EQUATIONS ALGEBRIQUES

par Léonce LESIEUR
(conférence prononcée en 1976 i la Régionale de LIMOGES)

La théorie des équations
algébriques, son historique,
ses idées, son développe-

ment.

Je voudrais parler de la théorie des équations algdbri-
ques, de son histoire, de son développement, de ses méthodes, des pro-
blémes et des découvertes qu'elle a amends. Le sujet est trop vaste
pour Etre entiérement traité em une fois ; je n'aborderai donc que cer=
tains aspects de cette théorie, certains moments de son histoire. Si
vous voulez, je vais faive un triple saut dans 1'espace. Le premier
saut nous conduit au milieu du XVIe sidcle & 1'8poque de la résolution
des &quations du 3e et du 4e deprZ ; le deuxidme nous propulse trois
sigcles plus tard avec les beaux résultats de GALOIS sur le groupe dé-
fini par une &quation ; enfin le troisiéme nous ramdne aux temps pré-

sents,

I - LA PREMIERE PERIODE

Les équaticns suilvantes posent et onf posé de nombreux

problémes,

(1) 2x=3 ; (2) ax==%b

(3 x2 =2 (4) %2 =1

(5) x? =2 ; (6) %3 =3 x+ 1

(7) %3+ ax = b ; (8) #' = ax? + Bx + ¢

La premiére question est de savolir quels sont les
nombyres qu'on peut admettre comme solutions de 1'8quation. La deu-
xidme est de connaitre quelles sont les opdrations ou lois de compo-
sition qui sont définles sur ces nombres.

Méme dans le cas de 1'équation (1), 11 faut utilise
les nombres rationnels, et pas seulement les entiers, ainsi que 1 s
régles ce calcul sur ces nombres. Il semble que les Grecs, et av nt
eux les Egyptiens et les Babyloniens, en avaient une idde clair_,
grice & la notion de grandeurs commensurables, Encore faut-il .emar-
guer que tous leurs exemples sont numériques, et gue 1'usage de dési-
gney par des lettres les nombres connus ou inconnus qui in: rviennent
dans une équation comme (2) n'est an - -ue qu'avec VIETL & xVIe sidcle.
(Pour plus de détails, lire la note historique de Bourhs [ﬁlp.ld?)e

Quand on considére 1'éguation (3), les v .res ration=

nels ne suffisent plus, "et il est possible que ce soi i'échec de



tentatives répétées pour exprimer ratiomellement Y2 qui conduisit les ma-

thématiciens de 1'8cole pythagoricienne & démontrer que ce nombre est
irrationnel" (Bourbaki [4] p. 192).

Avec le développement de la géométrie, les grecs et
EUCLIDE en particulier, s'ingénidrent & ré&soudre les problémes par

des constructions géomBtriques au moyen de la rd&gle et du compas,

On pouvait ainsi atteindre toutes les solutions des &quations du second
degré A coefficients rationnels, Mais ils échourent évidemment sur le

probléme posé par la quadrature du cercle, qui se traduit par 1'équa-

tion (4) et qui fait intervenir un nombre transcendant. (On ne pourra

démontrer rigoureusement que beaucoup plus tard, en 1888, avec
LINDEMANN, que I, et par conséquent /ﬁ, est transcendant). Ils échou-

&rent aussi sur le probléme de la duplication du cube : Equation (5),

et sur celui de la trisection de l'angle de 60° : &quation (6), qui

ne peuvent pas non plus se ré&soudre- au moyen de constructions avec 14
régle et le compas.
8 =‘£L rad. = 20°
x =2 cos 8 =2 OH 1
cos 38 = 4 cos’8 - 3 cos 0 = 3

x3=3x+l

I1 fallut ensuite beaucoup de temps, compte tenu du dé-
clin des civiiisations et du manque d'int&r@t pour les équations algé-
briques, pour que de nouveaux progrés soient réalisés., Ce fut au Moyen
Age, et ils aboutirent enfin & la résolution de 1'&quation (7) par
del FERRO, un math&maticien de 1'Ecole Italienne de CARDAN, au moyen

de la formule :

L'int&rét de cette formule barbare est d'abord qu'elle
exprime les racines par radicaux cubiques et carrés, mais aussi que,
méme dans le cas oll les trois racines sont réelles (les coefficients
a, b, ¢ &tant supposés réels), les racines carrées sont celles de
nombres négatifs, C'est la raison qui a conduit d&s cette époque &
introduire le symbole v~ | et 3 effectuer des calculs sur ce symbole,
calculs qui n'ont &t& formalisés que plusieurs si&cles apr&s pour don-

ner naissance auk nombhres complexes, Tl n'était pas question i cette

8poque, sous peine d'8tre consid&ré comme un dangereux sorcier, de don-
ner un sens i des racines de l'Bquation x2+ 1 = 0, Vous remarquerez
Egalement que les Equations &crites ne font pas en principe intervenir

de nombres négatifs, et 1l'on doit plaindre et admirer en méme temps les




mathématiciens de ce temps 13 qui ne disposaient pas de l'outil &le-
gant consacré seulement par les &crits de DESCARTES.

Enfin, sur la lancée, mais avec un bon temps de rvetard,
FERRARI, un autre &léve de CARDAN, résout par radicaux une équation du
Le degré de la forme (8), en 1545. Méthode : gcrire 1'éguation sous la
forme :

(2 +z)2 = (a+22) x2 +bx+ (c+2?)

et obtenir un carré au second membre en annulant le discriminant qui
fournit une résolvante cubique en z. Autre méthode : chercher les peints

d'intersection des deux paraboles :

%2 = ¥y yz =ay+hbx+c

II - LE GROUPE DEFINI PAR UNE EQUATION ALGEBRIQUE

Il était naturel de chercher & résoudre par radicaux les
&quations de degré n 35, Mais trois siécles allaient passer avant
qu'ABEL et GALOIS ne démontrent 1'impossibilité de cette résolutiom
dans le cas d'uve Equation générale. Je fais une halte & cette nou-
velle &poque en essayant de dépager la motion de groupe défini par
une équation, Je commence par le plus simple des exemples, mais en

le traitant complétement avec les moyens et le langage modernes.

1. L'équation du second degré sur un corps k.

Soit X un scus-corps des nombres complexes €, par exemple :
k=1, ouk =R, ou k = g(i). On a donc
Qc ket
Considérons 1'équation du second degré i coefficients dans k :
(1) F(x) =x2+bx+c=0,b, c€k
F (X) est un polyndme du second degré de 1'anneau k(x)

Pour résoudre (1), on met le trinBme sous forme canonique

b G2
(x + E—)z - B 7 i = 0.
Posons & = b~ 4c, On obtient les racines, dans ¢
b+ v A -b - V&
@ == 2 S

Le polynfme f (X) = X2 + b X + ¢ se décompose en facteurs lindaires
sous la forme :

(3 F @ =(X-x) &E-x

et on a les relations entre les racires :

(4) x3 + %2 = —-b , x| u =¢

Tel est le calcul classique &lEmentaire. Mais on peut aller un peu plus

loin,

Le corps de décomposition K de F(x) sur k

Considérons le corps K engendré dans € par k et les racines



X1 et x5 de l'équation, K = k (x7 , X2 ) est constitud par les frac-
£ ()C], KZ)
_ g (x1, x2)
1'anneau k l§1 , Xéj tels que g (x; , x5 ) # 0. Cette dernidre con-

tions rationnelles oi f et g sont des polyndmes de

dition implique g (X; , X2) # 0, c'est-3-dire que le polynfme g (X ,
X; ) n'est pas 3 coefficients tous nuls, mais la réciproque n'est pas
vraie : le polynfme g (X; , ¥5) = X; + X + b n'est pas nul, alors

que le nombre g ( x; %p ) = x) + Xy + b est nul d'aprés (4).

Définition ! . Le corps K=k (%1 , % ) s'appelle le corps de dé-

composition du polyndme F (X) , ou de 1'&quation (1), sur k., Cette
terminologie vient de 1'8galité (3) ; on dit Egalement, par abus de

langage, corps des racines de l'@quation (1) sur k (bien que les

racines ne constituent pas & elles—-seules un corps).

Etudions ce corps K, En remplagant Xp par - x] - b, d'aprés
(4), il est clair que K = k (x; ) est entilrement engendré par x) sur
k., De plus, si 1'on pose :

(5) a=va, A

b2 - 4 ¢,
on voit imm8diatement d'aprés (2), que K = k¥ (a) est aussi engendré
par a sur k,

Deux cas peuyent se pré@senter 3

19y o=y A € k, ce qui Equivaut & 3

A = B%= 4 ¢ est un carré dans k,
ou les racines X, et ¥, appartiennent & k, ou : le polynSme F(x)
est réductible dans k, Dans ce cas, le corps de décomposition K est

égal & k,

2°) a =Y & ¢ k, ce qui &quivaut &

A= b% - 4 ¢ n'est pas un carré dans k,
ou jles racines % et Xy

ou : le polyndme F (x) est irréductible sur k.

n'appartiennent pas a k,

Dans ce cas, le corps de décomposition K comtient strictement k. On

1'appelle une extension quadratique de k.

Nous allons préciser dans ce deuxiBme cas la forme des élé~
£(a)

g (a) ¢
En remplagant a?par A d'aprés 5, on met £ sous la forme homographique
u+ v o
T+s o
a k.

ments de K, Scit § = K.

, T + s 0f# o, les coefficients u, v, r, 8 appartenant

Démontrons que la condition r + s a # o implique r - s a # o.
Cela résulte du lemme suivant.

Lemme : r+sgao équivaqut & ' r =8 =0

(r, s € kj.

En effet, supposons r+ s a = o. La condition s # o entralnerait

r - . . - -
4 = e € k, ce qui est contraire 3 1'hypothésea £ k. Il en
résulte s = o, d'oi r = o. REciproquement, ¥ = 5 = 0=x3T + S0 = O,
. . s _utva
Revenons 4 l'expression & = prarm e U + o.

On a donc en appliquant le lemme % r - 3 & , la conditionr - sa ¥ o,

qui permet de multiplier au numérateur et au dénominateur de & par



le nombre r - s @ . On obtient :
£ = (u+va) (r-sa)

r2 - g2 4

A+Bx A, BE k

Cela prouve que | et a sont deux générateurs de K considéré comme es-—

pace vectoriel sur k . Je dis que ( I,0 ) en est une base : le lemme

exprime en effet 1'indépendance linéaire de | et a sur k.

On a donc démontré le théoréme suivant :

théoréme | . Dans le cas o & k, le corps de décomposition X de 1'équa=

tion F (x) = o sur k est un espace vectoriel eur k de dimension ggale

d 2, dont une base est constitude par 1 et g .

Une autre base est constituge par 1 et Xy, ou 1 et x ou méme x, et

2’ 1
X, (cette derniére propriété &étant laissée comme exercice au lecteur).

Le groupe G défini 1'équati&n F (x) = o sur k.

Quand on a un corps K, il est toujours intéressant de d%terminer les

automorphismes, c¢'est-&-dire les bijections o qui vérifient :

Y3, ye€K o(xty) =0®) +0a(y) ,o(xy)=0(x) oy,

o (1) =1.

De plus, comme le corps de base k joue un réle important, on se limite

aux automorphismes ¢ qui laissent fixes tous les éléments.de ks
¥ec€k, o) =c.

On les appelle des k - automorphismes de X, Ils constituent évidem=

ment un groupe G pour la composition des applications.

Définition 2/ On appelle groupe de GALOIS 'de 1'équation F (x) =

¢ sur k , ou du polyndme F sur k, ou de 1'extension K du corps k,

le gfoupe multiplicatif des k — automorphismes de K, On le note :
G = Gal (F, k) = Gal (X, k)

Pour déterminer o€ G, il suffit de connaitre ¢ (a), car E= utv a,

u, v, € k donne o(E) =u + vo (a),

Mais 1'épalité o= A implique (o (a) )% = A, d'od

g (o) ==V a=1%g

La condition ¢ (&) = a implique o

I (Identité sur X).
La condition ¢ (o) = - a entrafne ¢ (u+ v o) = u —v a
qui est effectivement un k - automorphisme de K appelé automorphisme
de conjugaison ¥ . Comme on a ?rﬁ = I, le groupe G est isomorphe au
groupe cyclique d'ordre 2 constitué par :

e={1,7} , ¥t-1.
Il est clair, par exemple d'aprés (2), que ¥ échange les deux racines
x, et %, de 1'E&quation .

1 2
On a donc démontré le théoréme suivant :

‘Théoréme 2 . Ie groupe de GALOIS G d'une extension quadratiq:z K de

k est tsomorphe au groupe cyclique d'ordre 2 constitué par 15 per—

mutations sur les deux racines x, et x de 1l'équaticn : la ermuta~

2
tion tdentique ef la transposition (2, w,)

Sous—corps de K contenant k et soci-oygupes de G.

Sous-corps de K contenant k est (en particulier) un sc .-espace vecto-

riel sur k contenant un espace vectoriel de dimensio: {1'espace



k = k.l) et contenu dans un espace vectoreil de dimension 2 (1'espace
K)}. On a done nécessairement k' = k ou k' = K.
Un sous—groupe G' de G = {I, X} est évidemment, soit Vi~

-

dentitd, soit & lui-mfme.
11 en résulte le diagrvamme ci-contre.
e
i
avec les vemayques sulyantes qui Etablissent ype correspondance
binnivogue entve las sous—groupes de G et les sous-corps de K

contenant k.

G = Gal (E,k) {définition 2)
k= Fix «(K,G) ( sous corps F de K constitu@ par les &l&ments fixes

par tous les k = automnrphiémes de G. On 2 Bvidemment k & F et F # K

puisque ¥ transforme o en - o , d'oll F = k)

I = Gal (€, ¥} . car G ne laissze pas fixe a

K = Fix (¥, 1) Evident

Exemples

Equation Corps k Racines Corps K - Groupe G
¥ - 2x~1=0 ) 1+ YT | 0 (VD) z/,
x2 -~ 2% -19 =0 @ 1+2/5| 6 (/% "
«2 & 1 = 0 q + 1 8 ( i) n

%2 o+ 1 =0 R e R {3) =¢C "

Dans 1'exemple d'une extension guadratique, le diagramme de la figure
3 est plutbt sguelettique., Mais 1a définition 1 du corps de décompo-
sition K d'une équation ¥ (%) = o sur k, et la définition 2 d'un

groupe de GALOIS de F sur k, se généralisent &videmment & un polyndme

F quelconque. Voici deux exemples supplémentaires qui donnent lieu
4 une varigté plus grande,

2, Deuxiéme exemple : L’é&guation (x%+ 1) (%2 - 2) = 0 sur §

I o B ¥ Je donne seulement les ré@sultsts, en remvovant & G. BIRKHOFF et
&. MACLANE EEIﬂ page 304, pour plus de d&tails,
. I o B8y K=9q (i, JE) est un espace vectoriel de dimension 4 sur (, de base
* o Ty B (1, i, /i; ifE} sur Q.
B B : L & €=(I,a p¥) est isomorphe auﬁgfoﬂpe'dE'Klein doﬁf ia taﬁle de
§ ¥ a I : . -

miltiplication est ci-contre.
we diagramme des sous—corps de K contenant ( et des sous—groupes de

G est le suiwvant :

avec la correspondance binanlvoque ? Qgi) Q%/ﬁ) 0(i¥2) %
G A B I
qui est ®lle que ¢ A = Gal (¥, @ (1)), @ (i) = Fix (K, &) ete...



3. Troisléme exemple . Liéquation x* - 3 = 0 sur Q

(vois G. BIRKHOFF et S. MACLANE 2 , page 306)

. b . . .
K= Q (i, ¥3) est un espace vectoriel de dimension 8 sur G, de base
P . . i
(],u,az,u3, EE T ia? . iad ) avec a= v 3,

G est un groupe non abBlien d'ordre 8 isomorphe au groupe diédral

du carré, c'est-i-dire au groupe des isométries du plan qui laissent
globalement invariants les sommets d'un carré. (On pourra trouver
une petite 8tude de ce groupe dans [7]chap., 9, exercice 10),

De plus, il existe une correspondance binnivoque décroissantg entre
les sous-—corps de K contenant Q et les sous-—groupes de G par les ap=
plications réciproques

G' = G(k') = Gal (K, k'), k' = Fix (K, ")

4, les exemples précédents suffisent, je crois, pour donner une
idée assez claire des résultats obtenus par GALOIS dans la théorie
des équations algébriques. Les méthodes qu'il utilisait ne sont pas
tout & faig celles qul sont présentées ici. Mails c'est bien & 1lui,
comme le dit E, PICARD dans sa préface aux oceuvres de GALOLS publiées
par 1'Académie en I897 et rééditées en 195! [:6] , que''la gloire &tait
réservée de montrer que, pour toute E€quation algébrique, il existe

un groupe dans lequel se vefl@tent les propriétés essentielles de
1'&quation”, Il a pu en outre démontrer, ce qui &tait le but de ses
recherches, qu'une 8quation est résoluble par radicaux si et seule-
ment si le groupe associé est résoluble (je m'adresse ici & ceux qui
connaissent ces notions de pure théorie des groupes ; les autres
peuvent faire confiance & GALOIS pour la beauté, la profondeur en
méme temps que la simplicité@ des propriétés mises en jeu). Enfin,

L
en prouvant que le groupe associé 3 1'Equation générale de degré

n'' est le gproupe symétrique J 4, et que celui-ci n'est pas résolu-

ble pour n7% 5, il donnait une réponse définitive pour 1'impossibilité
de la ré@solution par radicaux d'une Equation générale de degré 7 5.

J'ajoute encore que la vie de ce génie est aussi intéres-
sante que son oceuvre. (Voir par exemple une conférence que j'avais
faite a Poitiers en 1963 et gui est publiée dans le bulletin de
1'a.p.M, (81 )

QUELQUES MOTS SUR LA CONJECTURE DE A, WEIL RESOLUE PAR P, DELIGNE

Avangons d'un siécle et demi pour arriver aux temps mo-—
dernes et dire quelques mots sur la conjecture de A, WEIL réSoldé;par
P. DELIGNE (exposé de JP, SERRE au séminaire Bourbaki, février 1974).
I1 s'agit encore, comme vous allez voir, de théorie des &quations al-
briques .

Maintenant on consid2re une &quation algébrique sur un
corps fini, par exemple le corps Fp = Z/pz qui a p Eléments ( p pre=~
mier) ou plus généralement le corps Fq qui a q = p éléments ; on
cherche le nombre des solutions ( Xiyeans xn} dans Fqn de 1'&quation :
)y f (x], SRS xn} =0
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o f &y vee s X)) e Fq [Xps vee s K&j est un polynbme 2 coef-
ficients dans F_, Des vecherches avaient dé&ji &té& faites par GAUSS
etJACdBI au sidcle dernier pour le nombre de solutions de certaines
congruences modulo p, au cours de ce siBcle, par les arithméticiens
HARDY et LITTLEWOOD (1922), DAVENPORT et HASSE (I935), Mais ce sont
les méthodes de la gEométrie algébrique introduites par A. WEIL

(1949) [o] qui ont owvert des voies nouvelles dans ce domaine. Elles

‘consistent 3 considérer 1'équation (1) comme cellie d'une variété al-

gébrique dans 1'espace affine sur le corps Fq (ou plutdt sur sa cld-

-

ture algébrique f;), et i chercher les points de cette variété appar-

- W e - .
‘tenant & Fq . WEIL et quelcues autres ont trouvé des résultats par—

tiels et proposé des conjectures qui n‘ont pu Stre démontrées que
récemnent par P, DELIGNE [ 5], DELIGNE arrive & traiter non seule-
ment le cas d'une Equation, mais celul d'up syst®me d'Eéquations qui
définissent dans 1'espace projectif une vari&té alpgé€brique V inter-
section compléte sans point singuliexr de dimension, La formule donnée
pour le nombre N des points dont les coordonnées appartiennent 2 Fq
sur cette variété V, formule qu'il n'est pas question de reproduire
ici, a pour conséquence 1'inégalité suivante :
Nw CTsq+ N Bqdfz
oli B est un nombre de Betti définissant un caractére géométrique de la
variété.
Pour terminer sur un exemple infiniment plus simple, omn
peut chercher les points dans F . du "cercle"
x 2 + x 2 =1 !
1 2
(cf, E, ARTIN, alpdbre gdométrique, [ 1] ou, plus modestement, LESIEUR
Géométrie, Cours de C3 Sciences math&matiques, Orsay). Lorsque p # 2,
Qu en trouve q - 4 dans le cas hyperbolique ( c'est-&-dire lorsque
(-1) est un carré dans Fq, ce qui équivaut 3 g =4 (mod. 4)
et g + | dans le cas elliptique (c'est-&=dire lorsque (-1) n'est pas

un carré dans Fq, ce qui Egquivaut 3 q = 3 (mod. &)
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