Solution du problème n° 102

proposé par Jacques CHONÉ

- Montrer que l'application f de \mathbb{N}^2 dans \mathbb{N} définie par $f(a,b) = \frac{(a+b)(a+b+1)}{2} + a$ est bijective. Exprimer, pour $x \in \mathbb{N}$, $f^{-1}(x)$ (et en particulier $f^{-1}(2010)$).
- Donner de même une application bijective f_3 de \mathbb{N}^2 dans \mathbb{N} en précisant $f_{3}^{-1}(x)$ (et en particulier $f_{3}^{-1}(2010)$).
- Généraliser encore.

Solution de l'auteur

1. Numérotons les éléments de IN² suivant leur rang sur le « diagonales nord-est vers sud-ouest » (✓) successives comme dans le tableau ci-contre.

Soit g(a,b) le numéro de (a,b) : on a par exemple q(3,1) = 13. On a, pour tout $h \in \mathbb{N}^2$

:
$$g(0,b) = 1 + 2 + ... + b = \frac{b(b+1)}{2} = \begin{pmatrix} b+1 \\ 2 \end{pmatrix} = t_b$$

(b-ième nombre triangulaire).

 $a \in ||1,b||$, g(a,b) = g(a-1,b+1)+1Or. pour par récurrence g(a,b) = g(0,b+a) + a = f(a,b).Conclusion: a = f et f est donc bijective.

a∖ b 0	0	1	2	3	4	5
0	0	1	3	6	1 0	1 5
1	2	4	7	1 1	1 6	
2	5	8	1 2	1 7		
3	9	1 3	2 1 8			
4	1 4	1 9				
5	4 2 0					

Notons que a+b est le numéro (à partir de 0) de la diagonale contenant (a.b).

Soit $x \in \mathbb{N}$ et $(a,b) = f^{-1}(x)$ c'est-à-dire la position de x dans le tableau. La valeur n = a + b est le plus grand nombre entier tel que $\frac{n(n+1)}{2} \le x$, c'est-à-dire la partie entière de la solution de l'équation d'inconnue X: $X^2 + X - 2x = 0$; donc $n = a + b = \langle x \rangle$ en notant $\langle x \rangle = \left| \frac{-1 + \sqrt{1 + 8x}}{2} \right|$.

On en déduit
$$a = x - \left(\frac{\langle x \rangle + 1}{2} \right)$$
 et $b = \langle x \rangle - a = \langle x \rangle + \left(\frac{\langle x \rangle + 1}{2} \right) - x = \frac{\langle x \rangle \left(\langle x \rangle + 3 \right)}{2} - x$;

d'où
$$f^{-1}(x) = \left(x - \left(\frac{\langle x \rangle + 1}{2}\right), \frac{\langle x \rangle (\langle x \rangle + 3)}{2} - x\right)$$

Par exemple
$$\langle 2010 \rangle = \left| \frac{1 + \sqrt{16081}}{2} \right| = 62$$
; $\binom{63}{2} = 1953$; $\frac{63 \cdot 65}{2} = 2015$: $f^{-1}(2010 == (1010 - 1953, 2015 - 2010)$; Vérification: $f(37,5) = \binom{63}{2} + 57 = 2010$.

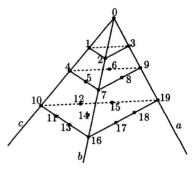
2. On notera dorénavant f_2 l'application étudiée au 1. On numérote maintenant les

éléments (a, b, c) de IN³ suivant leur rang dans les plans successifs a + b + c = n. $n \in \mathbb{N}$, puis dans chacun de ces plans de la même façon qu'au §1 : voir figure ci-contre. Soit $f_3(a,b,c)$ le rang de (a,b,c). le nombre d'éléments de (a,b,c) tels que a+b+c < n

est
$$f_3(0, 0, n) = \sum_{k=1}^{n} t_k = \sum_{k=1}^{n} \binom{k+1}{2} = \binom{n+2}{3}$$
,

n-ième nombre tétraédrique.

déduit aue $f_3(a,b,c) = f_2(0,0,a+b+c) + f_2(a,b)$ est une



application bijective de N³ dans N et peut être définie par :

$$f_3(a,b,c) = \begin{pmatrix} a+b+c+2\\3 \end{pmatrix} + \begin{pmatrix} a+b+1\\2 \end{pmatrix} + \begin{pmatrix} a\\1 \end{pmatrix}$$

Soit $x \in \mathbb{N}$. Pour déterminer $f_3^{-1}(x) = (a,b,c)$, comme au §1, on détermine d'abord n = a + b + c comme la partie entière de la solution réelle de l'équation en X : (X+2)(X+1)X = 6x; on obtient avec la formule classique a+b+c=n

$$n = \left| \frac{1}{3} \sqrt[3]{91x + 3\sqrt{-3 + 729x^2}} + \frac{1}{\sqrt[3]{91x + 3\sqrt{-3 + 729x^2}}} - 1 \right| .$$

On détermine ensuite m = a+b comme la partie entière de la solution positive de l'équation en $X: X(X + 1) = 2 \left| x - \left| \frac{n+2}{2} \right| \right|$, etc.

Exemple: déterminons $f_3^{-1}(2010) = (a,b,c)$. La solution réelle de (X+2) (X+1)X = 6.2010 est 21,94... donc a+b+c=21; la solution réelle positive de

l'équation
$$X(Y+1) = 2\left(2010 - {23 \choose 3}\right)$$
 est 21,36...; donc $a+b=21$; et on a

$$a = 2010 - {23 \choose 3} - {22 \choose 2} = 8$$
. On en déduite que $b = 21 - 8 = 13$ et $c = 21 - 13 - 8 = 0$; donc $f_3^{-1}(2010) = (8, 13, 0)$.

donc
$$f_3^{-1}(2010) = (8, 13, 0)$$

On vérifie que $f_3(8,13,0) = \binom{13}{3} + \binom{22}{2} + \binom{8}{1} = 2010$.

3. On généralise en notant que pour $n \in \mathbb{N}^*$, l'application f_n de \mathbb{N}^n dans \mathbb{N} définie par:

$$f_n(a_1,...,a_n) = \begin{pmatrix} a_1 + ... + a_n + n - 1 \\ n \end{pmatrix} + \begin{pmatrix} a_1 + ... + a_{i-n-1} + n - 2 \\ n - 1 \end{pmatrix} + ... + \begin{pmatrix} a_1 \\ 1 \end{pmatrix}$$

$$= \sum_{k=1}^n \begin{pmatrix} k - 1 + \sum_{i=1}^k a_i \\ k \end{pmatrix}$$
 est bijective

Par la même méthode que ci-dessus, on trouve à l'aide d'un logiciel de calcul (voir ci-dessous en Maple), par exemple que $f_4^{-1}(2010) = (4, 2, 3, 4)$

```
>floor(evalf(solve(x*(x+1)*(x+2)*(x+3)=24*2010))[2]);
                               13
> floor(evalf(solve(x*(x+1)*(x+2)=6*(2010-binomial(16,4))))
[1]);
                                9
>floor(evalf(solve(x*(x+1)=2*(2010-binomial(16,4)-
binomial(11,3))))[1]);
                                6
> 2010-binomial(16,4)-binomial(11,3)-binomial(7,2);
> solve({a+b+c+d=13,a+b+c=9,a+b=6,a=4});
                  \{a = 4, d = 4, c - 3, b = 2\}
>f(4) := (a,b,c,d) - binomial(a+b+c+d+3,4) + binomial(a+b+c+2,3)
+binomial(a+b+1,2)+binomial(a,1);
>f(4)(4,2,3,4);
                              2010
```

Problème du trimestre n°103

(proposé par Loïc Terrier)

Il y a quelque temps, j'ai reçu un diaporama par mail, qui contenait toutes sortes de questions plus ou moins mathématiques, dont celle-ci :

Deux enfants et un âne font une promenade. Le soir tombe, ils décident de rentrer chez eux. C'est à 6 km. La fille marche à 6 km/h, le garçon à 8 km/h et l'âne à 12 km/h. L'âne peut porter un enfant. Quel est le temps minimum nécessaire pour qu'ils rentrent chez eux ?

- La réponse donnée en solution dans le diaporama était 45 minutes... Pouvez-vous proposer mieux, en prêtant à l'âne une certaine intelligence ?
- La variante suivante peut être très difficile, ou pas, selon la méthode utilisée!

Cette fois, il y a Albert, Bettie et Celestin, toujours avec leur âne. Albert va à 5 km/h seul, 9 km/h sur l'âne. Bettie va à 6 km/h seule, 11 km/h sur l'âne. Celestin va à 7 km/h seul, 10 km/h sur l'âne.

L'âne seul va à 12 km/h. Ils ont 7 km à parcourir...

Envoyez le plus rapidement possible vos solutions et/ou **toute proposition de nouveau problème** à Loïc TERRIER, 21 rue Amédée Lasolgne, 57130 ARS-SUR-MOSELLE, de préférence <u>par mail.</u>

retour sommaire