\mathfrak{P} istoire des symboles. Le saviez-vous ? Proposée par Jean-Paul Guichard (X) π

Le premier à avoir utilisé une seule lettre pour désigner le rapport de la circonférence du cercle à son diamètre est le mathématicien bavarois Sturm, en 1689, mais il utilise la lettre e. Avant Sturm, mais aussi longtemps après, ce rapport est désigné par deux lettres :

- la notation $\frac{\pi}{\delta}$ de Oughtred (1652) qui utilise la lettre grecque π , première lettre de périmètre ($\pi\epsilon\rho\iota\mu\epsilon\tau\rho\sigma\nu$) en grec ; cette notation se transforme en $\pi.\delta$ lorsque ce rapport est utilisé dans une proportion (cf. l'épisode VII), ce qui est l'usage le plus fréquent. La notation est adoptée par Barrow, Gregory, Varignon...
- la notation $\frac{c}{r}$ de De Moivre (1698) fait, elle, référence au rayon et à la longueur du demi cercle.

La lettre π pour désigner ce rapport apparaît chez William Jones en 1706 ("A New Introduction to Mathematics"). On peut lire sous sa plume : 3.14159,&c. = π , d = c + π et c = d x π . Puis elle apparaît chez Euler à partir de 1737 pour représenter 3,1415... Puis à partir de 1740 chez Jean Bernoulli, de 1742 chez Nicolas Bernoulli, de 1753 chez Daniel Bernoulli, de 1770 chez Vandermonde, de 1782 chez Laplace... Mais l'adoption est lente : en 1782, par exemple, l'Italien Ferroni, utilise la lettre

P. Il est à noter, qu'avant 1737, Euler utilisait p pour π et g pour $\frac{\pi}{2}$, qu'il utilisait aussi, dans sa correspondance, comme le faisait Jean Bernoulli, la lettre c pour π .

Conjointement π désigne d'autres grandeurs. Par exemple cos $u = \pi$ chez Kästner (1758), et chez d'autres mathématiciens on

trouve $\pi = \sqrt{a}$, $\pi = \sqrt[3]{-1}$, $\pi = \widehat{APM}...$ désigne aussi un polygone chez Karsten 1767), et nous avons vu dans l'épisode VII qu'Hérigone utilise π pour noter le rapport de deux grandeurs. Au milieu du 18^e siècle, les mathématiciens français utilisent π à divers usages en mécanique et en astronomie. Carnot, dans sa "Géométrie de position" (1803), utilise π pour la longueur du quart de cercle de rayon 1 et écrit ainsi : sin (π ±a) = + cosa.

Le premier manuel à utiliser π = 3,14159...est celui de Legendre : "Eléments de Géométrie" (1794). La suite nous la connaissons...

Note : A propos de π je vous conseille la lecture de l'excellent ouvrage de Jean-Paul Delahaye qui vient de sortir Chez Belin, dans la collection Bibliothèque Pour la Science : "Le fascinant nombre π ".