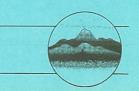
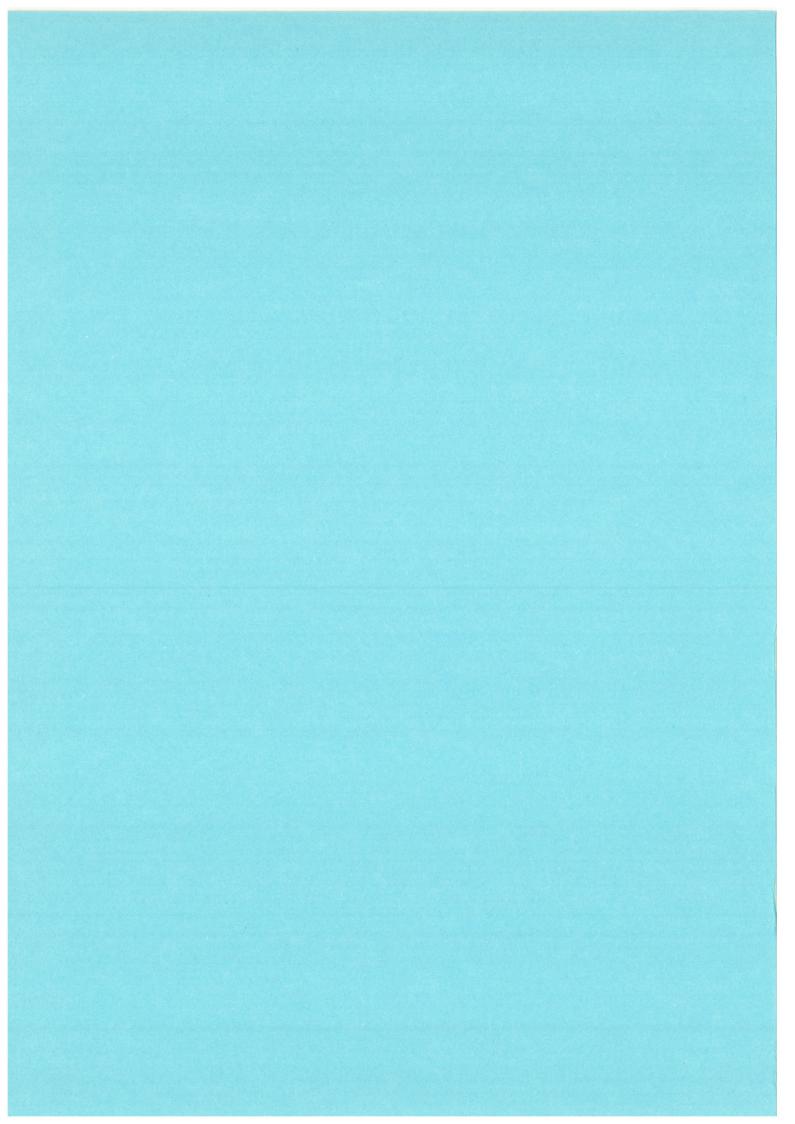


UNE APPLICATION INDUSTRIELLE

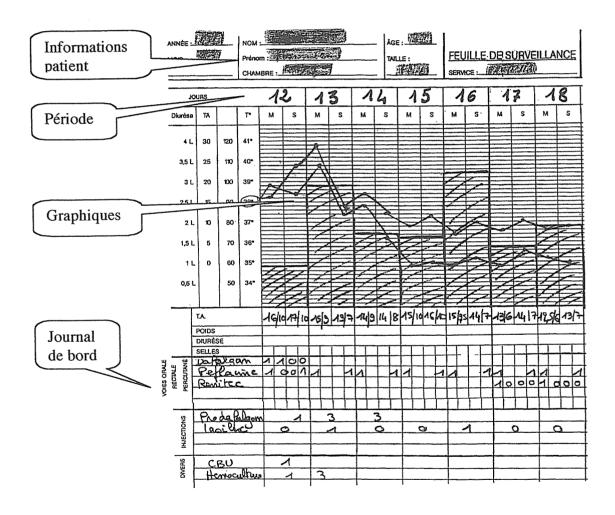

DES STATISTIQUES:


LA CARTE DE CONTRÔLE.

- Mars 2001 -

D. Arbre, A. Corpart, G. Fleury, N. Lassalle.

Sommaire


Introduction	p. 2
1 Quelques définitions 1.1 Processus 1.2 Maîtriser le processus 1.3 La carte de contrôle	p. 3
2 Principe de la méthode	p. 3
3 La carte de contrôle 3.1 Objectifs 3.2 Quelques exemples 3.3 Définition 3.4 Exemple 3.5 Différents types de carte de contrôle	p. 4
4 Mise en oeuvre 4.1 Organigramme de la mise en place d'une carte de contrôle 4.2 La carte moyenne-étendue	p. 7
 5 Etude de normalité 5.1 Droite de Henry 5.2 Test de Kolgomorov-Smirnov 5.3 Test du χ² (Khi - Deux) 	p.10
6 Exemple 6.1 Données 6.2 Construction d'une carte de moyennes et de l'étendue 6.3 Utilisation de la carte	p.18
Annexes Annexe A Les tables Tableau des coefficients Table du Chideux	p.24
Table de la loi de Kolgomorov-Smirnov Annexe B Utilisation de l'étendue Estimateurs ponctuels de l'écart-type Intervalle de confiance sur l'écart-type	p.30
Un exemple d'utilisation, la construction d'une carte de contrôle Annexe C Activité tableur Manipulations de base Fichier Normalité Fichier Carte	p.37

Introduction

En visite dans un hôpital, vous avez peut-être remarqué, en tête de lit, un graphique donnant les indications suivantes :

- la température (T°)
- la tension artérielle (TA) ...

Le "journal de bord" associé au graphique indique les soins et traitements apportés au malade, précise les analyses qui lui ont été prescrites. Vous aviez devant les yeux une "carte de contrôle" permettant à l'équipe médicale de suivre l'évolution de l'état de santé du patient. Cette carte permet aussi d'avoir un historique des soins apportés et de diagnostiquer d'éventuelles "améliorations-dégradations" de l'état de santé du malade (augmentation de la température...).

(Document CHR de Montluçon)

Un suivi seul des "paramètres" du malade n'aurait pas de sens. S'il y a un changement, il faut essayer d'en déterminer si possible la cause et avoir le journal de bord est indispensable pour orienter ses recherches (baisse de température suite à une prise de médicament par exemple).

Le journal de bord fait partie du processus de contrôle et est tenu parallèlement à la carte de contrôle. Il récapitule tous les événements marquants de la fabrication, permettant en cela un suivi précis des causes assignables ; par exemple, il est consigné :

- l'heure des prélèvements,
- les réglages,
- les pannes et incidents,
- les changements d'outils,
- les changements de lots de matières premières,
- les changements d'opérateurs...

Dans la suite de la brochure, nous nous intéressons uniquement à la construction et à l'utilisation d'une carte de contrôle, sous l'aspect mathématique, mais il ne faut pas perdre de vue que n'est étudiée ici qu'une partie du processus de contrôle.

1 Quelques définitions

1.1 Processus

C'est la combinaison complète

- . des personnes (main d'œuvre),
- . des machines et du matériel (moyen),
- . des matières premières (matière),
- . de l'environnement et de l'atelier (milieu),
- . de la méthode et de l'organisation

dont le travail en commun a pour résultat le produit.

1.2 Maîtriser le processus

C'est réduire la variabilité du processus pour améliorer ses performances et assurer la conformité (et non la qualité) des produits.

1.3 Carte de contrôle

C'est un graphique sur lequel on fait correspondre un point à chacune des valeurs d'une statistique calculée sur des échantillons successifs, en général de même effectif prélevés dans la fabrication.

Chacun de ces points a pour abscisse le numéro d'échantillon et pour ordonnée la valeur de la statistique calculée sur cet échantillon (ici moyenne et étendue).

Des limites de contrôle sont tracées sur cette carte.

Le but est de détecter en temps réel les anomalies de la caractéristique observée.

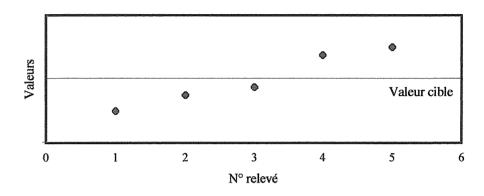
2 Principe de la méthode

Elle consiste à définir une règle de décision aboutissant au rejet ou au non rejet du lot échantillonné.

On utilise un test:

paramétrique : la variable sur laquelle on travaille est à valeur réelle. Le test peut être bilatéral (ici pour l'étude de la moyenne) ou unilatéral (ici pour l'étude de l'étendue).

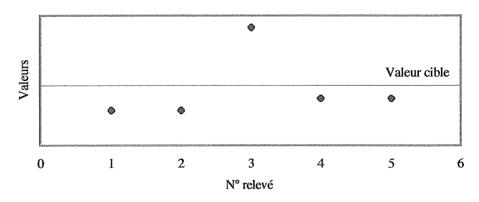
non paramétrique : l'ordre d'apparition étant conservé, on prend pour variable le nombre d'apparitions successives présentant une particularité voulue.


3 La carte de contrôle

3.1 Objectif

À l'aide de la carte de contrôle, on doit être capable de faire la distinction entre les causes assignables, qu'on peut identifier (sur lesquelles on peut agir) et les causes non assignables ou aléatoires, inhérentes à la fabrication (Shewart; norme NFX 50-020).

3.2 Quelques exemples

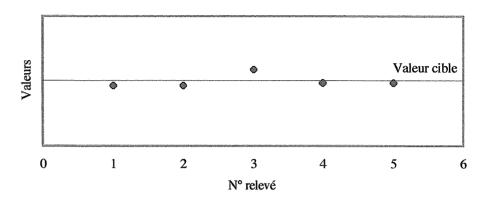

3.2.1 sur le graphique suivant,

deux interprétations sont possibles :

- * il y a des variations dues aux causes aléatoires,
- * il y a une dérive (due par exemple à une usure du moyen de production). Il y a alors une cause assignable sur laquelle on peut intervenir.

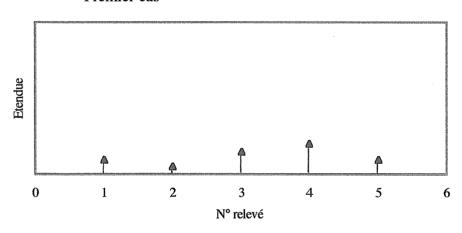
3.2.2 sur le graphique suivant,

deux interprétations sont possibles :

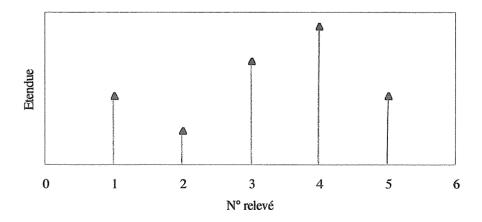

- * il y a des variations dues aux causes aléatoires,
- * il y a une dérive (due par exemple à un changement dans le milieu de production). Il y a alors une cause assignable sur laquelle on peut intervenir.

Dans chacun des deux cas précédents, les interprétations doivent conduire à une décision : ou bien la production continue en l'état,

ou bien on agit sur le moyen de production.


Il n'est pas question de modifier sans arrêt les paramètres, ou de laisser faire...

3.2.3 sur le graphique suivant, où apparaît uniquement la moyenne des échantillons testés, il semble que les résultats soient "acceptables" (suivant des conditions qu'on aura définies au préalable) :



Cependant, si on ajoute sur la même carte les étendues de ces mêmes échantillons, on n'aura pas la même interprétation dans chacun des deux cas suivants :

Deuxième cas

3.3 Définition

La carte de contrôle est le film de la variabilité d'une caractéristique du produit ou d'un paramètre du processus (du milieu, de méthode, de moyen, de main d'œuvre, de matière). La carte de contrôle est un signal "temps réel" (graphique temporel) qui doit déclencher les actions correctives immédiates.

La carte de contrôle est un outil d'actions :

On applique les tests construits suivant les objectifs qu'on s'est fixés et il faut obtenir des opérateurs qu'ils agissent au bon moment.

Par exemple, pour les tests paramétriques,

- . Si le point est hors limites Stop ==> ACTION CORRECTION
- . Si le point est dans les limites ==> RIEN.

Les cartes de contrôle implantées dans les plans de surveillance sont issues d'une réflexion et devraient être les seuls outils déclenchant des retouches en atelier. Aucune retouche ne devrait être effectuée sans qu'une carte au moins n'ait franchi une de ses limites.

3.4 Exemple

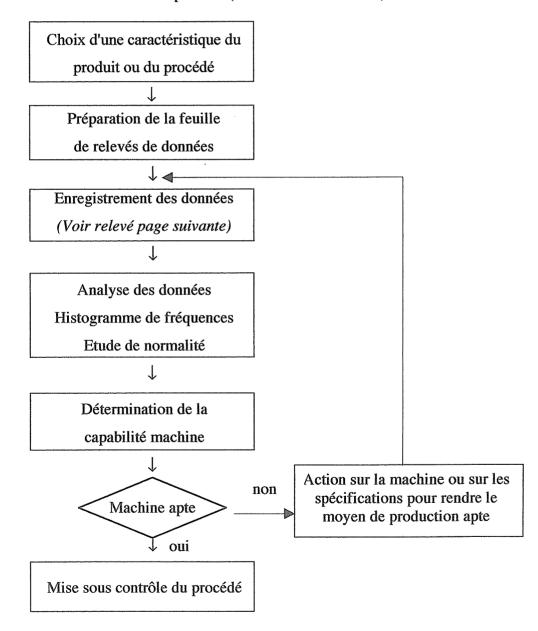
Pos	ste 2. 29/10)/83		C	ONTE	ROLE	AU)	ME	SUR	ES	DÉSI	GNATI	ON .		Moye	n q.eu	trainer	nent			N° DE	PIÈCE 134	:
	LIER on BSA		MAC 42				Men	e par			L			STIQU					AP	PAREI		ONTR e M 11	
	late et heure					-										Ī		1	-		T	* /12"	forem
	1	11 66	** 65	17 63	17.62	77 65	77.63	1161	17 65	22.76	/7 63	77 t7	71 10	17 60	77.65	7765	11 67	:2 62	17.65	77 66	22.10		
	1	86	65	61	61	67	65	61	66	7,	65	98	69	60	6.1	52	61	65	65	63	69		1
	RELEVES	70	62	61	66	63	63	67	66	10	66	67	71	61	65	69	63	60	67	ė1	69		
	MECENEZ	56	63	67	6)	63	63	64	65	54	65	68	6,	61	65	62	62	65	67	68	10		
	V V	66	.64	62	67	67	65	65	65	6)	66	30	61	61	62	50	63	66	67	70	70		
Total		25H 34	388.19					388.16	L		359,75	388 40	388 34			389 08	388 11	388.24	388.31	388 41	368 48		
Moyenne X		17 67	77 64	17 67	11 65	27 63	27 64	77 63	77 65	17 67	J7 65	37 68	27.67	77 61	77 64	77 62	77 67	77 65	77 66	77 68	77 70	557 98	27 6
Etendue R		204	-	_		_		_		27	03	03.	10	01	.03	17	07	04	02	03	.01	65	-
Etenone H		904	03	07	.06	.03	.02	04	01	- 37	0,3	U3.			.03			-	-				<u> </u>
	77 10															_			-		1		-
	77,69																				Z		
MUALNNE			-											-				-					
	17 64																	ļ		/			├
	LC 77.67									\wedge		/	7	 						_			
	LS 77.66	7								Z >	/		1						1				-
07,651 X		· '	.						/		\forall							1					
(77,65)			—		A				/									/		-			-
	LS 77,64		7		<u>/ `</u>			/							Δ			/					
	LC 77 63	 		k /		1	├	\sim	-	-				1	/>	<u> </u>	/						
	77 62			V										1		1			├				╂
	77.61													V									
														-		10.1	7						
	77 60																	 -					
				<u> </u>								0,	10										
									[Ιi		1			İ		1
							Ĺ			<u> </u>						<u> </u>		L	L				<u> </u>
	(4,2 tr 18t)									-			H				 	├					L _
																							
	(\$26.06)		-	 																			
ETENDUE	(37.036)								-	H						∤- +-							├
R					上上																		-
11		7	 	 	 			-								 - -							
	6.6,13	1.1.	İ.,		二						-	-			-,-				<u> </u>	-			-
IRANGE:		 	ŧ							- i -		-+-							-				
		LT.	1 1		H:		-									H					-		-
	(5) 6 m (世	ΤĖ		一	\vdash																	
	1.610005		<u> </u>											لسلسا				<u>l</u>		لسلسا	لسسلسسا		

3.5 Différents types de cartes de contrôle

Il y a deux familles:

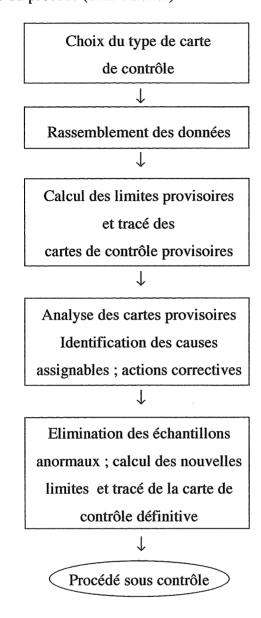
Aux mesures, pour les données quantitatives et continues :

- mesure des caractéristiques du produit, par exemple jeu, affleurement, épaisseur d'apprêt...
- mesure des paramètres du processus, par exemple hygrométrie, température ; pression, couple de serrage...


Aux attributs, pour les données qualitatives et discrètes :

- caractéristiques du produit, par exemple nombre de grains sur une pièce donnée, bruit au montage (oui / non)...

4 Mise en œuvre


4.1 Organigramme de la mise en place d'une carte de contrôle

4.1.1 Préparation à la mise sous contrôle du procédé (dans le bureau d'étude)

	E	٧.			DAGA			7	ionotion	D.C.	200	Designation . Och re sort asktolimi] - -								
	[]	rroduit			NCIC		-	<u>ځ </u>	in minding	1.0000	2	0							01/4	MO do orto	•
	Z	Moyen			Machine		: SomabhooSection	400 Sec	tion				Opération	ition :						מב כאו ו	بد
	Ĭ	Lot			O.F.	••		Į.		: 404	4	Cm	පි		Çok	CB	ප	ž			
	<u> </u>	Caractéristique ϕ uct	istique	Soci		Cote surveillée : 33	e: 31,1	1,730- 3	31,780	. 1	Carte précédente)ic	_				,				
	Ŭ	Contrôle SPC	SPC		Cible		LSCX:		LICx:	유:		LSCr		H	Fréquence de prélt :	de prél	30	M M			
Date																				,	,
Heure		JUR.		128		138		448	`	154	`	1ce		1%	-	189		198		8 R R	1
1X	7.7	360	139	74.4	756	761	744	755	346	747	750	755	752	745	弘		756	7554	-+	494	
ZX	345	755	760		752		762	76.1	750	111	ऽऽस	75.1	753	733	763		360	250		764	
x	743	453	762	750	754				755	770			751	750	766	763	753	351	355	739	
X4	757	745	753	454	743	761			7.7	769	750			365	350	761	757	366		760	
XS	160	 	757	727		-	99t	941 544		780	763		764	765	345	760	343	752	755	761	-
TOTAL	3746	37.73	3784	3747	3773	3787	3789	3800	3866	3843	3770	3762	3769	3761	3778	37.74	3773	3774	3775	3788	
MOYENNE X	_		756	243				760	76.4	763	754	752	754	752	756	755	756	755	755	758	
ETENDOR R	13		23	23	↓	23	25	27	33	33	13	24	15	26	24	87	13	16	0	25	
		_	_	_												H					\mathbb{H}
													-	+	-	+	-				4
1					$\frac{1}{1}$																
															$\frac{ \cdot }{ \cdot }$	$\frac{ \cdot }{ \cdot }$	-				11
l				·					+	-	+	-	-								
-					$\frac{1}{1}$		H	$\frac{ \cdot }{ \cdot }$		$\frac{ \cdot }{ \cdot }$	-										+
×	+	-				-	-		-		-		+								++
			$\frac{ \cdot }{ \cdot }$										-				-	-	+	-	+
													$\frac{ }{ }$			 					\vdash
	1						-			1.											H
ı																-		1.		-	+
i .				$\frac{1}{1}$									$\frac{ }{ }$		+						\parallel
	╢				- -		\parallel		#					$\frac{\parallel}{\parallel}$	\parallel				-		\parallel
•	+	-						+		-			$\frac{\parallel}{\parallel}$								H
	#														+	+	-	$\frac{1}{1}$	+		+
			-		-	-	1.					-	+								$\ \cdot\ $
<u></u>			$\frac{1}{1}$	 		\parallel	\parallel														+
	+		+	+	+	$\frac{1}{1}$			$\frac{1}{1}$		$\frac{1}{1}$	$\frac{1}{1}$	+	$\frac{1}{1}$	$\frac{ \cdot }{ \cdot }$	H					H
							-								-						+
					\perp	H		H	H			$\left \cdot \right $	H			H			H		H
Journal																	•				
Contraction of the Contraction o	-	-	V-1		***************************************																ļ

4.1.2 Mise sous contrôle du procédé (dans l'atelier)

4.2 La carte moyenne-étendue

Il est présenté ici une carte de contrôle aux mesures et les paramètres sont la moyenne et l'étendue.

Les échantillons sont prélevés à intervalles de temps réguliers et sont constitués de 5 éléments. C'est un nombre courant, ni trop grand, ni trop petit, et qui permet à tout opérateur de calculer la moyenne et l'étendue de l'échantillon facilement.

Des formules permettent de déterminer la fréquence de prélèvement. En voici un exemple : soient c la cadence horaire de la machine, n le nombre de pièces à prélever, N le nombre de pièces fabriquées entre deux réglages, la fréquence de prélèvement est $\sqrt{nN\frac{60}{c}}$ minutes.

Pour la construction du test sur la moyenne, on utilise un test bilatéral. (voir la bibliographie)

Pour la construction du test sur l'étendue, on pourra se référer à l'annexe B.

Pour la construction du test non paramétrique utilisé ici, on conserve l'ordre d'apparition des moyennes d'échantillon. Considérons la variable aléatoire Y qui prend pour valeur 0 si la moyenne de l'échantillon est inférieure à la valeur cible et 1 si la moyenne de l'échantillon est supérieure à la valeur cible. Intéressons-nous au nombre de points successifs au-dessus de la valeur cible, c'est-à-dire au nombre successif de "1" qu'on obtient.

En supposant le procédé sous contrôle (c'est-à-dire que la moyenne est la valeur cible), la probabilité de l'événement "Y = 1" est 0,5. L'hypothèse alternative est "la probabilité de l'événement "Y = 1" est différente de 0,5".

Dans la mesure où l'on est sous l'hypothèse "le procédé est sous contrôle", et en supposant les événements successifs indépendants, la probabilité d'apparition de l'événement "Y = 1 n fois successivement" est 0.5^n .

A l'aide de la table donnée ci-dessous, on trouve les résultats suivants : pour un risque d'erreur de 1 %, il faut prendre n = 7 et pour un risque d'erreur de 2‰, il faut prendre n=9. (règles des 7 et 9 points utilisées dans l'industrie).

<u>*</u>									ı
n	2	3	4	5	6	7	8	9	ĺ
$0,5^{n}$	0,25	0,125	0,0625	0,0312	0,0156	0,0078	0,0039	0,0019	

La règle de décision est alors :

- * S'il y a strictement moins de 7 points successivement du même côté de la valeur cible, au seuil d'erreur de 1%, on n'a pas de raison de refuser l'hypothèse "Le procédé est sous contrôle";
- * S'il y a 7 points successivement du même côté de la valeur cible, on refuse l'hypothèse nulle au seuil d'erreur de 1%. Le procédé n'étant plus sous contrôle, il y a lieu de faire la recherche d'une cause assignable.

Il est possible de déterminer aussi le nombre de points successifs croissants par exemple. On prend pour nouvelle variable la différence entre deux valeurs successives et on note par exemple "+" si il y a croissance, et "-" si il y a décroissance. Le test est alors construit en utilisant la variable aléatoire qui prend pour valeur le nombre de "+" (ou de "-") consécutifs.

5 Etude de normalité

Objet : Les tests utilisés ont pour but de vérifier que l'échantillon considéré est issu d'une population qui suit une loi normale.

Les tests d'adéquation les plus courants sont, pour les tests numériques : le test du χ^2 (Khi deux) pour les échantillons de taille n > 50, celui de Kolmogorov-Smirnov, celui de Shapiro-Wilks (non développé dans cette brochure) ou encore, comme test graphique, celui de la droite de Henry .

Pour les tests numériques, on définit un seuil de risque α (ou un niveau de confiance 1 - α).

Principe : On teste l'accord entre les données statistiques (fonction de répartition empirique) et le modèle théorique supposé (fonction de répartition théorique de la loi normale dans notre cas).

5.1 Droite de Henry

Principe:

On utilise une graduation spéciale pour ramener l'histogramme de la population à une courbe qui, si la population est normale, est une droite.

Etude théorique:

Supposons que les observations soient réparties selon une loi normale. Dans ce cas, les fréquences cumulées observées doivent être égales aux valeurs correspondantes de la fonction de répartition de la loi normale.

L'espérance mathématique et l'écart type théoriques seront estimés à partir de la série statistique.

Soit $F_0(x_k) = \sum_{i=1}^k f_i$ la fréquence cumulée observée

Soit $F_T(x_k) = \Pi\left(\frac{x_k - m}{\sigma}\right) = \Pi(t_k)$ la valeur de la fonction de répartition de la

loi normale N(m, σ).

F₀ est donc la fréquence observée et F_T la fréquence théorique.

Si $F_0(x_k) = F_T(x_k)$, alors:

il existe alors une relation affine entre x_k et t_k : $t_k = \frac{x_k - m}{\sigma} \Leftrightarrow t_k = \frac{1}{\sigma} x_k - \frac{m}{\sigma}$ et cette relation se traduit graphiquement par une droite, dite droite de Henry.

On part des fréquences cumulées $F_0(x_k)$. Sachant que $F_0(x_k) = \Pi(t_k)$, en utilisant une table de la loi normale, on peut en déduire les valeurs de t_k correspondantes. En portant x_k en abscisse et t_k en ordonnée, on regarde si les points sont approximativement alignés.

Pratiquement, on évite le recours à la table de Π (t) en utilisant un papier <u>gausso-arithmétique</u> gradué directement en Π (t). Il suffit alors de porter x en abscisse et $F_0(x)$ en ordonnée.

Méthodologie:

lère étape :

- Rassembler et ordonner les données en classes (respecter la norme CNOMO pour construire les classes : elles sont usuellement de type]a ; b] et en nombre approximativement égal à \sqrt{n} , avec n l'effectif total).

Tracer l'histogramme de la distribution.

Calculer les fréquences cumulées par rapport à l'échantillon total.

2e étape :

- Tracer les points sur papier gausso-arithmétique. Remarque: le point correspondant à la valeur 100 % est rejeté à l'infini et n'apparaît donc pas sur le papier gausso-arithmétique.

3e étape :

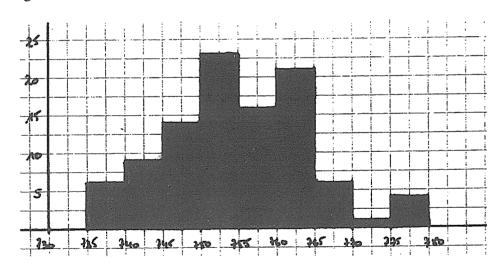
 Interpréter la courbe.
 Si les points sont sensiblement alignés, on peut alors conclure à la normalité de la courbe. Outre l'étude de normalité, la droite de Henry permet d'estimer très rapidement les différents paramètres de position et de dispersion :

<u>Estimation de la moyenne</u> : on repart de l'horizontale donnant 50 % de la population vers l'axe des abscisses (la moyenne étant égale à la médiane pour une loi normale).

Estimation de l'écart-type : sachant que 99,73 % de la population est contenue dans $[m - 3\sigma, m + 3\sigma]$, on mesure 6 fois l'écart-type entre 0,135 % et 99,86 % (ou 2 fois σ entre 16 % et 84 %).

<u>Pourcentage hors tolérance</u>: les limites supérieures et inférieures de tolérance, spécifiées par le bureau d'étude (et prises sur l'axe des abscisses) sont reportées à l'aide de la droite sur l'axe des ordonnées. On lit ainsi directement (sur l'axe des ordonnées) le pourcentage hors tolérance.

Intérêt:

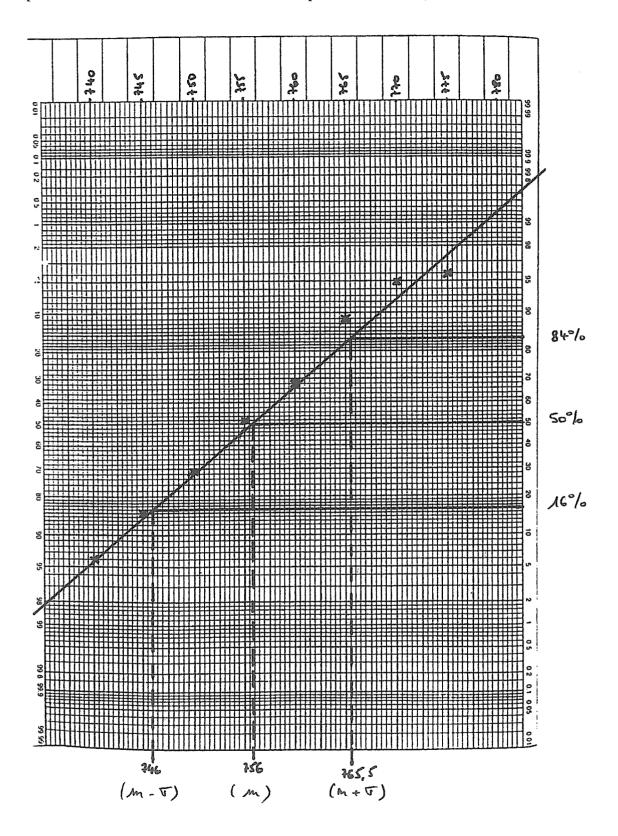

Simplicité et rapidité.

Approximation suffisante dès que le nombre de valeurs est assez grand (n > 30).

Exemple avec la carte de contrôle :

a) Les données (cf p 8) sont rassemblées et ordonnées en classes.

Tracé de l'histogramme de la distribution observée.



Calcul des fréquences cumulées croissantes.

Résultats: Tableau des données:

Diamètres]730;735]]735 ; 740]]740 ; 745]]745 ; 750]]750 ; 755]
Effectifs	0	6	9	14	23
Fréquences cumulées	0	0,06	0,15	0,29	0,52
Diamètres]755 ; 760]]760 ; 765]]765 ; 770]]770 ; 775]]775 ; 780]
Effectifs	16	21	6	1	4
Fréquences cumulées	0,68	0,89	0,95	0,96	1

b) Tracé des points sur papier gausso-arithmétique (Report en abscisse des limites supérieures des classes et en ordonnée des fréquences cumulées.)

c) Interprétation de la courbe : les points sont sensiblement alignés, on peut alors conclure à la normalité de la loi de distribution.

Tracé de la droite de Henry (tracé à l'œil, le résultat peut donc varier d'un opérateur à l'autre).

Estimation de la moyenne et de l'écart type de cette série avec la droite de Henry :

$$m \approx 756$$
; $\sigma \approx (765, 5 - 746) \div 2 = 9,75$.

A titre indicatif, la moyenne et l'écart type calculés avec les 100 données sont :

$$m = 755.8$$
; $\sigma = 9.1$.

5.2 Test de Kolmogorov - Smirnov

Principe:

Il est utilisable pour tester l'ajustement à toute loi dont la fonction de répartition est continue (ce qui est le cas pour la loi normale) et repose sur le théorème suivant : si X est une variable aléatoire de fonction de répartition F continue, alors F(X) est une variable aléatoire uniforme sur [0; 1].

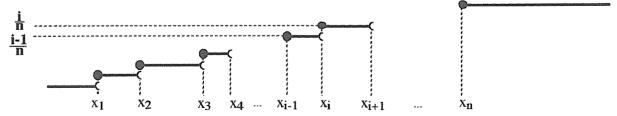
Le test est alors basé sur le calcul des écarts entre les valeurs observées et les valeurs théoriques de la fonction de répartition.

Il est valable quelle que soit la taille n de l'échantillon. Cependant, si n est trop grand, il est plus pratique de regrouper les valeurs en classes et d'utiliser alors le test du χ^2 .

Etude théorique:

Soit un échantillon aléatoire de n pièces extrait d'une population dont on range les valeurs par ordre croissant : $x_1 \le x_2 \le ... \le x_n$

Pour tout x réel, $F_n(x)$ est la proportion des n variables $X_1, X_2, ... X_n$ indépendantes, vérifiant : $X_i \le x$ (i = 1, 2, ... n).


 $F_n(x)$ est la fonction de répartition empirique de l'échantillon de taille n.

$$F_n(x) = 0 \quad \text{si } x < x_1$$

$$\frac{i}{n} \quad \text{si } x_i \le x < x_{i+1}$$

$$1 \quad \text{si } x \ge x_n.$$

Remarque : le graphe de F_n est une courbe en escalier.

Soit F(x) la fonction de répartition théorique. Par exemple, on peut tester l'hypothèse que F(x) soit la fonction de répartition de la loi normale $N(\mu, \sigma)$ où μ et σ sont estimés par \overline{x} et s, obtenus à partir de l'échantillon.

On mesure point par point l'écart entre les deux fonctions :

$$D = |F_n(x) - F(x)|$$

Pour cela, on définit :
$$D^+ = Max \left| \frac{i}{n} - F(x_i) \right|$$

$$D^- = Max \left| \frac{i-1}{n} - F(x_i) \right|$$

$$D = Max \left(D^+, D^- \right)$$

D'après la loi des grands nombres et le théorème de Glivenko, on a :

$$P\left(\lim_{x\to\infty} \sup_{x\to\infty} |F_n(x) - F(x)| = 0\right) = 1$$

Autrement dit : la fonction de répartition empirique F_n(x) converge presque sûrement uniformément vers la fonction de répartition théorique F(x).

On écrit aussi que P (
$$\max_{x} |F_n(x) - F(x)| < D_{n,\alpha}$$
) = 1 - α soit P ($D < D_{n,\alpha}$) = 1 - α .

soit P (D <
$$D_{n,\alpha}$$
) = 1 - α

La valeur de $D_{n,\alpha}$ est donnée par la table de Kolmogorov - Smirnov (voir en annexe A) Si $D > D_{n,\alpha}$ on refuse l'hypothèse du modèle théorique.

Exemple 1:

On mesure les temps entre défaillances au cours d'un essai sur un matériel :

Peut-on admettre un modèle gaussien de paramètres m = 34, σ = 22 avec un risque de 0,05 ?

La fonction de répartition théorique est
$$F(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi} \times 22} e^{-\frac{(t-34)^2}{2\times 22^2}} dt$$

En passant par la variable centrée réduite $u = \frac{t-34}{22}$, on peut calculer $F(t) = \Pi(u)$

t _i : temps rangés en ordre croissant	$F(t_i) \text{ th\'eorique}$ $= \Pi\left(\frac{t_i - 34}{22}\right)$	$\frac{i}{n} = \frac{i}{8}$	$\frac{i-1}{n} = \frac{i-1}{8}$	$\frac{i}{n}$ -F(t_i)	$\frac{i-1}{n}$ - $F(t_i)$
4	0,086	0,125	0	0,039	0,086
16	0,200	0,250	0,125	0,050	0,075
23	0,308	0,375	0,250	0,067	0,058
25	0,345	0,500	0,375	0,155	0,030
30	0,428	0,625	0,500	0,197	0,072
51	0,779	0,750	0,625	0,029	0,154
56	0,841	0,875	0,750	0,034	0,091
71	0,953	1,000	0,875	0,047	0,078

$$D^+ = 0.197$$
 et $D^- = 0.154$; donc $D = 0.197$.

Sur la table, on lit $D_{8;0,05} = 0,457$. (Cf annexe A)

Par conséquent, on n'a pas de raison de rejeter l'hypothèse du modèle gaussien avec un risque de 5 %.

Remarque: pour une carte de contrôle, ce test est trop long à mettre en œuvre, à moins d'utiliser un outil informatique tel qu'un tableur. Sinon on utilise le test du χ^2 .

Exemple 2 avec les données de la carte de contrôle :

Données	Xi	fi	$F(x_i)$	$f_i - F(x_i)$	$ f_{i-1}-F(x_i) $
738	-1,9389	0,0100	0,0263	0,0163	0,0263
739	-1,8301	0,0200	0,0336	0,0136	0,0236
740	-1,7212	0,0600	0,0426	0,0174	0,0230
740	-1,6123	0,0700	0,0534	0,0174	0,0066
741	-1,5035	0,1000	0,0664	0,0336	0,0236
742	-1,3033	0,1500	0,1196	0,0304	0,0204
			<u> </u>		
746	-1,0680	0,1600	0,1428	0,0172	0,0072
747	-0,9591	0,1800	0,1687	0,0113	0,0013
748	-0,8503	0,1900	0,1976	0,0076	0,0176
749	-0,7414	0,2000	0,2292	0,0292	0,0392
750	-0,6325	0,2300	0,2635	0,0335	0,0435
751	-0,5237	0,3000	0,3003	0,0003	0,0103
752	-0,4148	0,3800	0,3391	0,0409	0,0309
753	-0,3059	0,3900	0,3798	0,0102	0,0002
754	-0,1971	0,4000	0,4219	0,0219	0,0319
755	-0,0882	0,5200	0,4649	0,0551	0,0451
756	0,0207	0,5300	0,5083	0,0217	0,0117
757	0,1296	0,5400	0,5515	0,0115	0,0215
759	0,3473	0,6000	0,6358	0,0358	0,0458
760	0,4562	0,6100	0,6759	0,0659	0,0759
761	0,5650	0,7700	0,7140	0,0560	0,0460
762	0,6739	0,7800	0,7498	0,0302	0,0202
763	0,7828	0,8400	0,7831	0,0569	0,0469
764	0,8916	0,8500	0,8137	0,0363	0,0263
765	1,0005	0,8900	0,8415	0,0485	0,0385
766	1,1094	0,9000	0,8664	0,0336	0,0236
769	1,4360	0,9400	0,9245	0,0155	0,0055
770	1,5448	0,9500	0,9388	0,0112	0,0012
775	2,0892	0,9600	0,9817	0,0217	0,0317
776	2,1980	0,9700	0,9860	0,0160	0,0260
777	2,3069	0,9800	0,9895	0,0095	0,0195
779	2,5246	0,9900	0,9942	0,0042	0,0142
780	2,6335	1,0000	0,9958	0,0042	0,0058
		2,000			-,

(Voir l'annexe C pour la construction de ce tableau.)

 $D^+ = 0.0658$ et $D^- = 0.0758$; donc D = 0.0758.

Sur la table, on lit $D_{100;0,05} = 0,1340$. (Cf annexe A)

Par conséquent, on n'a pas de raison de rejeter l'hypothèse du modèle gaussien avec un risque de 5 %.

5.3 Test du χ^2 (Khi - Deux)

Principe:

Ce test est basé sur le calcul des distances entre les valeurs observées et les valeurs théoriques.

Il est utilisable uniquement pour des lois discrètes. Si la loi est continue, on se ramène à une loi discrète en regroupant les données en classes de la forme $[x_{i-1}; x_i]$. Dans chaque classe, on doit obtenir un nombre théorique np_i supérieur ou égal à 5, l'intervalle de classe n'étant pas forcément régulier.

Une fonction indicatrice des écarts est établie de la manière suivante :

$$E = \sum_{i=1}^{r} \frac{(n_i - np_i)^2}{np_i}$$

où: r: nombre de classes:

n: taille de l'échantillon;

n_i: nombre d'individus observés dans la ième classe;

p_i : probabilité pour un individu de se trouver dans la ième classe;

np; : nombre d'individus attendus théoriquement dans la ième classe.

On montre que E suit approximativement une loi de χ^2 à ν degrés de liberté avec $\nu = r - k - 1$. k est le nombre de paramètres à estimer pour le modèle théorique, par exemple :

loi exponentielle : k = 1

loi normale : k = 2loi de Weibull : k = 3.

Les valeurs de $\chi^2_{\nu,\alpha}$ sont sur la table de distribution de χ^2 (voir en annexe A).

Si $E > \chi^2_{\nu,\alpha}$, on rejette l'hypothèse du modèle théorique.

Exemple avec les données de la carte de contrôle :

A partir de la série statistique où n=100, on estime m=756 et $\sigma=9$. Peut-on prendre un modèle gaussien?

Diamètres]735 ; 745]]745 ; 750]]750 ; 755]]755 ; 760]]760;765]]765 ; 770]]770;780]
$n_{ ilde{i}}$	15	14	23	16	21	6	5
$t_i = \frac{x_i - m}{\sigma}$	- 1,22	- 0,67	- 0,11	0,44	1	1,56	2,67
$\Pi(t_i)$	0,1112	0,2514	0,4562	0,6700	0,8413	0,9406	0,9962
$p_i = \Pi(t_i) - \Pi(t_{i-1})$	0,1112	0,1402	0,2048	0,2138	0,1713	0,0993	0,0556
np _i	11,12	14,02	20,48	21,38	17,13	9,93	5,56
$\frac{(n_i - np_i)^2}{np_i}$	1,3538	0,00003	0,3101	1,3538	0,8743	1,5554	0,0564

$$E = \chi^2 = 5,5038$$
; $v = 7 - 2 - 1 = 4$.

Or
$$\chi^2_{4:0.05}$$
 = 9,59 (cf annexe A).

L'hypothèse "distribution normale " est acceptable au seuil de 5 %.

6 Exemple

6.1 Données

Cf tableau 1 p 8.

6.2 Construction d'une carte des moyennes et de l'étendue (\overline{X}, R)

A partir des 20 échantillons de 5 pièces, calcul de la moyenne des moyennes \bar{x} et de la moyenne des étendues \bar{R} .

Résultats :

Moyenne des moyennes $x \approx 756$.

Moyenne des étendues $\overline{R} \approx 20$.

Carte des moyennes:

Tracé de la ligne centrale : $y = \overline{x}$.

de la limite de contrôle inférieure LCI : $y = \overline{x} - A_2 \overline{R}$.

de la limite de contrôle supérieure LCS : $y = \overline{x} + A_2 \overline{R}$, où A_2 est un coefficient qui vaut 0,577 lorsqu'on considère des échantillons de 5 pièces. (cf annexe A)

Résultats :

Ligne centrale: y = 756.

Limite de contrôle inférieure LCI : $y = 756 - 0,577 \times 20 \approx 744$. Limite de contrôle supérieure LCS : $y = 756 + 0,577 \times 20 \approx 768$.

Carte des étendues :

Tracé de la ligne centrale : $y = \overline{R}$.

de la limite de contrôle inférieure LCI : $y = D_3 \overline{R}$.

de la limite de contrôle supérieure LCS : $y = D_4 \overline{R}$, où D_3 et D_4 sont des coefficients qui valent respectivement 0 et 2,114 lorsqu'on considère des échantillons de 5 pièces. (cf annexes A et B)

Résultats:

Ligne centrale : y = 20.

Limite de contrôle inférieure LCI : y = 0.

Limite de contrôle supérieure LCS : $y = 2,114 \times 20 \approx 42$.

Tracé de la carte de contrôle provisoire :

Report dans la carte de contrôle des points dont l'abscisse représente le numéro de l'échantillon considéré et l'ordonnée, la moyenne \overline{x} de l'échantillon (ou l'étendue W). (cf page 19).

	c.	Produit			Référence :	TICC :		Desi	gnation	Désignation: Arbre porte gallet Client:	porte,	zala t	Client :							
	\ <u>\</u>	Moyen			Machine	1	malob	: Sornalo 400 Section					Opération	: L to					°Z	No de carte
	Lot)t			O.F.			Lot	••	740	2	CB	ප	Š.		Cm	3	Č		
	ŭ	Caractéristique	stique	Ost		Cote surveillée :	•••			Carte p	Carte précédente			_		\neg				
	ŭ	Contrôle SPC	SPC		Cible :	Cible : 756 LSCx :		768LICX :344	17 £ X	유.:	70 07	1.5Cr 4	~	Fré	Fréquence de prélt	e prélt :				1
Date																				,
Heure		148 M		128		138	•	12°		154	7	10B	7	1x	7	-		198	-4	SOR
ΧI	146	760	139	747	766	761	Fht	755			750 7	755	752 7		754 F		_	755 7	$\overline{}$	£±
X2	345	755	760	738	752	763	362	364	750	777	755 }	351 3	753 7	739 7	763 71		1_	750 7	355	764
£X3	243	153	762	750	754	362	759	764	755	770 3									_	739
X4	751	345	753	757	743	761	761						+					_+		760
XS	760	760	761	761	355	340	366	3345	946	£ 087	763 7		764 3						755	727
TOTAL	3746	3773	3784	3747	3773	3787	3783	3800	3866	3843	3770 3	3762	37693	3764 3	2	3774 3	3779 3	3774 3	3775	3788
MOYINMI X	743	756	35¢	54t	755	757	758	760		763	754 7	752 7	754 7	752 7	756 7	755	756	755	755	758
ITENDAE R	13	75	23	23	17	23	25	27	33		13 8	24 ,	15 2	26	24 1	, 8Y	13	76	0	25
							\parallel		$\ \cdot\ $			<u> </u>								
	507	2										\perp								
-894							CO. COLORGIA MADRICA DE			X										
Ī						$\frac{ }{ }$			<u> </u>											
760_				1.				1	M	 									$\frac{\parallel}{\parallel}$	
1		-	 	+		*	*										 - }			*
			K		K						W A					*	4	X		
	<u> </u>		\prod	$\left \right $	\prod	$\frac{ \cdot }{ \cdot }$						*		*						
- X **+				$\left\{ \cdot \right\}$																
- htt -		CI	-		-															
1							1		$\frac{\parallel}{\parallel}$	1	+	$\frac{1}{1}$				11				
77		cs							TALLES TOURS	Capetal Co.						A SECOND				The same of the sa
										X										
-30-			+	1		 	+			1		<u> </u>	\	X						*
\$ 5	<u>k</u>	1			X								*		·	*	\	X		
2							+		-			+	\parallel			-	- -	$\frac{1}{1}$		
Journal												-							;	
						:														

Analyse de la carte de contrôle provisoire : élimination des échantillons anormaux et calcul des nouvelles limites.

On vérifie si tous les points sont à l'intérieur des limites. Or le graphique montre que l'échantillon n° 10 a une moyenne située en dehors de la limite de contrôle supérieure. Il faut alors rechercher la cause de cet événement et engager une action corrective afin qu'il ne se reproduise plus. (La cause assignable peut être recherchée avec l'aide du journal de bord et relève alors du domaine de l'expert en productique; elle pourrait être associée au changement d'équipe par exemple).

Calcul des nouvelles limites :

Ce calcul s'effectue en supprimant l'échantillon 10 dans les calculs de \bar{x} et de \bar{R} .

Moyenne des moyennes $\bar{x} \approx 755$.

Moyenne des étendues $\overline{R} \approx 20$.

Carte des moyennes:

Ligne centrale: y = 755.

Limite de contrôle inférieure LCI : $y = 755 - 0,577 \times 20 \approx 743$. Limite de contrôle supérieure LCS : $y = 755 + 0,577 \times 20 \approx 767$.

Carte des étendues :

Ligne centrale: y = 20.

Limite de contrôle inférieure LCI : y = 0.

Limite de contrôle supérieure LCS : $y = 2,114 \times 20 \approx 42$.

6.3 Utilisation de la carte

Pour chacun des 15 nouveaux échantillons obtenus, calcul de la moyenne \overline{x} et de l'étendue W. (cf page 21)

Construction de la nouvelle carte : (cf page 22)

Tracé sur le graphique des lignes de la carte des moyennes et de celles de la carte des étendues.

Report des points correspondants à ces 15 échantillons.

Carte des moyennes:

Ligne centrale : y = 755.

Limite de contrôle inférieure LCI: y = 743.

Limite de contrôle supérieure LCS : y = 767.

Carte des étendues :

Ligne centrale : y = 20.

Limite de contrôle inférieure LCI : y = 0. Limite de contrôle supérieure LCS : y = 42.

	<u>c</u>	Produit			Référ	Référence :		Des	ignation	Designation: Arbic portugalet Client:	1. por t	galet	Client							
	Σ	Moyen			Mach	Machine : So male	mall	LNO Section	ion :			 	Opération :	tion :					No de	N° de carte
	Ĭ	Lot			O.F.	••		Z Z		707	~	Cm	ර්		Çpk	CB	ප	ž Š		
	Ü	Caractéristique Ovat	istique	deat	l	Cote surveillée :	 ts			Carte F	Carte précédente	9		-				·		
	ر ا	Contrôle SPC	SPC		Cible:	• •	LSCX:	וֹד	LICx:	<u>к</u> :	I	LSCr		<u>-</u>	Fréquence de prélt :	de prélt		30mm		
Date																				
Heure		118		128		138	•	ソセア	`	154	`	16R	•	1 X						
1X	85£	755	765	755	345	340	745	767	767	742	762	なされ	765	74.5	75					
tx.	757	751	355	752	750	744	156			1	760	762		763	343					
cx .	750	+5 +	763	743	757	750	763	75.1	360	760	763	763		760	762					
X4	751	760	751	745	758	752	758	750	743	770	761 3	464	761	762	762					
XS	766	739	765	744	360	759	366		747	764 :	340	762	762	767	756					
TOTAL													-							
Х ямилим																				
ETENDOUE R																				
			-					\parallel								╟	╟			
T			$\frac{\parallel}{\parallel}$											$\frac{ \cdot }{ \cdot }$		$\frac{ \cdot }{ \cdot }$				
		$\frac{1}{1}$		+	$\frac{1}{1}$									+						
	$\frac{1}{2}$	$\frac{1}{1}$	+	+	+	+	-			-	+	-	+	-	+	-				
																$\frac{\parallel}{\parallel}$				
-	$\frac{1}{1}$.																
⊢ ×	1		-	+	+	-	-		-	+	-		1	-				-		
			\parallel	 	-		-		-			-	-	\parallel						
T																				
					+			-						-						
	1				+															
			#			#		-								1				
																$\frac{1}{1}$				
T			+	+	+	+	+	-	-	-	+	+	+	-	+	+		-		
		 	$\frac{ \cdot }{ \cdot }$		H	,	 	-				H	\prod	$\frac{1}{1}$	$\frac{1}{1}$					
ä		1	+	+	+	-	+	+	+	+	1	+	1	+	1	+	-	+	-	
	Н	H		H	$\frac{ }{ }$	$\frac{ }{ }$	H	\prod	H	\prod		H	$\frac{ }{ }$	H						
1							-					+								
	\coprod		H											Н						
Journal								***************************************				-								

	Pro	Produit			Référence	ence:		 	ignation	Désignation: Arba porte galle	porte 4	मुक्रुद्धिए	Client:							·
	Mo	Moyen			Machine	1 1	.Somab	400 Section	ion				Operation	tion:					N° de carte	ره
	Lot				O.F.	•••		Lot	••			Cm	් දි		Çpk	CB	3	Š	***************************************	
	Car	rectéri	stigue	Caractéristique ØExt	İ	Cote surveillée:				Carte F	Carte précédente	ည								
	Col	Contrôle SPC	SPC			Cible: 755 LSCx:	LSCX:	764LI	Cx : 14	767LICX: 743 R: 2	0	LSCr 1	42	Œ.	Fréquence de prélt :	de prél		30mm		
Date																				1
Heure		118		128		138		728		154	\dashv	168		1 X						\dashv
XI	854	755	765	755	345	340	745	797	767				\rightarrow	74%	37%					
хх	754	751	355	752	750	744	156	797	764		760	362	765	763	349					
X .	750	45 +	763	743	757	750	763	75.1	360		763 7	763	340	760	762					
χ4	154	760	751	345	35t	352	758	750	743	339	761 3	764	797	762	762					
X.5	766	739	765		39e	759	766	747	347	494	340 ·		362	767	756					
TOTAL	<u></u>		3 799	374	37%		ł	3764							3805					
MOYENNE X	756	752	760	846	754	743	424	353	华	360	454	758	753	753	784					
TIENDAE R	1	21	74	ナ	78	<u> </u>	42	રૂ	ঽ	28	. 23	-	25	25	27					
			\parallel	\parallel	H	\parallel	H	 												
	877	8									\parallel	\parallel								
764-				$\frac{1}{1}$								\prod	\prod			$\left \cdot \right $				
763-					+	-	-					-		-	\Rightarrow					\prod
453-			 							1		 	*	*						
7	M		1	$\frac{ \cdot }{ \cdot }$	$\frac{ \cdot }{ \cdot }$		H													H
	1	1	+		\langle	1	-									+				
430						*														1
			$\frac{\mid \cdot \mid}{\mid \cdot \mid}$	4										$\frac{ \cdot }{ \cdot }$						
		C.T.	\parallel	$\ \cdot\ $											\parallel		$\frac{\parallel}{\parallel}$			
I			$\frac{ \cdot }{ \cdot }$				$\frac{ }{ }$							$\frac{ \cdot }{ \cdot }$						
	1		\parallel				-				-		- -	#		#				\blacksquare
	507	S										H		 	$\frac{ }{ }$				•	
40		-	-																	
<u>k</u> ,						+		-		4		+	-	+	1			-		1
R		 				\ 	K				 }	1		*						\prod
	\ <u>\</u>	/			*	$\left\{ \left\ \cdot \right\ \right\}$			+											\prod
		-	-	-									\parallel	-						\prod
Journal																				
												-			-					

Analyse de la carte obtenue :

L'objectif est de dire si le procédé est sous contrôle ou non.

Deux types de situations peuvent conduire à affirmer que la production n'est pas sous contrôle :

- lorsque des points sont en dehors des limites,
- lorsque des points forment des modèles ou tendances spécifiques à l'intérieur des limites.

Cette carte souligne une tendance supérieure : une succession de 7 points supérieurs à la moyenne. Cette tendance peut préfigurer un dépassement ultérieur des limites de contrôle. La capabilité machine se détériore. Il faut trouver l'origine de cette détérioration et intervenir pour mettre le procédé sous contrôle.

ANNEXES

Annexe A: tableau des coefficients, $table \ du \ \chi^2,$ $table \ de \ la \ loi \ de \ Kolgomorov-Smirnov.$

Annexe B: Utilisation de l'étendue.

Annexe C: Activité tableur.

Annexe A

Tableau des coefficients

	Estima	ation		Pou	r le ca	lcul	Pot	ır le ca		e la	Poi	ur le ca		e la	Carte Médiane
	de	σ		de l	a carte	X		carte	des S			carte	des R		Micoralic
n	C4	d ₂	ďз	Α	A ₂	А3	Вз	B4	B ₅	B6	D ₃	D ₄	D ₅	D ₆	Ã ₂
2	0,7979	1,128	0,853	2,121	1,880	2,659	-	3,267	-	2,606	-	3,267	-	3,686	1,880
3	0,8862	1,693	0,888	1,732	1,023	1,954	-	2,568	-	2,276	•	2,574	٠	4,358	1,187
4	0,9213	2,059	0,880	1,500	0,729	1,628	-	2,266	-	2,088	-	2,282	-	4,698	0,796
5	0,9400	2,326	0,864	1,342	0,577	1,427	-	2,089	-	1,964	-	2,114	-	4,918	0,691
6	0,9515	2,534	0,848	1,225	0,483	1,287	0,030	1,970	0,029	1,874	•	2,004	-	5,078	0,548
7	0,9594	2,704	0,833	1,134	0,419	1,182	0,118	1,882	0,113	1,806	0,076	1,924	0,205	5,203	0,508
8	0,9650	2,847	0,820	1,061	0,373	1,099	0,185	1,815	0,178	1,752	0,136	1,864	0,387	5,307	0,433
9	0,9693	2,970	0,808	1,000	0,337	1,032	0,239	1,761	0,232	1,707	0,184	1,816	0,546	5,394	0,412
10	0,9727	3,078	0,797	0,949	0,308	0,975	0,284	1,716	0,277	1,669	0,223	1,777	0,687	5,469	0,362
11	0,9754	3,173	0,787	0,905	0,285	0,927	0,321	1,679	0,314	1,637	0,256	1,744	0,812	5,534	$\mathbb{N} = \mathbb{Z}$
12	0,9776	3,258	0,778	0,866	0,266	0,886	0,354	1,646	0,346	1,609	0,283	1,717	0.924	5,592	
13	0,9794	3,336	0,770	0,832	0,249	0,850	0,382	1,618	0,374	1,585	0,307	1,693	1,026	5,646	\mathbf{V}
14	0,9810	3,407	0,762	0,802	0,235	0,817	0,406	1,594	0,399	1,563	0,328	1,672	1,121	5,693	
15	0,9823	3,472	0,755	0,775	0,223	0,789	0,428	1,572	0,420	1,544	0,347	1,653	1,207	5,937	/ 1
20	0,9869	3,735	0,729	0,671	0,180	0,680	0,510	1,490	0,503	1,471	0,415	1,585	1,548	5,922	<u>/</u>

Valeur du coefficient C (intervalle de confiance à 95%)

															100	120
ſ	AI	10	12	14	16	12	20	24	28	30	35	40	50	/> /	100	120
Į	7.4	10	14	1-7	10	10		~_					1.3.	115	1.13	1 12
ſ		164	155	148	143	1.40	1.37	1.32	1.30	1,28	1.26	1,24	1,21	1,10	1,13	1.12
ţ		1.07	4,00	2,70	*, * *	<u> </u>										

																
٢	M	150	170	200	250	300	350	400	450	500	600	700			1000	
L	1.4	130	870	200	250	200	330	100				1.05	. 04	1.04	1.04	103
Т	С	1.11	1.10	1.09	1.08	1,07	1,07	1,06	1,06	1,06	1,05	1,05	1,04	1,04	1,04	1,03

Valeurs de dn* en fonction de n (nombre de valeurs par échantillon) et k (nombre d'échantillons)

k⇒	10	12	14	16	18	20	25	30	40	50	60	70	80	90	100
₽ n	1.231	1.271	1.302	1.327	1.348	1.366	1.400	1.426	1.462	1.486	1.504	1.518	1.529	1.539	1.546
3	1.601	1.641	1.672	1.697	1.717	1.735		1.794	1.830	1.854	1.872	1.886	1.897	1.906	1.914
5	1.876	1.915	1.946	1.970	1.991	2.008		2.066	2.101	1.125	2.142	2.156	2.167	2.176	2.183
6	2.092	2.131	2.161	2.185	2.205	2.222	2.255	2.279	2.313	2.336	2.354	2.367	2.378	2.387	2.394
7	2.270	2.308	2.337	2.361	2.381	2.397	2.430	2.453	2.487	2.510	2.527	2.540	2.550	2.559	2.567

Table du χ^2

 $\mathbb{P}\{\chi^2(ddl) \le .\} = \rho$

					$\mathbf{u}^*(\chi^-)$		= <i>p</i>						
p=	0,005	0,01	0,025	0,05	0,1	0,25	0,5	0,75	0,9	0,95	0,975	0,99	0,995
ddl													
1	0	0,0002	0,001	0,0039	0,0158	0,1015	0,4549	1,3233	2,7055	3,8415	5,0239	6,6349	7,8794
2	0,01	0,0201	0,0506	0,1026	0,2107	0,5754	1,3863	2,7726	4,6052	5,9915	7,3778	9,2104	10,597
3	0,0717	0,1148	0,2158	0,3518	0,5844	1,2125	2,366	4,1083	6,2514	7,8147	9,3484	11,345	12,838
4	0,207	0,2971	0,4844	0,7107	1,0636	1,9226	3,3567	5,3853	7,7794	9,4877	11,143	13,277	14,860
5	0,4118	0,5543	0,8312	1,1455	1,6103	2,6746	4,3515	6,6257	9,2363	11,071	12,833	15,086	16,750
6	0,6757	0,8721	1,2373	1,6354	2,2041	3,4546	5,3481	7,8408	10,645	12,592	14,449	16,812	18,548
7	0,9893	1,2390	1,6899	2,1673	2,8331	4,2549	6,3458	9,0371	12,017	14,067	16,013	18,475	20,278
8	1,3444	1,6465	2,1797	2,7326	3,4895	5,0706	7,3441	10,219	13,362	15,507	17,535	20,090	21,955
9	1,7349	2,0879	2,7004	3,3251	4,1682	5,8988	8,3428	11,389	14,684	16,919	19,023	21,666	23,589
10	2,1558	2,5582	3,247	3,9403	4,8652	6,7372	9,3418	12,549	15,987	18,307	20,483	23,209	25,188
11	2,6032	3,0535	3,8157	4,5748	5,5778	7,5841	10,341	13,701	17,275	19,675	21,920	24,725	26,757
12	3,0738	3,5706	4,4038	5,2260	6,3038	8,4384	11,340	14,845	18,549	21,026	23,337	26,217	28,300
13	3,5650	4,1069	5,0087	5,8919	7,0415	9,2991	12,340	15,984	19,812	22,362	24,736	27,688	29,819
14	4,0747	4,6604	5,6287	6,5706	7,7895	10,165	13,339	17,117	21,064	23,685	26,119	29,141	31,319
15	4,6009	5,2294	6,2621	7,2609	8,5468	11,037	14,339	18,245	22,307	24,996	27,488	30,578	32,802
16	5,1422	5,8122	6,9077	7,9616	9,3122	11,912	15,339	19,370	23,542	26,296	28,845	32,000	34,267
17	5,6973	6,4077	7,5642	8,6718	10,085	12,792	16,338	20,489	24,769	27,587	30,191	33,409	35,718
18	6,2648	7,0149	8,2307	9,3904	10,865	13,675	17,338	21,605	25,989	28,869	31,526	34,805	37,156
19	6,8439	7,6327	8,9065	10,117	11,651	14,562	18,338	22,718	27,204	30,144	32,852	36,191	38,582
20	7,4338	8,2604	9,5908	10,851	12,443	15,452	19,337	23,828	28,412	31,410	34,170	37,566	39,997
21	8,0336	8,8972	10,283	11,591	13,240	16,344	20,337	24,935	29,615	32,671	35,479	38,932	41,401
22	8,6427	9,5425	10,982	12,338	14,042	17,240	21,337	26,039	30,813	33,925	36,781	40,289	42,796
23	9,2604	10,196	11,689	13,091	14,848	18,137	22,337	27,141	32,007	35,173	38,076	41,638	44,181
24	9,8862	10,856	12,401	13,848	15,659	19,037	23,337	28,241	33,196	36,415	39,364	42,980	45,558
25	10,520	11,524	13,120	14,611	16,473	19,940	24,337	29,339	34,382	37,653	40,647	44,314	46,928
26	11,160	12,198	13,844	15,379	17,292	20,843	25,337	30,435	35,563	38,885	41,923	45,642	48,290
27	11,808	12,879	14,573	16,151	18,114	21,749	26,336	31,528	36,741	40,113	43,195	46,963	49,645
28	12,461	13,565	15,308	16,928	18,939	22,657	27,336	32,621	37,916	41,337	44,461	48,278	50,994
29	13,121	14,256	16,047	17,708	19,768	23,567	28,336	33,711	39,088	42,557	45,722	49,588	52,336
30	13,787	14,954	16,791	18,493	20,599	24,478	29,336	34,800	40,256	43,773	46,979	50,892	53,672
40	20,707	22,164	24,433	26,509	29,051	33,660	39,335	45,616	51,805	55,759	59,342	63.691	66,766
50	27,991	29,707	32,357	34,764	37,689	42,942	49,335	56,334	63,167	67,505	71,420	76,154	79,490
60	35,534	37,485	40,482	43,188	46,459	52,294	59,335	66,982	74,397	79,082	83,298	88,379	91,952
70	43,275	45,442	48,758	51,739	55,329	61,698	69,335	77,577	85,527	90,531	95,023	100,43	104.21
80	51,172	53,540	57,153	60,392	64,278	71,145	79,334	88,130	96,578	101,88	106,63	112,33	116,32
90	59,196	61,754	65,647	69,126	73,291	80,625	89,334	98,650	107,57	113,15	118,14	124,12	128,30
100	67,328	70,065	74,222	77,929	82,358	90,133	99,334	109,14	118,50	124,34	129,56	135.81	140,17
120	83,852	86,923	91,573	95,705	100,62	109,22	119,33	130,05	140,23	146,57	152,21	158.95	163.65
140	100,66	104,03	109,14	113,67	119,03	128,38	139,34	150,89	161,83	168,61	174,65	181,84	186,85
p=	0.005	0,01	0,025	0,05	0,1	0,25	0.5	0,75	0,9	0,95	0,975	0.99	0,995
L P -	11 0:000	1 0,01	0,020	1 0,00	1	1 - 1-0							

Table de la loi de Kolgomorov-Smirnov.

 $\mathbb{P}\{\|F - F_n^\star\|_\infty \le D_n\} = p$ (F est une fonction de répartition continue et F^\star la fonction de répartition observée.)

	71			D_n				
p=	0,80	0,9	0,95	0,975	0,98	0,99	0,995	=p
n								n
1	0,900000	0,950000	0,975000	0,987500	0,990000	0,995000	0,997500	1
2	0,683772	0,776393	0,841886	0,888197	0,900000	0,929289	0,950000	2
3	0,564810	0,636045	0,707598	0,767921	0,784557	0,829002	0,864279	3
4	0,492653	0,565216	0,623939	0,673881	0,68887	0,734238	0,776393	4
5	0,44698	0,509449	0,563275	0,612618	0,62718	0,668531	0,705431	5
6	0,410373	0,467993	0,519262	0,564043	0,577407	0,616607	0,652865	6
7	0,381476	0,436069	0,483424	0,525645	0,53844	0,575812	0,609753	7
8	0,358313	0,409623	0,454267	0,494464	0,506543	0,541793	0,574291	8
9	0,339102	0,387464	0,430011	0,468114	0,479596	0,513317	0,544431	9
10	0,322602	0,368663	0,409246	0,445617	0,456624	0,488932	0,518725	10
11	0,308292	0,352421	0,391224	0,426139	0,436703	0,467702	0,496386	11
12	0,295770	0,338151	0,375430	0,409019	0,419178	0,449045	0,476715	12
13	0,284698	0,325490	0,361432	0,393816	0,403621	0,432473	0,459212	13
14	0,274807	0,314170	0,348901	0,380207	0,389695	0,417616	0,443516	14
15	0,265886	0,303973	0,337596	0,367931	0,377127	0,404199	0,429336	15
16	0,257784	0,294720	0,327334	0,356780	0,365709	0,392007	0,416439	16
17	0,250387	0,286269	0,317963	0,346592	0,355275	0,380862	0,404643	17
18	0,243601	0,278511	0,309360	0,337235	0,345693	0,370622	0,393802	18
19	0,237346	0,271357	0,301425	0,328603	0,336852	0,361170	0,383792	19
20	0,231555	0,264734	0,294076	0,320607	0,328661	0,352411	0,374513	20
21	0,226173	0,258577	0,287243	0,313171	0,321044	0,344263	0,365878	21
22	0,221153	0,252835	0,280869	0,306233	0,313936	0,336659	0,357818	22
23	0,216455	0,247462	0,274905	0,299740	0,307283	0,329540	0,350270	23
24	0,212048	0,242420	0,269308	0,293645	0,301039	0,322857	0,343184	24
25	0,207902	0,237677	0,264042	0,287911	0,295163	0,316567	0,336512	25
26	0,203992	0,233205	0,259075	0,282502	0,289621	0,310633	0,330217	26
27	0,200297	0,228977	0,254381	0,277389	0,284381	0,305022	0,324265	27
28	0,196798	0,224974	0,249934	0,272545	0,279417	0,299707	0,318625	28
29	0,193478	0,221175	0,245715	0,267948	0,274706	0,294661	0,313270	29
30	0,190321	0,217563	0,241704	0,263578	0,270227	0,289864	0,308178	30
p=	0,80	0,9	0,95	0,975	0,98	0,99	0,995	=p

Table de la loi de Kolgomorov-Smirnov.

				D_n				
p=	0,80	0,9	0,95	0,975	0,98	0,99	0,995	=p
n								n
31	0,187316	0,214125	0,237884	0,259416	0,265962	0,285295	0,303328	31
32	0,184450	0,210845	0,234241	0,255446	0,261893	0,280936	0,298701	32
33	0,181712	0,207713	0,230762	0,251654	0,258007	0,276772	0,294280	33
34	0,179094	0,204718	0,227434	0,248027	0,254290	0,272789	0,290051	34
35	0,176587	0,201849	0,224247	0,244554	0,250730	0,268974	0,286000	35
36	0,174183	0,199098	0,221191	0,241223	0,247316	0,265315	0,282115	36
37	0,171876	0,196458	0,218258	0,238026	0,244038	0,261803	0,278384	37
38	0,169659	0,193921	0,215439	0,234953	0,240889	0,258427	0,274799	38
39	0,167526	0,191480	0,212727	0,231997	0,237858	0,255179	0,271349	39
40	0,165472	0,189130	0,210115	0,229150	0,234940	0,252051	0,268027	40
41	0,163492	0,186865	0,207599	0,226406	0,232128	0,249036	0,264824	41
42	0,161582	0,184680	0,205171	0,223759	0,229414	0,246127	0,261734	42
43	0,159739	0,182570	0,202826	0,221203	0,226794	0,243319	0,258750	43
44	0,157957	0,180532	0,200561	0,218733	0,224263	0,240604	0,255866	44
45	0,156234	0,178560	0,198370	0,216345	0,221814	0,237979	0,253077	45
46	0,154567	0,176653	0,196251	0,214033	0,219445	0,235439	0,250378	46
47	0,152952	0,174805	0,194198	0,211795	0,217150	0,232978	0,247763	47
48	0,151388	0,173015	0,192208	0,209625	0,214926	0,230594	0,245229	48
49	0,14987	0,1712790	0,190279	0,207522	0,212769	0,228281	0,242772	49
50	0,148398	0,169594	0,188407	0,205480	0,210677	0,226037	0,240387	50
51	0,146969	0,167959	0,186589	0,203498	0,208645	0,223858	0,238072	51
52	0,145580	0,166370	0,184824	0,201573	0,206671	0,221742	0,235823	52
53	0,144231	0,164826	0,183107	0,199702	0,204752	0,219684	0,233636	53
54	0,142918	0,163324	0,181439	0,197881	0,202886	0,217683	0,231509	54
55	0,141641	0,161863	0,179815	0,196111	0,201071	0,215736	0,229440	55
56	0,140398	0,160441	0,178234	0,194387	0,199303	0,213840	0,227425	56
57	0,139187	0,159055	0,176694	0,192707	0,197582	0,211994	0,225463	57
58	0,138007	0,157705	0,175194	0,191071	0,195904	0,210195	0,223550	58
59	0,136857	0,156389	0,173731	0,189476	0,194269	0,208441	0,221686	59
60	0,135735	0,155106	0,172305	0,187921	0,192675	0,206731	0,219868	60
61	0,134641	0,153854	0,170914	0,186403	0,191119	0,205062	0,218094	61
62	0,133572	0,152632	0,169555	0,184922	0,189600	0,203433	0,216363	62
63	0,132529	0,151439	0,168229	0,183476	0,188117	0,201843	0,214672	63
64	0,131511	0,150273	0,166934	0,182063	0,186669	0,200289	0,213020	64
65	0,130515	0,149134	0,165668	0,180682	0,185253	0,198771	0,211406	65
66	0,129542	0,148021	0,164431	0,179333	0,183870	0,197287	0,209829	66
67	0,128591	0,146933	0,163221	0,178013	0,182517	0,195836	0,208286	67
68	0,127660	0,145868	0,162038	0,176723	0,181194	0,194416	0,206777	68
69	0,126749	0,144826	0,16088	0,1754600	0,179899	0,193027	0,205300	69
70	0,125858	0,143806	0,159747	0,174224	0,178632	0,191668	0,203855	70
n								n
p=	0,80	0,9	0,95	0,975	0,98	0,99	0,995	=p

Table de la loi de Kolgomorov-Smirnov.

				D_n				
p=	0,80	0,9	0,95	0,975	0,98	0,99	0,995	=p
n			***************************************					n
71	0,124985	0,142808	0,158637	0,173013	0,177391	0,190337	0,202440	71
72	0,124131	0,141830	0,157551	0,171828	0,176176	0,189033	0,201054	72
73	0,123293	0,140873	0,156486	0,170667	0,174985	0,187756	0,199696	73
74	0,122473	0,139934	0,155443	0,169529	0,173819	0,186505	0,198366	74
75	0,121669	0,139014	0,154421	0,168414	0,172675	0,185278	0,197062	75
76	0,120880	0,138112	0,153418	0,167321	0,171554	0,184075	0,195783	76
77	0,120107	0,137228	0,152435	0,166248	0,170455	0,182896	0,194529	77
78	0,119349	0,136360	0,151471	0,165197	0,169376	0,181739	0,193299	78
79	0,118604	0,135509	0,150525	0,164165	0,168318	0,180604	0,192092	79
80	0,117874	0,134673	0,149596	0,163152	0,167280	0,179490	0,190907	80
81	0,117157	0,133853	0,148685	0,162157	0,166260	0,178396	0,189744	81
82	0,116453	0,133048	0,14779	0,161181	0,1652590	0,177322	0,188602	82
83	0,115762	0,132257	0,146911	0,160222	0,164276	0,176268	0,187481	83
84	0,115082	0,131480	0,146047	0,159281	0,163311	0,175232	0,186379	84
85	0,114415	0,130717	0,145199	0,158355	0,162362	0,174214	0,185297	85
86	0,113759	0,129967	0,144365	0,157446	0,161430	0,173213	0,184234	86
87	0,113115	0,129230	0,143546	0,156552	0,160513	0,172230	0,183188	87
88	0,112481	0,128505	0,142741	0,155674	0,159612	0,171264	0,182160	88
89	0,111858	0,127792	0,141949	0,154810	0,158727	0,170313	0,181150	89
90	0,111245	0,127091	0,141170	0,153960	0,157855	0,169379	0,180156	90
91	0,110643	0,126402	0,140403	0,153124	0,156998	0,168459	0,179178	91
92	0,110050	0,125724	0,139650	0,152302	0,156155	0,167555	0,178216	92
93	0,109466	0,125056	0,138908	0,151493	0,155326	0,166665	0,177270	93
94	0,108892	0,124400	0,138178	0,150697	0,154509	0,165789	0,176338	94
95	0,108327	0,123753	0,137459	0,149913	0,153706	0,164926	0,175421	95
96	0,107770	0,123117	0,136752	0,149141	0,152914	0,164077	0,174518	96
97	0,107222	0,122490	0,136055	0,148381	0,152135	0,163242	0,173629	97
98	0,106683	0,121873	0,135369	0,147633	0,151368	0,162418	0,172754	98
99	0,106151	0,121265	0,134694	0,146896	0,150612	0,161607	0,171892	99
100	0,105627	0,120666	0,134028	0,146170	0,149868	0,160809	0,171042	100
n								n
D=	0,80	0,9	0,95	0,975	0,98	0,99	0,995	=p

Pour $n \geq 100$, $\mathbb{P}\{\sqrt{n}.||F - F_n^\star||_{\infty} \leq A\} = p$ (F est une fonction de répartition continue et F_n^\star la fonction de répartition observée.)

p=	0,80	0,9	0,95	0,975	0,98	0,99	0,995	=p
A=	1,0727	1,2238	1,3581	1,4802	1,5174	1,6276	1,7308	=A

Annexe B

Utilisation de l'étendue

Pour faire du contrôle de qualité, on utilise des échantillons de faible effectif. C'est alors l'étendue de l'échantillon qui est utilisée comme estimateur. Les règles appliquées par les spécialistes en productique sont souvent normalisées. il s'agit ici d'expliquer l'origine de certaines de ces règles, et d'expliquer d'où viennent certains coefficients.

1 Estimateurs ponctuels de l'écart-type.

Considérons un échantillon aléatoire simple de taille n, de moyenne \overline{x} , d'écart-type s et d'étendue w, extrait d'une population normale de moyenne μ , d'écart-type σ .

1.1 Estimateur ponctuel usuel de l'écart-type.

Il s'agit de :

$$\hat{s} = s.\sqrt{\frac{n}{n-1}}.$$

Cependant, lorsque n est faible, cette méthode n'est pas la plus utilisée.

1.2 Estimateur ponctuel de l'écart-type à partir de l'étendue.

Étendue d'un échantillon aléatoire simple issu d'une loi continue.

(Cette étude théorique n'est pas indispensable par la suite, elle sert essentiellement à permettre l'établissement des tables utilisées lors des tests.)

Considérons donc n variables aléatoires indépendantes X_1, X_2, \ldots, X_n de même loi continue de fonction de répartition F. Notons R_n son étendue, et posons $M_n = \sup_{1 \le i \le n} X_i$ et $m_n = \inf_{1 \le i \le n} X_i$.

On a donc $R_n = M_n - m_n$.

Or, en raison de l'indépendance des tirages

$$\mathbb{P}\{M_n \le t\} = \mathbb{P}\left(\bigcap_{i=1}^n \{X_i \le t\}\right) = \prod_{i=1}^n \mathbb{P}\{X_i \le t\} = [F(t)]^n.$$

Donc la fonction de répartition de M_n est $F_{M_n} = F^n$.

De même,

$$\mathbb{P}\{m_n > t\} = \mathbb{P}\left(\bigcap_{i=1}^n \{X_i > t\}\right) = [1 - F(t)]^n$$

et la fonction de répartition de m_n est $F_{m_n} = 1 - (1 - F)^n$. Enfin, pour $t \le u$, on a :

$$\mathbb{P}(\{X_i > t\} \cap \{X_i \le u\}) = F(u) - F(t),$$

ce qui fait que

$$\mathbb{P}(\{m_n > t\} \cap \{M_n \le u\}) = \mathbb{P}\left[\bigcap_{i=1}^n (\{X_i > t\} \cap \{X_i \le u\})\right]$$
$$= \prod_{i=1}^n \mathbb{P}(\{X_i > t\} \cap \{X_i \le u\}) = [F(u) - F(t)]^n.$$

La loi du couple (m_n, M_n) est ainsi donnée, pour $t \leq u$, par :

$$\mathbb{P}(\{m_n \le t\} \cap \{M_n \le u\}) = \mathbb{P}\{M_n \le u\} - \mathbb{P}(\{m_n > t\} \cap \{M_n \le u\})$$
$$= [F(u)]^n - [F(u) - F(t)]^n.$$

Cas où la loi des X_i a une densité.

Supposons maintenant que les X_i aient une densité f. On a donc : $F(x) = \int_{-\infty}^x f(t).dt$ et, en notant h_n la densité du couple (m_n, M_n) :

$$\mathbb{P}\left(\left\{m_n \le t\right\} \cap \left\{M_n \le u\right\}\right) = \begin{cases} \int_{-\infty}^{u} \left[\int_{-\infty}^{t} h_n(r,s).dr\right].ds \text{ si } t \le u, \\ 0 \text{ si } t \le u. \end{cases}$$

et, par conséquent, la densité h est portée par le demi-plan $\{(t,u)|t\leq u\}$ et

$$[F(u)]^{n} - [F(u) - F(t)]^{n} = 1_{]-\infty;u]}(t) \cdot \int_{-\infty}^{u} \left[\int_{-\infty}^{t} h_{n}(r,s) . dr \right] . ds$$
$$= 1_{[t;+\infty[}(u) \cdot \int_{-\infty}^{u} \left[\int_{-\infty}^{t} h_{n}(r,s) . dr \right] . ds,$$

ce qui fait que :

$$\frac{\partial [F(u)]^n - [F(u) - F(t)]^n}{\partial u} = 1_{[t; +\infty[}(u) \cdot \int_{-\infty}^t h_n(r, u) \cdot dr = 1_{]-\infty; u]}(t) \cdot \int_{-\infty}^t h_n(r, u) \cdot dr$$

et que

$$\frac{\partial^2 [F(u)]^n - [F(u) - F(t)]^n}{\partial u \partial t} = 1_{]-\infty,u]}(t) \cdot h_n(t,u) = 1_{\{t \le u\}}(t,u) \cdot h_n(t,u).$$

on obtient ainsi

$$h_n(t, u) = 1_{\{t \le u\}}(t, u) \cdot \frac{\partial^2 [F(u)]^n - [F(u) - F(t)]^n}{\partial u \partial t}$$

$$= -1_{\{t \le u\}}(t, u) \cdot n \cdot \frac{\partial [F(u) - F(t)]^{n-1} \cdot f(u)}{\partial u}$$

$$= 1_{\{t \le u\}}(t, u) \cdot n \cdot (n-1) \cdot [F(u) - F(t)]^{n-2} \cdot f(t) \cdot f(u)$$

Choisissons w > 0 et recherchons $\mathbb{P}\{R_n \leq w\}$. On a :

$$\mathbb{P}\{R_n \le w\} = \int_{\mathbb{R}} \left(\int_u^{u+w} h_n(u,v) \, dv \right) du = n(n-1) \int_{\mathbb{R}} \left(\int_u^{u+w} [F(v) - F(u)]^{n-2} f(v) \, dv \right) f(u) \, du \\
= n \cdot \int_{\mathbb{R}} \left[[F(v) - F(u)]^{n-1} \right]_{v=u}^{v=u+w} \cdot f(u) \, du = n \cdot \int_{\mathbb{R}} [F(u+w) - F(u)]^{n-1} \cdot f(u) \, du$$

donc la densité g_n de R_n vaut :

$$g_n(w) = \frac{d\mathbb{P}\{R_n \le w\}}{dw} = n.(n-1).\int_{\mathbb{R}} [F(u+w) - F(u)]^{n-2}.f(u).f(u+w).du.$$

D'autre part, la densité de M_n est $n.[F(x)]^{n-1}.f(x)$ et celle de m_n est $n.[1-F(x)]^{n-1}.f(x)$. Par conséquent,

$$\mathbb{E}(R_n) = \mathbb{E}(M_n) - \mathbb{E}(m_n) = n \cdot \int_{\mathbb{R}} x \cdot [F(x)]^{n-1} \cdot f(x) \cdot dx - n \cdot \int_{\mathbb{R}} x \cdot [1 - F(x)]^{n-1} \cdot f(x) \cdot dx$$
$$= n \cdot \int_{\mathbb{R}} x \cdot \left([F(x)]^{n-1} - [1 - F(x)]^{n-1} \right) \cdot f(x) \cdot dx$$

et, en effectuant une intégration par parties (en utilisant une primitive convenable, pour évider une divergence intempestive) :

$$\mathbb{E}(R_n) = \left[x \cdot ([F(x)]^n - [1 - [1 - F(x)]^n]) \right]_{x = -\infty}^{x = +\infty} - \int_{\mathbb{R}} [F(x)]^n - (1 - [1 - F(x)]^n) \, dx$$

et, si la convergence de F vers 0 et 1 en $-\infty$ et $+\infty$ est assez rapide, on trouve :

$$\mathbb{E}(R_n) = \int_{\mathbb{R}} \left(1 - [F(x)]^n - [1 - F(x)]^n\right) . dx.$$

Pour un exposé plus complet, on pourra consulter : [Kendall M.G. & Stuart A. The advanced theory of statistics. Vol 1. Griffin & Co, London. 1958. p.338.] ou [Saporta G., Probabilités, analyse de données et statistique, Technip].

Le moment d'ordre 2 de R_n vérifie [Kendall p.339] :

$$\mathbb{E}[(R_n)^2] = 2 \cdot \int_{-\infty}^{\infty} \left(\int_{-\infty}^x \left[1 - F^n(x) - \left[1 - F(t) \right]^n + \left[F(x) - F(t) \right]^n \right] \cdot dt \right) \cdot dx.$$

Les formules établies ci-dessus permettent, avec $f(t) = \frac{1}{\sqrt{2.\pi}}e^{-\frac{x^2}{2}}$ d'établir la table suivante.

1.3 La table.

Loi de l'étendue dans le cas Gaussien.

Table de l'étendue q d'un échantillon aléatoire simple de taille n extrait d'une population normale standard.

 m_q est la moyenne de q, σ_q est l'écart-type de q, $V_q=rac{\sigma_q}{m_q}$ le coefficient de variation de q.

Pour $0 , <math>q_p$ est le quantile vérifiant $\mathbb{P}\{q \le q_p\} = p$.

				p = 1	p =	p =	p =	p =	p =	p =	p =	p =
				0,005	0,01	0,025	0,05	0,5	0,95	0,975	0, 99	0,995
$\mid n \mid$	m_q	σ_q	V_q	q_p	q_p	q_p	q_p	q_{p}	q_p	q_p	q_p	q_p
2	1,128	0,849	0,752	0,010	0,019	0,045	0,090	0,955	2,776	3,177	3,657	3,997
3	1,693	0,883	0,522	0,135	0,191	0,304	0,432	1,589	3,317	3,686	4,128	4,439
4	2,059	0,874	0,424	0,343	0,434	0,595	0,760	1,979	3,637	3,991	4,418	4,722
5	2,326	0,857	0,368	0,556	0,666	0,850	1,031	2,258	3,863	4,207	4,624	4,926
6	2,535	0,840	0,331	0,750	0,870	1,067	1,254	2,473	4,037	4,373	4,783	5,084
7	2,705	0,824	0,305	0,923	1,049	1,251	1,441	2,647	4,177	4,507	4,913	5,214
8	2,847	0,810	0,285	1,076	1,206	1,411	1,601	2,792	4,295	4,621	5,022	5,323
9	2,970	0,798	0,269	1,213	1,344	1,551	1,741	2,917	4,396	4,717	5,116	5,418
10	3,078	0,787	0,256	1,336	1,468	1,674	1,864	3,026	4,484	4,802	5,199	5,501
11	3,173	0,776	0,245	1,447	1,579	1,785	1,974	3,122	4,563	4,878	5,272	5,575
12	3,259	0,767	0,235	1,548	1,680	1,885	2,073	3,209	4,633	4,946	5,338	5,643
13	3,336	0,759	0,227	1,640	1,772	1,977	2,162	3,287	4,697	5,008	5,398	5,704
14	3,407	0,751	0,220	1,725	1,857	2,060	2,245	3,358	4,755	5,063	5,453	5,760
15	3,472	0,744	0,214	1,804	1,935	2,137	2,320	3,424	4,809	5,115	5,504	5,811
16	3,532	0,737	0,209	1,877	2,008	2,209	2,390	3,484	4,858	5,163	5,551	5,860
17	3,588	0,731	0,204	1,946	2,075	2,275	2,456	3,541	4,905	5,208	5,594	5,905
18	3,640	0,725	0,199	2,009	2,139	2,337	2,516	3,593	4,948	5,250	5,635	5,947
19	3,689	0,719	0,195	2,070	2,198	2,395	2,573	3,642	4,988	5,289	5,674	5,986
20	3,735	0,714	0,191	2,126	2,254	2,450	2,627	3,688	5,026	5,326	5,710	6,024

Un estimateur de l'écart-type d'une population normale dont est extrait un échantillon de taille n et d'étendue w est : $\frac{w}{m_q}$.

2 Intervalle de confiance sur l'écart-type.

Un intervalle de confiance sur l'écart-type σ d'une population normale de moyenne μ , dont on a extrait un échantillon aléatoire simple de taille n, de moyenne \overline{x} et d'écart-type s est usuellement obtenu en utilisant le fait que $n \cdot \frac{s^2}{\sigma^2}$ suit une loi de χ^2 à n-1 degrés de liberté. Mais, lorsque n est faible, on peut utiliser l'étendue et la table ci-dessus.

2.1 Intervalle de confiance de l'écart-type à partir de l'étendue.

Supposons ainsi que l'on connaisse l'étendue w d'un échantillon extrait d'une population normale d'écart-type inconnu σ .

L'étendue réduite de l'échantillon est $\frac{w}{\sigma}$. La loi de cette étendue réduite $\frac{w}{\sigma}$ est donnée par la table ci-dessus. Les quantiles $q_{\frac{\alpha}{2}}$ et $q_{1-\frac{\alpha}{2}}$ permettent d'en donner un intervalle de confiance au seuil de risque α .

Exemple. Considérons un échantillon (aléatoire simple, extrait d'une population normale d'écart-type σ) de taille n=6 et dont l'étendue est w=10. Recherchons un intervalle de confiance de σ .

L'étendue réduite $\frac{w}{\sigma}$ suit la loi ci-dessus (avec n=6).

Alors au seuil de risque 1-p=0,05, on a : $\mathbb{P}\left\{\left[\frac{w}{q_{0,975}} \le \sigma \le \frac{w}{q_{0,025}}\right]\right\} = 0,95$ ce qui donne ici : $\frac{10}{4,373} \simeq 2,29 \le \sigma \le \frac{10}{1,067} \simeq 9,37.$

2.2 Utilisation de l'étendue dans le cas où il y a au moins 15 données.

Lorsque n dépasse 10, cette méthode devient cependant moins efficace que l'estimation de σ utilisant la loi du χ^2 .

On peut toutefois encore utiliser la méthode précédente en considérant que l'on a k échantillons indépendants du même type, tous de même taille n comprise entre 5 et 10. Or, dès que $k \geq 3$, on montre que la moyenne \overline{w} des k étendues observées, suit (approximativement) une loi normale de moyenne $\sigma.m_q$ et de variance $\frac{1}{k}.\sigma^2.\sigma_q^2$. On en déduit que l'intervalle de confiance au seuil de risque α est donné par :

$$\mathbb{P}\left\{\frac{s}{1+\frac{V_q}{\sqrt{k}}.u_{1-\frac{\alpha}{2}}} \le \sigma \le \frac{s}{1-\frac{V_q}{\sqrt{k}}.u_{1-\frac{\alpha}{2}}}\right\} = 1-\alpha$$

où $u_{1-\frac{\alpha}{2}}$ vérifie $\mathbb{P}\{\mathcal{N}(0,1) \leq u_{1-\frac{\alpha}{2}}\} = 1 - \frac{\alpha}{2}$ et $s = \frac{\overline{w}}{m_q}$ avec m_q lu dans la table (à la ligne n). Remarquons que $s = \frac{\overline{w}}{m_q}$, (avec m_q lu dans la table à la ligne n) est un estimateur ponctuel

de σ utilisable lorsque l'on dispose de k échantillons de taille n.

Exemple. Considérons un échantillon (aléatoire simple, extrait d'une population normale) de 18 individus partagé en k=3 tronçons de n=6 individus dont les étendues respectives sont $w_1=10, w_2=6, w_3=11, \text{ donc } \overline{w}=9$. Alors au seuil de confiance $p=0,95, \text{ avec } s=\frac{\overline{w}}{m_q}=\frac{1}{m_q}$

$$\frac{9}{2,535} \simeq 3,550, \ \mathbb{P}\left\{\frac{3,550}{1+\frac{0,331}{\sqrt{3}}}.1,96 \le \sigma \le \frac{3,550}{1-\frac{0,331}{\sqrt{3}}}.1,96\right\} = 0,95 \ \mathrm{soit} \ : \ 5,84 \le \sigma \le 8,60.$$

3 Un exemple d'application, la construction d'une carte de contrôle.

Le but est de contrôler une production en prélevant des échantillons de n pièces produites et en mesurant une certaine caractéristique K sur chacune de ces pièces. A partir de ces mesures, il s'agit de détecter en temps réel des anomalies dans le processus de production. n est connu.

Pour établir la carte de contrôle, on commence par utiliser N échantillons de taille n. On se sert de ces échantillons pour établir un graphique formé d'une droite appelée ligne centrale et de deux droites parallèles appelés limites de contrôles (supérieure ou inférieure). La ligne centrale matérialise la moyenne de la caractéristique K testée, dans cette production. Lors des tests en temps réel de la production, la bande définie par les limites de contrôles est telle que, si un échantillon de n pièces voit sa moyenne x sortir de cette bande, ceci fait suspecter une anomalie dans la dite production.

Décidons de considérer comme suspecte toute valeur d'une série statistique suivant une loi normale $\mathcal{N}(\mu, \sigma)$ qui s'écarte de la moyenne d'au moins 3 écarts-types (donc avec la probabilité 1-0,9973=0,0027).

3.1 Limites de contrôle sur la moyenne.

Si l'on effectue un prélèvement d'un échantillon (aléatoire simple) de taille n faible, disons $n \leq 10$), la moyenne \overline{x} et l'étendue w de cet échantillon étant connues, la moyenne suit une loi normale de moyenne μ d'écart-type $\frac{\sigma}{\sqrt{n}}$.

Estimant σ par $\frac{\dot{w}}{m_{\sigma}}$, on considère donc que cet échantillon est aberrant lorsque

$$|\mu - \overline{x}| \ge 3. \frac{w}{m_q \cdot \sqrt{n}}.$$

Supposons ici que n=5. On trouve alors $|\mu-\overline{x}| \geq \frac{3}{m_q}.w = \frac{3}{2,326 \times \sqrt{5}}.w \simeq \frac{0,577}{2,326 \times \sqrt{5}}.w \simeq \frac{0,577}{2,$

On dispose de N=20 échantillons de taille n=5. Chaque échantillon i (de taille 5) est de moyenne \overline{x}_i et d'étendue \overline{R}_i . La moyenne des moyennes des 20 échantillons est $\overline{\overline{x}}$ et la moyenne de leurs étendues est $\overline{\overline{R}}$. La ligne centrale est alors définie par $\overline{\overline{x}}$ et les limites de contrôle par

$$\left[\overline{\overline{x}} - 0.577.\overline{\overline{R}}; \overline{\overline{x}} + 0.577.\overline{\overline{R}}\right].$$

3.2 Limites de contrôle sur l'étendue.

En ce qui concerne l'étendue w d'une échantillon de taille n, elle est également considérée comme aberrante lorsque qu'elle s'écarte de la moyenne R des étendues d'au moins 3 écarts-

types. Comme précédemment, on a :

$$\mathbb{P}\{|w-R| > 3.\sigma(R)\} = 0.9973.$$

Comme w suit une loi de moyenne $R=m_q.\sigma$ d'écart-type $\sigma(R)=\sigma_q.\sigma$ où σ , l'écart-type de la population, supposée normale, est estimé par $\frac{R}{m_q}$ la relation précédente devient :

$$\mathbb{P}\left\{|w-R| > 3.\frac{\sigma_q.R}{m_q}\right\} = 0.9973,$$

ce qui donne, puisque $V_q = \frac{\sigma_q}{m_q}$ est tabulé :

$$\mathbb{P}\left\{ (1 - 3.V_q) . R \le w \le (1 + 3.V_q) . R \right\} = 0.9973,$$

et, en fait :

$$\mathbb{P}\left\{\max\left[0; (1-3.V_q)\right] . R \le w \le (1+3.V_q) . R\right\} = 0.9973,$$

Dans le cas n = 5 on trouve :

$$\max[0; (1-3.V_q)] = 0$$
 et $1 + 3.V_q = 1 + 3 \times 0,368 \simeq 2,104$.

Ceci donne donc les limites de contrôle de l'étendue :

$$\left[0; 2, 104 \times \overline{\overline{R}}\right]$$
.

Annexe C

Activités Excel:

Dans cette activité, on construit une carte de contrôle, après avoir testé la normalité des données.

Les fichiers sont les suivants :

Fichier « Normalité.XLS »:

feuille Données.

feuille Étude de normalité1,

feuille Étude de normalité2,

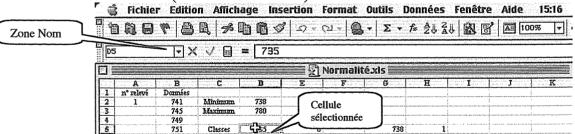
feuille Histogramme,

feuille Comparaison,

feuille Droite de Henry.

feuille Kolgomorov.

Fichier « Carte.XLS »:

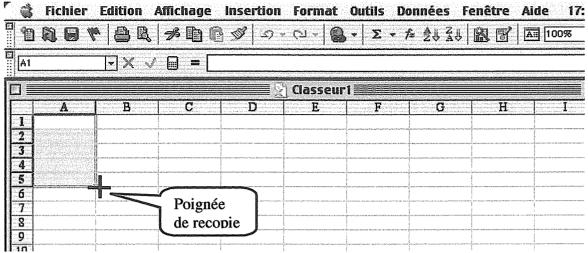

feuille Carte.

Les fichiers complets et à compléter sont à télécharger sur le site de l'IREM de Clermont-Ferrand, à l'adresse : "http://www.maths.univ-bpclermont.fr/irem". Les fichiers complets sont au format PDF, donc non modifiables. Les fichiers sur lesquels il est possible de travailler sont au format Excel.

A) Manipulations de base à l'aide de la souris :

1) Sélectionner à l'aide la souris :

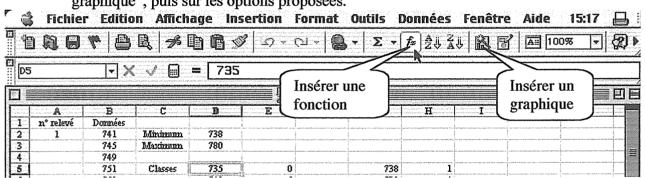
On peut sélectionner à l'aide de la souris, une cellule en cliquant dessus, une plage de cellule en cliquant sur une extrémité et en déplaçant la souris en maintenant le bouton appuyé sur la souris, et en allant à l'autre extrémité de la plage de cellules qu'on cherche à sélectionner. On peut aussi sélectionner une ligne ou une colonne en cliquant sur le numéro de la ligne ou le nom de la colonne. Les cellules sélectionnées se mettent en vidéo inversée (le fond devient bleu).

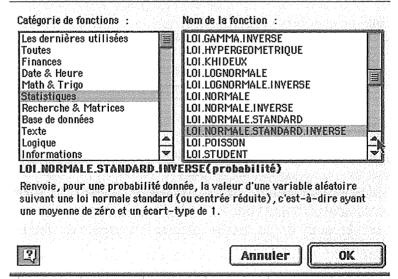


2) Renommer une cellule, une sélection ou une feuille :

Après avoir sélectionné ce qui nous intéresse, on peut lui donner un nom en tapant le nom souhaité dans la cellule "Zone Nom". On peut aussi en cliquant sur le nom de la feuille donner un nom aux feuilles sur lesquelles on travaille.

3) Recopier une cellule:


Après avoir activé la (ou les) cellule(s) à recopier, on utilise la poignée de recopie qui se trouve en bas à droite de la sélection (à ne pas confondre avec la sélection). Le curseur se transforme alors en croix.


On peut recopier une valeur ou une formule.

4) Insérer une fonction, un graphique :

On clique sur l'icône "insérer une fonction" ou "insérer un graphique", puis sur les options proposées.

Par exemple, on obtient successivement les deux fenêtres suivantes lorsqu'on veut utiliser la loi standard normale inverse :

Dans chaque fenêtre apparaît une brève description de la fonction utilisée. Il est possible de taper directement le nom de la fonction, mais il faut connaître la syntaxe précise.

OI.NORMALE.STAN - X	/ = = LOI.NORMALE.STANDARD.II	NVERSE()
.OI.NORMALE.STANDARD Probabilité		Retour à l feuille de calcul
		Calcul
	= donnée, la valeur d'une variable aléatoire suivant u , c'est-à-dire ayant une moyenne de zéro et un écart représente une probabilité correspondant à la dist	ne loi normale -type de 1.

On peut, à l'aide de l'icône permettant le retour à la feuille de calcul, sélectionner les cellules qu'on souhaite utiliser comme argument dans la formule.

B) Fichier normalité.XLS:

1) La feuille "Données" :

On trouve les données pour l'étude de normalité dans les colonnes A et B de la feuille " Données " du fichier normalité.

On sélectionne la colonne B (en cliquant sur B) puis, à l'aide de la Zone Nom, on la nomme "Données". Dans les cellules E2 et E3, on entre les formules "=min(Données)" et "=max(Données)". On peut entrer ces formules soit en les tapant directement au clavier en prenant soin de mettre en début de ligne le symbole "=" afin que Excel l'interpréte comme une formule, soit utiliser l'icône "Insérer une fonction".

Nous allons regrouper les données en classes d'amplitude 5, en prenant pour première classe 1735 ;740].

Cellule E6 et E7: taper "735" et "740",

Sélectionner les cellules E6 et E7 puis recopier jusqu'à la cellule E15. (Excel a analysé comment passer de la cellule E6 à la cellule E7 et a appliqué la formule sur la zone voulue). Après avoir sélectionné la plage F6:F15, on tape la formule "=FREQUENCE(Données;E6:E15)" puis on appuie simultanément sur CTRL, MAJ puis Entrée. (Cette combinaison de touches est obligatoire ici car la fonction FREQUENCE utilisée est une fonction matricielle).

2) <u>La feuille "Etude de normalité 1"</u> :

Les centres de classe sont inscrits dans les cellules A3 à A12 et dans les cellules B3 à B12 on recopie les effectifs trouvés sur la feuille Données, à l'aide des commandes "Copier" et "Coller" du menu Edition.

Pour le tracé de la droite de Henry, on aura besoin des fréquences cumulées. Pour cela, on détermine les fréquences cumulées dans la colonne C :

Cellule C3: taper "= B3/100",

Cellule C4: taper "=C3+B4/100",.

Recopier la formule donnée en C4 jusqu'à la cellule C12.

On utilise ensuite la fonction "LOI.NORMALE.STANDARD.INVERSE". Il faut avoir côte à côte les valeurs données par la fonction et les maxima de chaque classe. (En effet, on se sert ici des Fréquences cumulées).

Cellules E3 et E4: taper "740" et "745",

Sélectionner ces deux cellules, et recopier jusqu'à la cellule E12,

Activer la cellule F3,

Cliquer sur " Coller une fonction" et dans la catégorie de fonctions, sélectionner "LOI.NORMALE.STANDARD.INVERSE",

Entrer pour probabilité C3,

Recopier vers le bas cette cellule jusqu'à la cellule F12.

On peut faire la comparaison graphique des densités de probabilité en comparant les résultats théoriques donnés par la loi normale et les valeurs données par l'échantillon:

Recopier les cellules E3:F12 aux cellules A23:B32,

Cellule C23: taper "=500*

Cliquer sur " Coller une fonction";

dans la catégorie de fonctions, sélectionner "LOI.NORMALE"

moyenne: 755; écart type: 9,3; cumulative: 0.

(Pour obtenir un graphique comparable avec l'histogramme qui était construit à partir de 100 données avec une amplitude de classe de 5, il faut multiplier le résultat donné par la loi normale par 100*5.)

Recopier la cellule C23 vers le bas jusqu'à la cellule C32.

Remarque : il est possible d'obtenir de l'aide sur chaque fonction présente dans Excel . (Menu "Aide", puis "Sommaire et index", lettre "L" puis choix de "LOI.NORMALE"). Voici par exemple l'aide obtenue pour la fonction "LOI.NORMALE" :

LOI.NORMALE

<u>Yoir aussi</u>

Renvoie la probabilité d'une variable aléatoire continue suivant une loi normale pour la moyenne et l'écart type spécifiés. Cette fonction a de nombreuses applications en statistique, y compris dans les tests d'hypothèse.

Syntaxe

LOI_NORMALE(x;espérance;écart_type;cumulative)

x représente la valeur dont vous recherchez la distribution

espérance représente l'espérance mathématique de la distribution

écart_type représente l'écart-type de la distribution

cumulative représente une valeur logique déterminant le mode de calcul de la fonction : cumulatif ou non. Si l'argument cumulative est YRAI, la fonction LOI.NORMALE renvoie la probabilité suivant une loi normale pour qu'un événement aléatoire se reproduise un nombre de fois inférieur ou égal à x ; si l'argument cumulative est FAUX, la fonction renvoie la probabilité suivant une loi normale pour qu'un événement se reproduise x fois exactement.

Remarques

- Si les arguments espérance ou écart_type ne sont pas numériques, la fonction LOI.NORMALE renvoie la valeur d'erreur *YALEUR!
- Si l'argument écart_type ≤ 0, la fonction LOI.NORMALE renvoie la valeur d'erreur #NOMBRE!
- Si l'argument espérance = 0 et si l'argument écart_type = 1, la fonction LOI.NORMALE renvoie la distribution normale centrée réduite, la fonction LOI.NORMALE.STANDARD.
- L'équation de la fonction de densité normale est la suivante :

Exemple

LOI.NORMALE(42;40;1,5;VRAI) égale 0,908789

3) La feuille "Histogramme":

À ce stade, on peut faire le tracé de l'histogramme à l'aide de l'assistant graphique : on sélectionne les cellules A3 à B12, puis on clique sur l'assistant graphique :

Type de graphique : Histogramme, Données : les cellules sélectionnées, Axe des abscisses : la première colonne

Afficher le graphique sur une nouvelle feuille qu'on appellera "Histogramme".

4) La feuille "Droite de Henry":

Pour le tracé de la droite,

Cliquer sur l'icône "Assistant graphique",

Choix de la représentation : "nuage de points",

Plage de données : cellules E3:F12,

Série: on prend pour valeurs X les cellules E3:F12

Afficher le graphique sur une nouvelle feuille qu'on appellera <u>"Droite de Henry".</u> Après la construction, on ajoute sur le graphique le coefficient de corrélation et l'équation de la droite d'Henry:

Sélectionner sur le graphique les points tracés,

Dans le menu graphique, cliquer sur " ajouter une courbe de tendance ",

Type: linéaire;

Option: on coche: Afficher l'équation sur le graphique,

Afficher le coefficient de corrélation sur le graphique.

Cliquer sur l'équation de droite obtenue,

On peut sélectionner ces résultats pour les recopier dans la feuille de calcul, dans les cellules A16 et A17, afin d'estimer la moyenne et l'écart type de la série.

5) La feuille "comparaison":

Après avoir sélectionné les cellules A23 :C32, lancer l'assistant graphique :

Type: combinaison

Axe des abscisses : la première colonne

Afficher le graphique sur une nouvelle feuille qu'on appellera " Comparaison".

6) La feuille "Étude de normalité2":

On sélectionne la colonne B de la feuille "Données" puis on la recopie à l'aide des commandes "Copier" et "Coller" du menu Edition sur les colonnes A et B successivement de la feuille "Étude de normalité2".

Après avoir sélectionné la colonne B, on trie les données :

Menu "Données",

Commande "Trier"; Trier par: "ColonneB"; Cocher l'option "croissant", Valider.

On détermine moyenne et estimation de l'écart type dans les cellules B104 à B106 :

Cellule B104: taper "=MOYENNE(B3:B102)",

Cellule B105: taper "=ECARTYPE(B3:B102)",

Cellule B106: taper "=B105*RACINE(100/99)".

On a ensuite besoin des valeurs centrées réduites de la variable (notées x_i), des fréquences cumulées (notées f_i), ainsi que des valeurs $F(x_i)$, $|f_i - F(x_i)|$ et $|f_{i-1} - F(x_i)|$. Pour cela :

Cellule C3: taper "=(B3-\$B\$104)/\$B\$106" (la présence du symbole"\$" signalant une référence absolue, donc non modifiée lorsqu'on effectue une recopie de cellule),

Cellule D2: taper "0,01",

Cellule D3: taper "=D2+1/100",

Cellule E3: taper "=LOI.NORMALE.STANDARD(C3)"

Cellule F3: taper "=ABS(E3-D3)",

Cellule G3: taper "=ABS(E3-D2)".

Sélectionner les cellules de C3 à G3, et les recopier jusqu'aux cellules C102:G102 à l'aide de la poignée de recopîe.

Cellule K5: taper "=MAX(F:F)",

Cellule K6: taper "=MAX(G:G)",

Cellule K7: taper "=MAX(K5:K6)".

C'est la valeur prise par la cellule K7 qu'on compare avec la valeur donnée par la cellule K9, lue dans une table de Kolgomorov. Cette valeur est recopiée ici, le test de Kolgomorov n'étant pas une fonction présente dans Excel.

7) La feuille "Kolgomorov":

Cliquer sur l'icône "Assistant graphique",

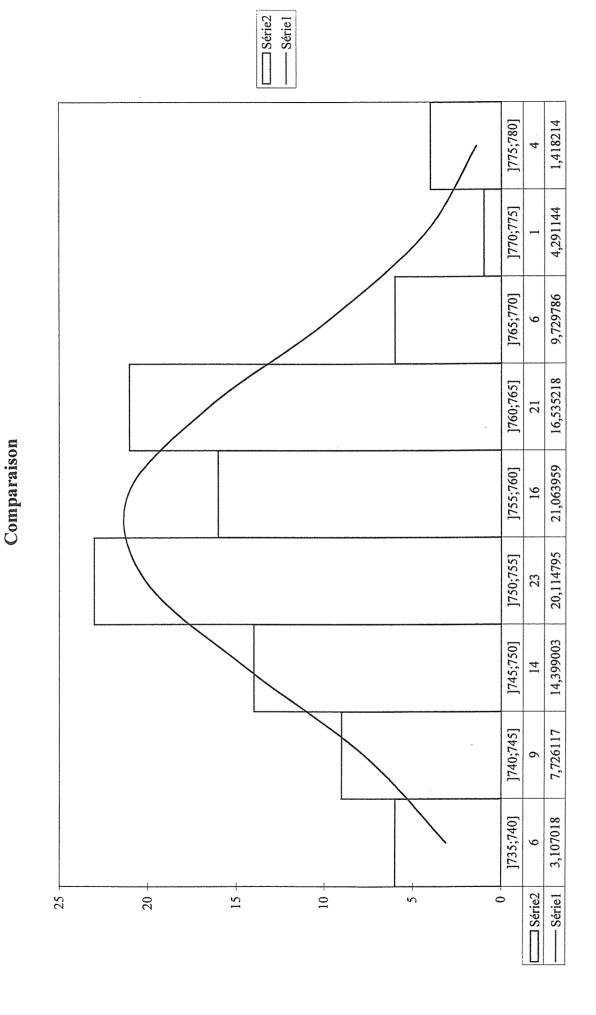
Choix de la représentation : "nuage de points",

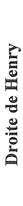
Sous type: "Nuage de points reliés sans marquage des données",

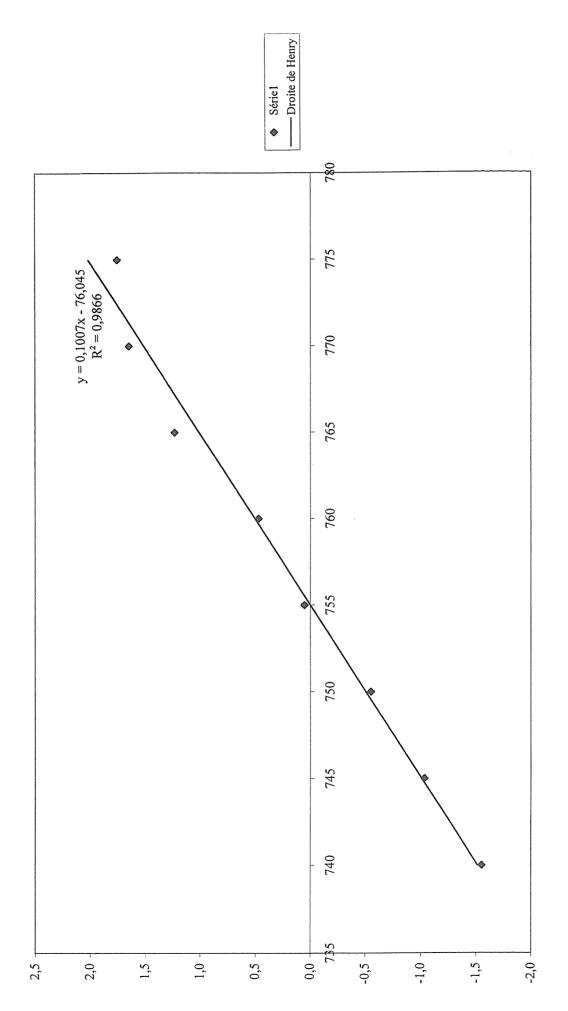
Plage de données : cellules C3:E102,

Axe des abscisses : la première colonne,

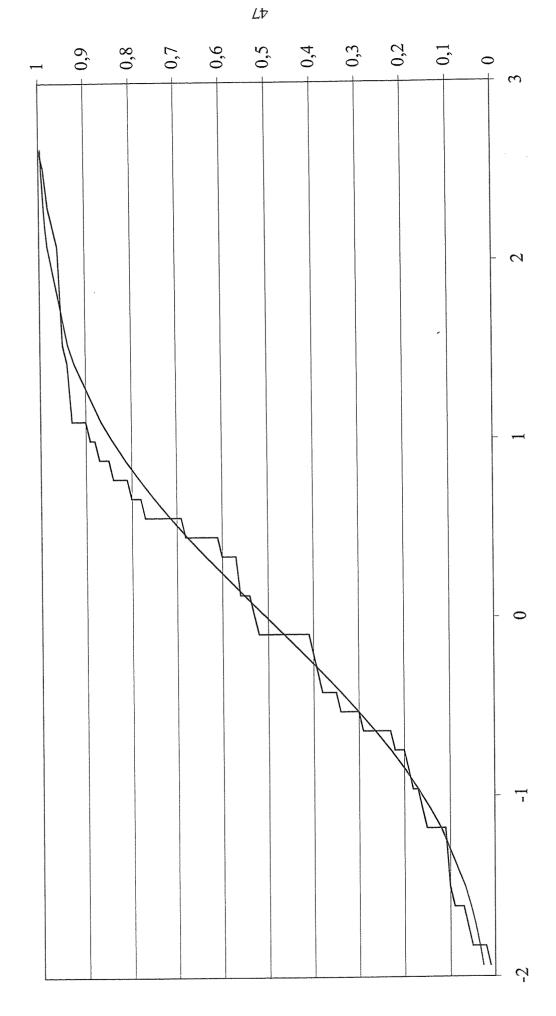
Titre: "Kolgomorov",

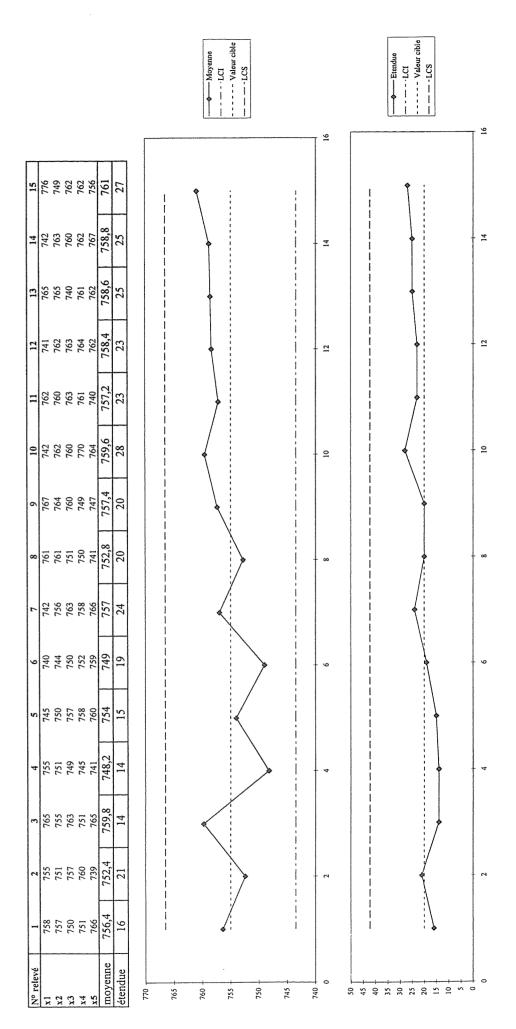

Afficher le graphique sur une nouvelle feuille qu'on appellera " Kolgomorov".

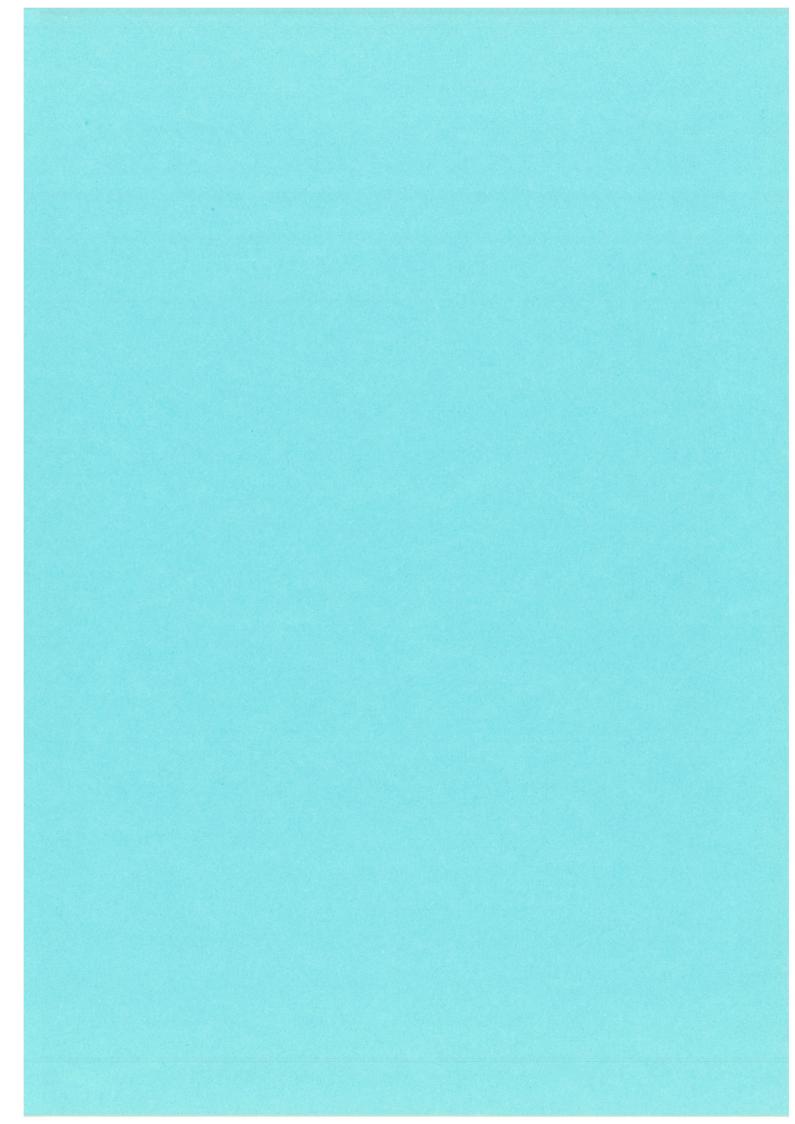

C) Fichier « Carte.XLS »:


La feuille Carte est à télécharger sur le site de l'IREM de Clermont-Ferrand.

=0 ==1==.í	Danafaa					
n° relevé I	Données 741	Minimum	738			
	745	Maximum	780	Effectifs	Classes	
	749 751		Valeurs 738	1	735	0
2	760 760		739 740	4 1	740 745	6 9
-	755		741	3	750	14
	759 745		742 743	1	755 760	23 16
	760		744	0	765	21
3	739 760		745 746	5 1	770 7 7 5	6 1
	762		747	2	780	4
	759 761		748 749	1		
4	741		750	7		
	738 750		751 752	5 4		
	757		753	1		
5	761 766		754 755	1 12		
	752		756	l		
	751 749		757 758	3 0		
	755		759	4		
6	761 763		760 761	8 9		
	762		762	3		
	761 740		763 764	4		
7	741		765	2		
	762 759		766 767	4		
	761		768	0		
8	766 755		769 770	l 1		
•	761		771	0		
	761 748		772 773	0		
	775		774	0		
9	776 750		775 776	1		
	755		777	1		
	779 746		778 779	0 1		
10	747		780	1		
	777 770			100		
	769					
	780					•
11	750 755					
	752					
	750 763					
12	755 751					
	757					
	760 739					
13	752					
	753 751					
	749					
14	764 742					
14	739					
	750 765					
	765					
15	754 763					
	766					
	750 745					
16	745					
	745 763					
	761					
17	760 756					
	760					
	759 757					
	747					
18	755 750					
	751					
	766 752					
19	755					
	755 755					
	755					
20	755 764					
70	764					
	739 760					
	761					


Counce de classe Effectifs Frequence comutées Counce de classe Frequence comutées Counce de classe Frequence comutées Counce de classe Counce de cl	Première étape	: Histogram	Première étape : Histogramme et étude de normalité	ılité							
6 0,06 740 -1,534772098 -1,036423877 -1,036423877 -1,036423877 -1,036423877 -1,036423877 -1,036423877 -1,036423877 -1,044823 -1,044824	Centres de classe	Effectifs	Fréquences cumulées	Centres cl.	Inv. Ioi Normale						
9 0,15 745 -1,036432877 R 14 0,29 750 -0,553384325 R 23 0,52 755 0,020134085 R 16 0,68 760 0,467698555 R 21 0,89 765 1,26528639 R 4 1 770 1,644833 R 1 0,96 775 1,720868531 R 1 0,96 775 1,720868531 R 1 0,96 775 1,720868531 R 1 0,96 775 1,73086351 R 1 0,96 775 1,73086351 R 1 0,96 775 1,73086351 R 1 0,0072724 0,031070 1,726117 1,726117 1 0,042954 0,031070 3,107018 0,68311 1 0,042954 0,031070 14,376673 14 14,3766 2 1,173313	737,5	9	90,0	740	-1,554772098						
14 0,29 750 -0,53384325	742,5	6	0,15	745	-1,036432877						
23 0,52 755 0,050154085 16 0,68 760 0,467608555 1 6 0,98 770 1,544853 1 1 0,96 775 1,730686351 1 4 1 780 #NOMBRE! 1 A 1 775 1,73068351 1 A 1 780 #NOMBRE! 1 A 1 726,164 1 1 Donal defunt: 755,164 1 1 Donal defunct: 1 755,164 1 1 Ellectifs(O) it 2 9 9,330 1 1 Ellectifs(O) it 2 1,17391 0,120215 0,077261 1 14,3766 1 1,173913 0,120215 0,201335 2,13365 <td>747,5</td> <td>14</td> <td>0,29</td> <td>750</td> <td>-0,553384325</td> <td></td> <td></td> <td></td> <td></td> <td>entain transference of the contract of the con</td> <td></td>	747,5	14	0,29	750	-0,553384325					entain transference of the contract of the con	
16 0,68 760 0,467698555	752,5	23	0,52	755	0,050154085						
1,226528639 765 1,226528639 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644853 770 1,644854 770 1,644854 770 1,644854 770 1,644854 770 770 1,644854 770 770 770 770 770 1,644854 770	757,5	16	0,68	092	0,467698555					The second secon	
6 0,95 770 1,644853 Feeting Control 1,644853 Feeting Control 4 1 1,50686351 Feeting Control 4 1 1,50686351 Feeting Control 6 HNOMBREI HN	762,5	21	68'0	765	1,226528639						
1 0,96 775 1,750686351	767,5	9	0,95	770	1,644853						
4 1 1 780 #NOMBRE!	772,5	_	96'0	775	1,750686351						
Poir Droite de Henry Poir Droite de Henry	7777,5	4		780	#NOMBRE!						
y = 0,1007x - 76,045 m	Voir histogramm	ē		Voir Droite	te Henry						
On en déduit :				y = 0,1007x	. 76,045						
In the control of t				On en déduit					ou numanunan		
: ffectifs(O) ti		dermannis Abrildebremmentebremmi dilamenti sebemb		ш	755,164	enement i khronu etterrann filakturran i meranua					
: Ia loi normale de moyenne 755,8 : Grectifs(O) ti -2,260870 0,011884 -1,171391 0,042954 0,031070 3,107018 0,120215 0,077261 14 -0,631121 0,263981 0,143766 14,376573 14 14,3766 23 -0,087051 0,465315 0,201335 20,133465 21 11,001088 0,841608 0,165437 16,543679 21 1,2,089227 0,981656 0,042811 4,281050 5,56926 4 2,633297 0,995772 0,014116 1,411551 Lecture des tables:				ь	9,930						
i: fifectifs(O) ti 2,2,560870 6											
iffectifs(O) ti 2,2,60870 0,011884 -1,717391 0,042954 0,031070 3,107018 6 -1,717391 0,042954 0,031070 3,107018 14 -0,631121 0,263981 0,143766 23 -0,08731 14 -0,631121 0,465315 0,201335 20,133465 21 0,085774 16,543679 11,001088 0,9457018 0,945718 0,945718 0,995772 0,014116 1,411551 Lecture des tables:			The state of the s								
: Loi normale (T) Effectifs(T) 3ffectifs(O) ti -2,260870 0,011884 Regroupements 6 -1,717391 0,042954 0,031070 3,107018 Dbservés Théoriques 9 -1,173913 0,120215 0,077261 7,726117 15 10,8331 14 -0,631121 0,263981 0,143766 14,376573 14 14,3766 23 -0,087051 0,465315 0,201335 20,133465 23 20,1335 16 0,457018 0,676171 0,210856 21,085574 16 21,0856 21 1,545158 0,938846 0,097238 9,723804 6 9,7238 4 2,633297 0,9981656 0,042811 4,281050 5 5,6926 4 2,633297 0,995772 0,014116 1,411551 Lecture des tables :	Comparaison a	vec la loi no	rmale de moyenne 75.	5,8							
Effectifs(O) ti	et d'écart type !	1,2 :									
6 -1,717391 0,042954 0,031070 3,107018 Observés Théoriques 9 -1,7173913 0,120215 0,077261 7,726117 15 10,8331 14 -0,631121 0,263981 0,143766 14,376573 14 14,3766 23 -0,087051 0,465315 0,201335 20,133465 23 20,1335 16 0,457018 0,676171 0,210856 21,085574 16 21,0856 21 1,001088 0,841608 0,165437 16,543679 21 16,5437 6 1,545158 0,938846 0,097238 9,723804 6 9,7238 1 2,089227 0,981656 0,042811 4,281050 5 5,6926 4 2,633297 0,995772 0,014116 1,411551 Lecture des tables:	Classes	Effectifs(C)) ti		Loi normale (T)	Effectifs(T)					
6 -1,717391 0,042954 0,031070 3,107018 Observés Théoriques 9 -1,173913 0,120215 0,077261 7,726117 15 10,8331 14 -0,631121 0,263981 0,143766 14,376573 14 14,3766 23 -0,087051 0,465315 0,201335 20,133465 21,085574 16 21,0856 21,085574 16 21,0856 21,085574 16 21,0856 1 1,545158 0,981656 0,042811 4,281050 5 5,6926 4 2,633297 0,995772 0,014116 1,411551			-2,260870	0,011884			Regroupeme	nts			
9 -1,173913 0,120215 0,077261 7,726117 15 10,8331 14 -0,631121 0,263981 0,143766 14,376573 14 14,3766 23 -0,087051 0,465315 0,201335 20,133465 23 20,1335 16 0,457018 0,676171 0,210856 21,085574 16 21,0856 21 1,001088 0,841608 0,165437 16,543679 21 16,5437 6 1,545158 0,981656 0,097238 9,723804 6 9,7238 4 2,683227 0,981656 0,042811 4,281050 5 5,6926 4 2,633297 0,995772 0,014116 1,411551 Lecture des tables:]735;740]	9	-1,717391	0,042954	0,031070	3,107018	Observés	Théoriques	Ecart (O-T)	(O-T)^2/T	
14 -0,631121 0,263981 0,143766 14,376573 14 14,3766 23 -0,087051 0,465315 0,201335 20,133465 23 20,1335 16 0,457018 0,676171 0,210856 21,085574 16 21,0856 21 1,001088 0,841608 0,165437 16,543679 21 16,5437 6 1,545158 0,938846 0,097238 9,723804 6 9,7238 4 2,683227 0,981656 0,042811 4,281050 5 5,6926 4 2,633297 0,995772 0,014116 1,411551 1 Lecture des tables:]740;745]	6	-1,173913	0,120215	0,077261	7,726117	15	10,8331	4,1669	1,6027	
23 -0,087051 0,465315 0,201335 20,133465 23 20,1335 16 0,457018 0,676171 0,210856 21,085574 16 21,0856 21 1,001088 0,841608 0,165437 16,543679 21 16,5437 6 1,545158 0,938846 0,097238 9,723804 6 9,7238 1 2,089227 0,981656 0,042811 4,281050 5 5,6926 4 2,633297 0,995772 0,014116 1,411551 1 1 2,033297 0,995772 0,014116 1,411551 1]745;750]	14	-0,631121	0,263981	0,143766	14,376573	14	14,3766	-0,3766	0,0099	
16 0,457018 0,676171 0,210856 21,085574 16 21,0856 21 1,001088 0,841608 0,165437 16,543679 21 16,5437 6 1,545158 0,938846 0,097238 9,723804 6 9,7238 1 2,089227 0,981656 0,042811 4,281050 5 5,6926 4 2,633297 0,995772 0,014116 1,411551 I.ecture des tables:]750;755]	23	-0,087051	0,465315	0,201335	20,133465	23	20,1335	2,8665	0,4081	
21 1,001088 0,841608 0,165437 16,543679 21 16,5437 6 1,545158 0,938846 0,097238 9,723804 6 9,7238 1 2,089227 0,981656 0,042811 4,281050 5 5,6926 4 2,633297 0,995772 0,014116 1,411551 2 1,411551 8 1,411551 1,411551 1,411551 1,411551 1,411551]755;760]	16	0,457018	0,676171	0,210856	21,085574	16	21,0856	-5,0856	1,2266	
6 1,545158 0,938846 0,097238 9,723804 6 9,7238 1 2,089227 0,981656 0,042811 4,281050 5 5,6926 4 2,633297 0,995772 0,014116 1,411551	[760;765]	21	1,001088	0,841608	0,165437	16,543679	21	16,5437	4,4563	1,2004	
1 2,089227 0,981656 0,042811 4,281050 5,6926 4 2,633297 0,995772 0,014116 1,411551 Ecture des tables:	[077;597[9	1,545158	0,938846	0,097238	9,723804	9	9,7238	-3,7238	1,4261	
4 2,633297 0,995772 0,014116 <i>I,411551</i> Lecture des tables:]770;775]		2,089227	0,981656	0,042811	4,281050	5	5,6926	-0,6926	0,0843	
Lecture des tables :]775;780]	4	2,633297	0,995772	0,014116	1,411551					
Lecture des tables :									Khi-deux:	5,9580	
••	Voir Comparais	ж	The state of the s							7	
Au seuil de 5%, l'observation est							Lectu	re des tables:	9,48772846		
avec une distribution normale									Au seuil de 59	%, l'observation est comp.	atible
יאווויזיאיזי זייאיאיזיאיאיזי אווי איייאי איייאי איייאי איייאיאיזייאיזי									avec une distr	ibution normale.	





Test de Kolgomorov

TITRE : Une application industrielle des statistiques : la carte de contrôle.

AUTEURS : Dominique ARBRE, Annette CORPART, Gérard FLEURY, Nelly LASSALLE.

EDITEUR: IREM de CLERMONT-FERRAND.

DATE: MARS 2001.

PUBLIC CONCERNE: Enseignants de Lycée et de classe Post-Bac.

MOTS-CLES: Statistiques, test, contrôle de production.

RESUME : En s'appuyant sur l'étude d'une carte de contrôle, on s'intéresse aux démarches statistiques nécessaires :

Processus, carte de contrôle, moyenne, étendue, organigramme de mise en place d'une carte de contrôle, mise sous contrôle du procédé, test non paramétrique, données, étude de normalité, droite de Henry, test de Kolgomorov-Smirnov, test du Khi-deux, table, utilisation de l'étendue.

Cette étude est illustrée par une activité tableur détaillée.