GÉNÉRATION DE NOMBRES ALÉATOIRES DISTRIBUÉS NORMALEMENT

Voici une petite astuce pour générer aléatoirement des nombres distribués suivant une loi normale $\mathcal{M}(\mu, \sigma)$, à condition de posséder une calculette possédant une fonction « random » (génération de nombres aléatoires distribués uniformément sur [0; 1].

- On calcule avec cette fonction « random » deux nombres aléatoires x_1 et x_2 de [0; 1[
- On calcule $\cos(2\pi x_1)$ et $\sqrt{-2\ln x_2}$, et leur produit $p = x_1 \times x_2$
- Le nombre cherché est $x = \mu + p.\sigma$

Cette astuce a été découverte en « dépiégeant » les microprogrammes internes d'une TI 59.

Programme pour la Casio fx180P:

$RAN\# \times \pi \times 2 = cos \times (RA)$	N# In × 2 +/-)	√ × Kout 2 +
Kout 1 =		

(21 pas; les touches bordées d'un double trait sont obtenues avec INV).

Exécution sur 180P : se mettre en mode d'exécution : MODE

mettre μ en mémoire 1 : <val. de $\mu \!\!>\!\! \overline{\text{Kin}}$ [1]

mettre σ en mémoire 2 : <val. de σ > Kin 2

utiliser les radians : MODE 5

lancer l'exécution di programme : P1

relancer par P1 à chaque arrêt

On obtient une suite de nombres distribués suivant $\mathcal{N}(\mu, \sigma)$.

PROBLEME

Montrer pourquoi, en prenant des nombres aléatoires x_1 et x_2 distribués uniformément sur [0; 1[, les nombres $x = \mu + \cos(2\pi x_1) \times \sqrt{-2\ln x_2} \times \sigma$ donnent une si bonne approximation de la distribution normale $\mathcal{N}(\mu, \sigma)$?

C'est un problème « ouvert » (!): <u>personne</u>, au comité de rédaction du Petit Vert, n'en connaît la réponse.

Samedi 28 novembre

14 h : A.G.

16 h30 : 20^{ème} anniversaire de la Régionale

