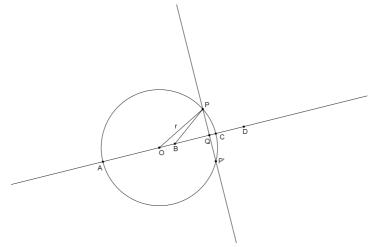
LE SOPHISME DU TRIMESTRE (n° 130)

La définition du dictionnaire Robert est la suivante : « Argument, raisonnement faux malgré une apparence de vérité ». Pour étudier ces sophismes, il est recommandé de faire les figures « à main levée », même si elles ne sont pas tout a fait exactes. L'usage de logiciels de géométrie dynamique est absolument proscrit. Le Petit Vert vous proposera régulièrement des sophismes, comme celui qui suit. Envoyez toute nouvelle proposition à jacverdier@orange.fr.

Théorème : Tout point à l'intérieur d'une circonférence se trouve sur cette circonférence.



Soit B un point intérieur à une circonférence de centre O et AC le diamètre contenant le point B (B entre O et C).

Soit D le point qui divise AC dans le même rapport arithmétique que B ; c'est à dire que $\frac{BA}{BC} = \frac{DA}{DC}$

Soit Q le milieu de BD.

La médiatrice de BD coupe le cercle en P et P'.

Soit r le rayon du cercle.

On a AB = r + OB, BC = r - OB, AD = OD + r et DC = OD - r.

$$\mbox{La proportion} \quad \frac{BA}{BC} = \frac{DA}{DC} \quad \mbox{s'\'ecrit alors}: \quad \frac{r + OB}{r - OB} = \frac{OD + r}{OD - r} \ \, (1)$$

Le « produit en croix » donne (r + OB)(OD - R) = (r - OB)(OD + r) (2),

soit
$$r.OD - r^2 + OB.OD - r.OB = r.OD - OB.OD + r^2 - r.OB$$
, soit 2 OB.OD = 2 r^2 , soit OB.OD = r^2 (3).

On constate sur la figure que OD = OQ + QD (4) et que OB = OQ - BQ (5).

Mais comme Q est le milieu de BD, on a BQ = QD, d'où (4) devient : OD = OQ + BQ (6).

D'où OB.OD = $(OQ - BQ)(OQ + BQ) = OQ^2 - BQ^2$.

Et comme OB.OD = r^2 d'après (3), il vient OQ² - BQ² = r^2 (7).

Appliquons maintenant le théorème de Pythagore au triangle rectangle $OQP : OP^2 = OQ^2 + QP^2$ (8), ainsi qu'au triangle $BQP : BP^2 = BQ^2 + QP^2$ (9).

En soustrayant (9) de (8), il vient $OP^2 - BP^2 = OQ^2 - BQ^2$ (10).

Et comme $OP = r, r^2 - BP^2 = OQ^2 - BQ^2$ (11).

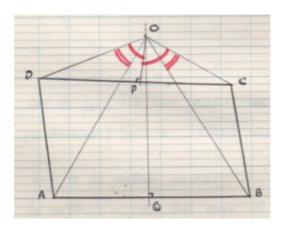
Or on avait, dans (7), $r^2 = OQ^2 - BQ^2$. D'où $r^2 - BP^2 = r^2$, soit $BP^2 = 0$, donc BP = 0.

En conclusion, P coïncide avec B. C'est à dire que B appartient à la circonférence ; le théorème est démontré.

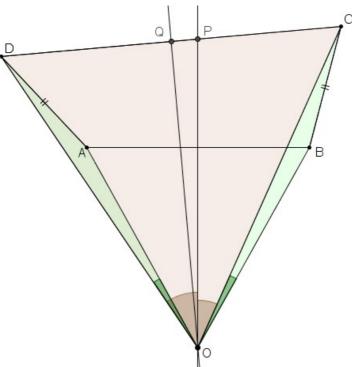
Ce sophisme est extrait d'un ouvrage de <u>Paul Gustav Stäckel</u>, « Archiv der Mathematick und Physik », publié en 1907.

SOLUTION DU SOPHISME n°129

Le sophisme était le suivant : « Si deux côtés opposés d'un quadrilatère sont égaux, les deux autres côtés sont parallèles ». La figure proposée (ci-dessous) incitait à conclure ainsi.



Voici une figure correcte, réalisée avec GeoGebra ; on y constate les côtés « inégaux » ne sont absolument pas parallèles !



Les triangles ADO et BCO sont bien égaux, de même que ODQ et OCQ. Mais les segments OD et OC se situent l'un à l'extérieur du triangle ODC et l'autre à l'intérieur : d'un côté il faut soustraire les angles, de l'autre il faut les ajouter.

Le raisonnement proposé dans le Petit Vert n°129 (des additions des deux côtés) était donc faux. En effet, la figure (incorrecte, réalisée à la main pour vous induire en erreur) était fausse!