω}^{*} et y_{ω}^{*} de [a,b]* tels que $|x_{\omega}^{*} - y_{\omega}^{*}| = \frac{b-a}{\omega}$ et $f^{*}(x_{\omega}^{*}) \le 0$, $f^{*}(y_{\omega}^{*}) \ge 0$. Si r = partie réelle commune à x_{ω}^{*} et y_{ω}^{*} on a par continuité de f

en r:

$$f(r) \sim f^*(x_{\omega}^*) \leq 0 \\ \sim f^*(y_{\omega}^*) \geq 0 \end{cases} \implies f(r) = 0 \quad (car \ f(r) \ est \ \underline{\underline{r\acute{e}e1}})$$

Corollaire : soit $f : [a,b] \rightarrow [c,d]$ continue et bijective alors f est continue.

Supposons le contraire : il existe $x \in [c,d]^*$ et $r \sim x$, et $r \in [c,d]$ ($\Rightarrow r = x^0$), avec $(\overline{f}^1)^*(x) \not\sim f^-(r)$, c'est-à-dire : $s = ((\overline{f}^1)^*(x))^0 \neq \overline{f}^1(r)$



Comme f est continue on a $f^*(f^*)^1(x) = x \circ f(s)$ donc f(s) = r (car f(s) et r sont réels) et f n'est pas injective, contradiction. C.Q.F.D.

VII - Cas particulier des suites.

<u>Proposition</u>: soit $(x_n)_{n\geq 0}$ une suite réelle, et $1 \in \mathbb{R}$. On a alors:

- i) l = lim $x_n \iff$ pour tout $\omega \in \mathbb{R}^*$, infiniment grand, on a $x_\omega^* \sim 1$
- ii) I est limite d'une sous suite de $(x_n)_{n\geq 0} \iff$ il existe $\omega \in \mathbb{N}^*$, infiniment grand tel que $x_{\omega}^{\star} \sim 1$.
- i) Démonstration identique à celle de la limite d'une fonction. D'ailleurs on peut s'y ramener en considérant l'application : $\mathbb{N}^{\bullet} \ni n \to \frac{1}{n} \in A = \{1/p, p \in \mathbb{N}, p > 0\}$
- ii) sens \Rightarrow : supposons $x_{nk} \rightarrow 1$ qd $k \rightarrow + \infty$ alors d'après i) pour ω infiniment grand on a $x^{*}n^{*}_{\omega} \mathrel{^{\wedge}} 1$; mais $n_{k} \mathrel{^{\geq}} k$ pour tout kdonc = $n_{\omega}^* \ge \omega$ infiniment grand. Ainsi il existe $\omega' = n_{\omega}^*$ infiniment grand tel que x_{ω}^* ~ 1 .

Réciproque : supposons qu'aucune sous suite de $(x_n)_{n\geq 0}$ ne tende vers 1. Alors il existe un réel r > 0 tel que pour tout $n \ge n_0$ on ait : $|x_n-1| \ge r$. Par extension pour tout ω infiniment grand de \mathbb{N}^* on a : $|x_{\omega}^*-1| \ge r$, c'està-dire x, 1.

Exercice : Montrer que toute suite réelle croissante majorée a une limite

soit $x_n \le A$ et x_n croissante - soit ω infiniment grand on a : $n \le \omega \implies x_n = x_n^* \le x_\omega^* \le A$. Donc x_ω^* est fini; on a :

 $x_n^0 = x_n \le (x_\omega^*)^0$. Donc pour ω' infiniment grand on a : $x_\omega^* \le (x_\omega^*)^0 \Longrightarrow (x_\omega^*)^0 \le (x_\omega^*)^0$. Par symétrie on a pour tout ω et ω' infiniment grand : $(x^*\omega)^0 = (x_\omega^*)^0$. Cette valeur commune est la limite de la suite x_n.

Exercice : Toute suite réelle bornée admet une sous suite convergente.

Soit donc $|x_n| \le A$ pour tout $n \in \mathbb{N}$. On a $|x_\omega^*| \le A$ pour tout $\omega \in \mathbb{N}^*$ infiniment grand. D'où $x_{\omega}^* \sim (x_{\omega}^*)^0 = r$ et il y a une sous suite qui converge vers r.