PROBLÈME N°151 PARTAGEONS (PREMIÈRE PARTIE)

Proposé par Philippe Févotte*

On note Γ le cercle circonscrit à un triangle ABC, et Γ_0 l'arc de Γ , d'extrémités A et C et ne contenant pas le point B.

- 1. Comment choisir un point M sur Γ_0 tel que l'aire du quadrilatère ABCM soit maximale ?
- 2. Comment choisir un point D sur Γ_0 et un point E sur [BC], tels que l'aire du triangle ABE soit égale à l'aire du quadrilatère AECD ?
- * J'ai trouvé, écrit sous une autre forme, l'énoncé de cet exercice sur internet, il y a quelques années. Je n'ai pas conservé les références ; toutes mes excuses auprès de l'auteur.

SOLUTION DU PROBLÈME N°150 : RANDONNONS

Proposé par Philippe Févotte

Un randonneur parcourt un chemin et revient sur ses pas jusqu'à son point de départ. Le parcours a une durée d'une heure.

Montrer que pour toute durée, exprimée en heure, d inférieure ou égale à 1, il existe un instant t_0 , tel que la position du marcheur soit la même en t_0 et $t_0 + d$.

Solution

Une solution a été proposée par Jacques Choné.

Soit f la fonction qui à tout $t \in [0,1]$ associe la distance séparant, à l'instant t, le randonneur de son point de départ. On modélise la situation en considérant la fonction f comme continue et positive sur [0,1] avec f(0) = 0 et f(1) = 0.

Soit g la fonction définie sur [0,1-d] par g(t)=f(t+d)-f(t). La fonction g est continue sur [0,1-d].

On a $g(0) = f(d) - f(0) = f(d) \ge 0$ et $g(1-d) = f(1) - f(1-d) = -f(1-d) \le 0$.

Il existe donc une valeur $t_0 \in [0,1]$ telle que $(t_0) = 0$, soit $f(t_0) = f(t_0 + d)$.

Jacques Choné introduit les mêmes fonctions, et arrive au même résultat en utilisant un raisonnement par l'absurde. Il fait également remarquer que cet exercice est une évocation du « théorème des cordes horizontales ».