Jeux et Problèmes

Michel LAFOND mlafond001@yahoo.fr

JEU - 79.

Combien y a-t-il de façons de mettre *b* bagues à *d* doigts ? Les bagues sont toutes distinctes, et à chaque doigt, l'ordre des bagues doit être considéré.

PROBLÈME - 79.

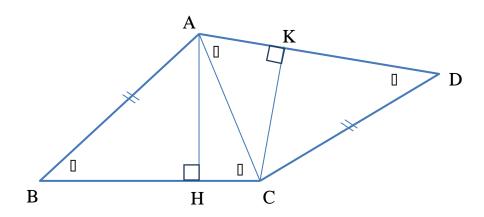
Soit
$$x = \frac{180\pi}{180+\pi}$$
. Démontrer que $\sin(x \text{ degrés}) = \sin(x \text{ radians})$.

Solutions du numéro précédent.

JEU - 78.

Soit le "théorème" : un quadrilatère convexe qui a deux côtés opposés égaux et deux angles opposés égaux est un parallélogramme.

Démonstration:



Par hypothèse : AB = CD et les angles [α] en B et D sont égaux.

Projetons A sur BC et C sur AD [figure].

Les triangles ABH et CDK ont ce qu'il faut pour être égaux.

Donc AH = CK et HB = KD.

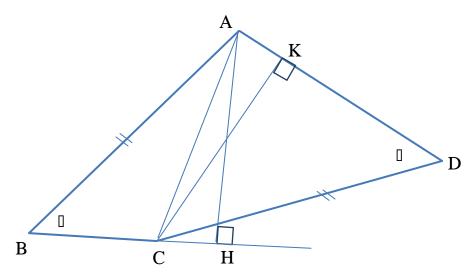
Les triangles AHC et CKA sont égaux. [Ils sont rectangles avec 2 côtés resp. égaux].

Donc CH = AK. De plus les angles $[\beta]$ sur la figure sont égaux ce qui entraı̂ne le parallélisme de AD et BC.

Comme AD = AK + KD = CH + HB = CB, AD et BC sont parallèles et égaux. CQFD.

Solution:

Le "théorème" précédent est faux. Et comme dans presque toutes les "fausses démonstrations géométriques", l'explication est dans la figure (fausse). Si on fait une figure exacte qui vérifie les hypothèses, on a par exemple :



Tout va bien dans la démonstration de l'énoncé sauf que l'égalité des angles $[\beta]$ n'entraı̂ne plus le parallélisme de AD et BC. De plus l'égalité CH + HB = CB ne fonctionne plus.

PROBLÈME - 78.

Sachant que les nombre réels a et b vérifient $2^a = 3$ et $3^b = 5$, comparer a et b sans calculette ni table d'aucunes sortes.

En fait, on peut le faire mentalement sans être calculateur prodige.

Solution:

On a:
$$2^{1,5} = 2\sqrt{2} < 3 = 2^a$$
 donc $1,5 < a$. $[2\sqrt{2} < 3 \text{ car } 8 < 9]$
 $3^{1,5} = 3\sqrt{3} > 5 = 3^b$ donc $b < 1,5$. $[3\sqrt{3} > 5 \text{ car } 27 > 25]$

Par conséquent b < 1,5 < a.