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L’ÉQUATION À LA CROISÉE DES MATHÉMATIQUES ET DE LA CHIMIE  

|  HENRY VALÉRIE, BOU ABDO ABIR, DUBUSSY CHRISTOPHE ET DEHON JÉRÉMY 

Résumé | Dans cette contribution, nous nous intéressons aux liens entre l’équation en mathématiques et l’équation 
chimique. Nous explorons ces liens du point de vue du savoir savant (Chevallard, La transposition 
didactique. Du savoir savant au savoir enseigné, 1985), historiquement et épistémologiquement, et du 
savoir à enseigner (ibidem).   

Mots-clés : équation, interdisciplinarité, mathématiques, chimie 

Abstract | In this contribution, we focus on the potential links between the equation in mathematics and the 
chemical equation. We explore these links first in the scholarly knowledge (Chevallard, La transposition 
didactique. Du savoir savant au savoir enseigné, 1985), historically and epistemologically, and then in the 
knowledge to be taught (ibidem). 

Keywords : equation, interdisciplinarity, mathematics, chemistry 

I. INTRODUCTION 

En mathématiques, l’équation est intimement liée à la résolution de problèmes (Polya, 1965) et ce, 
dans tous les domaines des mathématiques. Dans le curriculum belge, elle est introduite dès le début 
de l’enseignement secondaire et son étude se poursuit tout au long du curriculum. 

Au cours de chimie, les élèves sont également confrontés à un objet appelé équation mais il s’agit ici 
d’une équation chimique qui modélise une transformation chimique et qui, bien qu’ayant certaines 
similitudes avec l’objet en mathématiques, s’en distingue par de nombreux aspects. Cependant, 
l’équation chimique telle que proposée par Lavoisier vise aussi à agir comme un outil de résolution de 
problèmes, plus particulièrement de détermination de masses inconnues : :  

En effet, comme je l'ai déjà indiqué au commencement de cet article, je puis considérer les matières mises à 
fermenter et le résultat obtenu après la fermentation comme une équation algébrique ; et, en supposant 
successivement chacun des éléments de cette équation inconnus, j'en puis tirer une valeur et rectifier ainsi 
l'expérience par le calcul, et le calcul par l'expérience. (Lavoisier, 1789, p. 108) 

Dans les deux cas, l’équation est donc utilisée pour modéliser un phénomène et comme outil de 
résolution de problèmes ; mais d’où vient cette dénomination commune ? Quels liens ces deux objets 
ont-ils entretenus au fil de l’histoire ? Comment sont traitées ces similitudes et différences dans 
l’enseignement secondaire, en mathématiques et en chimie ? Dans quelle mesure les élèves peuvent-ils 
investir, en chimie, leurs connaissances sur l’équation en mathématiques ? Dans une perspective 
interdisciplinaire, quelles stratégies didactiques pourraient permettre aux élèves d’établir des liens 
pertinents entre équation mathématique et équation chimique ? C’est à toutes ces questions que nous 
tentons d’apporter des éléments de réponse dans le travail en cours.  

Dans cet article, en suivant les étapes de la transposition didactique (Chevallard, 1985), nous 
explorerons tout d’abord le savoir savant : d’une part au travers de quelques éléments historiques et, 
d’autre part, en proposant une formalisation de la pondération des équations chimiques. Ensuite, nous 
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nous intéresserons au savoir à enseigner par l’analyse de trois manuels de chimie utilisés en Belgique 
francophone.  

II. CONTEXTE HISTORIQUE 

1. Construction du savoir équation en mathématiques 

Dans sa thèse consacrée à la constitution de l'écriture symbolique mathématique, Serfati (1997) 
décrit l’évolution historique de l'écriture en mathématiques qui de purement rhétorique, c'est-à-dire 
inscrite dans la langue commune, où tout se dit et se calcule en mots [a progressivement convergé vers] 
une écriture symbolique où le texte est presque réduit à une concaténation de signes (lettres, chiffres, 
ou signes figurés) (Serfati, 1997, p. 5). 

C’est Diophante d'Alexandrie (IIe-IIIe siècle après J.-C.), savant grec considéré comme le père de 
l'arithmétique, qui fut le premier à utiliser les représentations symboliques. Selon Serfati (1998), les 
représentations de Diophante forment un système pré-symbolique (Tableau 1). Plus tard, Bhaskara 
(1114-1185), mathématicien indien, introduisit lui aussi un langage symbolique pour représenter 
l'inconnue et les puissances. Les représentations de Diophante et de Bhaskara n'ont pas le statut 
d'équation, l'égalité n'y étant pas présente.  

C’est dans le monde arabe que les premières équations et leurs méthodes de résolutions sont écrites 
rhétoriquement, dès le 9e siècle après J.-C. Le savant perse Al Khawarizmi (780-850) y utilise des termes 
de la langue naturelle (l’arabe ici) car son travail vise à résoudre des problèmes de la vie quotidienne 
de ses concitoyens (tableau 1).  

Les premiers pas de l'écriture des équations en langue symbolique sont apparus avec Viète (1540-
1603). Il amorce le troisième changement dans l'écriture des équations, passant de la langue naturelle 
d'Al Khawarizmi à la langue symbolique de l’algèbre de Descartes. Le langage de Viète est un mélange 
de la langue naturelle et de la langue symbolique. L'écriture complète d'une équation en langue 
symbolique est attribuée à Descartes (1596-1650). Le symbole actuel de l'égalité (deux tirets parallèles 
« = ») est attribué à Recorde (1557) (Serfati, 1998, p. 275).  

Le tableau ci-dessous (Tableau 1) illustre les différentes écritures de la même équation 3𝑥2 +
10𝑥 = 39 au fil du temps. Les exemples de la première ligne représentent l'expression 3𝑥2 + 10𝑥 −
39. 

Tableau 1 – Evolution de l’écriture des équations au fil du temps 
Type de représentation Exemple 

Représentation pré-symbolique Diophante :      Δyγζ    λθ (Radford, 1991) 

Bhaskara : y𝑎̅v𝑎̅ 3 y𝑎̅ 10 r𝑢̅ 39̇ (Patte, 2006) 

Langue naturelle spécialisée1 Al Khawarizmi : Trois carrées et dix racines sont égaux à trente-
neuf dirhams 

Langue symbolique Viète: 3 in A quad + 10 in A æquatur 39 

Descartes : 3. 𝑥2 + 10. 𝑥 ∝ 39  

 

 
1 La langue naturelle spécialisée peut être définie comme « l’usage d’une langue naturelle pour rendre compte 

techniquement de connaissances spécialisées » (Lerat, 1994, p. 21). 
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On observe donc, au fil des époques et des lieux, la construction et l’usage d’une succession de 
langages pour représenter l’équation mathématique, celle-ci n’atteignant sa forme actuelle qu’au XIVe 
siècle.  

Intéressons-nous maintenant à l’évolution de la représentation d’une transformation chimique sous 
forme d’équation.  

2. Évolution historique de l’équation chimique 

Les premières représentations des transformations chimiques remontent aux alchimistes, qui les ont 
dépeintes librement en superposant et juxtaposant des images d'éléments chimiques, appelées icônes 
alchimiques (Edeline, 2009). Au XVIIe siècle, une nouvelle forme de représentation apparaît en lien 
avec l'affinité chimique. Les réactions sont représentées par un schéma qui explique le déplacement 
des éléments. À cette époque, la flèche symbolise le déplacement des éléments en fonction de leur 
ordre d'affinité. Ces diverses représentations forment des schémas réactionnels constitués de 
symboles non-standardisés.     

Au XVIIIe siècle, Lavoisier (1743-1794) fait la découverte importante que la masse ne change pas 
avant et après l’opération que constitue une réaction chimique. Cette conservation de la masse implique 
donc, selon Lavoisier, une égalité ou équation :  

Rien ne se crée, ni dans les opérations de l’art, ni dans celles de la nature, et l’on peut poser en principe que dans 
toute opération, il y a une égale quantité de matière avant et après l’opération, que la qualité et la quantité des 
principes est la même, et qu’il n’y a que des changements, des modifications. C’est sur ce principe qu’est fondé tout 
l’art de faire des expériences en chimie. On est obligé de supposer dans toutes une véritable égalité ou équation 
entre les principes du corps qu’on examine et ceux qu’on en retire par l’analyse. (Lavoisier, 1789, p. 141) 

Une nouvelle manière de représenter les réactions et les transformations apparaît alors : l'équation 
chimique écrite en langue naturelle spécialisée avec les symboles « + » et « = ». La première équation 
chimique nominative (c’est à dire, la fermentation du raisin en alcool et gaz carbonique) est écrite dans 
le Traité élémentaire de chimie (Lavoisier, 1789), en langue naturelle spécialisée et en langue 
symbolique mathématique :   

moût de raisin = acide chlorydrique + alkool 

En empruntant le terme équation et les symboles « + » et « = » aux mathématiques, Lavoisier tente 
d'introduire la rigueur du calcul mathématique dans la résolution de problèmes en chimie. 

L'écriture symbolique de l'équation chimique apparaît au XIXe siècle. Après les tentatives de 
Dalton, Berzelius propose en 1813 de représenter les réactions chimiques en une langue symbolique 
simple. Les éléments chimiques sont représentés par des lettres (en général, la première ou les deux 
premières lettres du mot latin de ces éléments). Berzelius utilise largement le langage mathématique, il 
recourt à de nombreux symboles et écritures mathématiques dans les équations chimiques. Ainsi, le 
chiffre, en haut à droite d’un élément, indique le volume d'un composé de premier ordre (comme 
CuO²). Cette utilisation de l'exposant, typique des mathématiques, sera abandonnée pour un 
positionnement en indice au cours du XIXe siècle. Le signe « + » est également utilisé par Berzelius 
dans le cas des composés de deuxième ordre, vus comme des combinaisons de deux corps (un 
électronégatif et un électropositif), en vertu de la théorie de la dualité électrostatique (Berzelius, 1813). 
Selon Dehon (2018), les parenthèses, utilisées pour circonscrire les corps composés de deuxième ordre, 
sont des emprunts au système symbolique mathématique renforçant l'aspect algébrique de la formule 
chimique. Le signe « = », initié par Lavoisier (1789), continue à être utilisé par Berzelius. C’est à 
l'époque du développement de la chimie organique, au cours du XIXe siècle, que le signe « = » sera 
graduellement remplacé par une flèche (→) symbolisant la réaction. 
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Après le repositionnement de l'exposant en indice et la suppression des parenthèses dans les 
formules chimiques, le remplacement du signe « = » par la flèche vient confirmer la volonté des 
chimistes d'éloigner l'écriture de l'équation chimique de l'écriture des équations mathématiques 
(Dehon, 2018). 

On observe donc, comme pour l’équation mathématique, que l’évolution de l’équation chimique 
est marquée par une succession de langages, culminant par la construction d’une langue symbolique 
chimique contenant des emprunts à la langue symbolique mathématique.  

3. Conclusion 

Nous retiendrons de cette analyse que l’égalité dans l’équation chimique présente une signification 
épistémologique claire : celle de la conservation de la masse. Par la suite, le symbole « = » a été remplacé 
par la flèche « → » pour marquer l’idée de transformation, et masquer volontairement le caractère 
mathématique de l’équation chimique, comme le défendent Barlet et Plouin : La flèche signifie simplement 
qu’il y a transformation des réactifs vers les produits. Il n’y a pas, dans la transformation, égalité mais conservation des 
masses, des atomes et des charges électriques (Barlet et Plouin, 1994).  

Suite à ces constats, on peut légitimement poser qu’il existe un intérêt didactique à discuter, avec les 
élèves, de l’import de symboles mathématiques (+, =, coefficient, exposant) pour modéliser une 
réaction chimique ; et, singulièrement, de l’abandon de l’égalité. Nous faisons l’hypothèse que ces 
aspects sont peu traités dans l’enseignement actuel en chimie alors qu’ils pourraient contribuer à rendre 
visible le processus de modélisation qui a mené à l’écriture actuelle du modèle des réactions chimiques 
sous forme d’équation. Dans la section IV, nous proposerons quelques éléments relatifs à cette 
hypothèse et issus de l’analyse des manuels de chimie utilisés en Belgique francophone.  

Peut-on donner une interprétation mathématique valide aux différents symboles utilisés dans les 
équations chimiques et empruntés aux mathématiques ? C’est à cette question que répond la section 
suivante. 

III. FORMALISATION MATHÉMATIQUE DES ÉQUATIONS 
CHIMIQUES 

En mathématiques formelles, une équation est un couple (F,x) où F est une formule exprimée dans 
un langage avec égalité et x une variable libre de F (l'inconnue). Résoudre une telle équation dans un 

ensemble E (le domaine d'interprétation), consiste à trouver le sous-ensemble des 𝑥 ∈ 𝐸 tels que F soit 
satisfaite. Ce sous-ensemble est appelé sous-ensemble de solutions et dépend du domaine 

d'interprétation E de la formule. Par exemple (𝑥 + 1 = 𝑦, 𝑥) est une équation dont l'ensemble des 

solutions est {𝑦 − 1} si 𝐸 = ℝ. L'équation (𝑥 + 1 = 𝑦, 𝑦) (différente de la précédente) a pour 

ensemble de solution {𝑥 + 1} si 𝐸 = ℝ Autrement dit, une équation est un objet purement syntaxique 
par nature alors que sa résolution présuppose un contexte sémantique. 

Informellement, une équation est donc une formule mathématique où le symbole « = » apparait 
explicitement et où une inconnue est spécifiée. Le plus souvent, le langage mathématique utilisé 
contient celui de l'arithmétique et permet donc d'avoir recours aux symboles « + , -, x... » 

En chimie, une équation bilan ou équation chimique modélise la transformation de réactifs en 
produits, en respectant des ratios réactionnels donnés par les coefficients stœchiométriques. Par 
exemple, on a l'équation chimique suivante : 

4 NH3 + 5 O2 ⟶ 4 NO + 6 H2O 
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La question du statut des symboles « + » et «  ⟶ » se pose immédiatement. A priori, une molécule 
correspond formellement à un graphe pondéré et étiqueté (les arêtes permettant de rendre compte de 
la structure chimique). Or l'addition de deux graphes, qui serait naïvement leur union disjointe, ne 
correspond pas à ce qu'il se passe au sein de l'équation chimique. Un autre problème est le symbole 

« ⟶ » qui est ambigu. Il a en effet une signification différente du symbole « = » car il marque une 
évolution temporelle liée au monde physique.  

Pour comprendre les choses, il faut voir que le « contenu » d'une équation chimique est double : 

1. une partie structurelle. En effet, dans l'exemple ci-avant, des molécules comme H2N  ou 
ONH n'auraient aucun sens physique. Seules certaines combinaisons de lettres sont 
autorisées si l'on tient compte des contraintes empiriques et syntaxiques (pour l’ordre dans 
lequel les lettres sont écrites).   

2. une partie combinatoire. Dit simplement, il faut le même nombre de lettres de chaque côté 
de l'équation pour vérifier la loi de conservation de la masse énoncée par Lavoisier. 

Il est à noter que dans de nombreux exercices, seule la partie combinatoire est testée, l'énoncé étant 

formulé à partir d'une équation à trous … NH3 + ⋯ O2 ⟶ ⋯ NO + ⋯ H2O que l'élève est prié de 
compléter. Dès lors, on peut se demander si, a minima, la partie combinatoire pourrait être considérée 
comme une véritable équation mathématique. 

Considérons la molécule H2O. On serait tenté de dire que cette molécule est simplement l'ensemble 

{H,H,O} (autrement dit, on ne garde que les sommets du graphe). Une molécule correspondrait donc 
à un ensemble et le signe « + » correspondrait quant à lui à la somme ensembliste, donc à l'union 
disjointe. Cependant, cette formalisation pose problème. En effet, dans la théorie des ensembles 
traditionnelle, seuls les éléments distincts présents au sein de l'ensemble sont comptabilisés. Autrement 

dit on a l'égalité {H,H,O} = {H,O} et l'aspect combinatoire est évacué. On pourrait bien sûr contourner 

ce problème en utilisant des unions disjointes dans tous les sens et en posant {H,H,O} = {H} ⊔ {H} ⊔
{O}. Néanmoins, comme l'union disjointe ensembliste est définie à partir d'un produit cartésien, un tel 
empilement deviendrait rapidement lourd syntaxiquement. Une autre possibilité, sans doute plus 
naturelle, est d'utiliser la notion de multi-ensemble. Un multi-ensemble est simplement un ensemble 
classique muni d'une fonction de comptage permettant d'attribuer un nombre naturel (correspondant 
au nombre d'occurrences) à chaque élément de l'ensemble. 

Définition 1. Un multi-ensemble est un couple (𝐸, 𝑐) où E est un ensemble et 𝑐 ∶ 𝐸 → ℕ une 
fonction. 

Exemple : Le multi-ensemble ({H,O}, c) où 𝑐(H) = 2 et 𝑐(O) = 1 correspond à ce que l’on 

voudrait noter {H,H,O}, c’est à dire le fragment combinatoire de la molécule H2O 

On peut maintenant très naturellement définir l'addition de deux multi-ensembles. 

Définition 2. Soient (𝐸, 𝑐) et (𝐹, 𝑑) deux multi-ensembles. La somme (𝐸, 𝑐) + (𝐹, 𝑑) est le multi-

ensemble (𝐺, 𝑓) tel que 

1. 𝐺 = 𝐸 ∪ 𝐹. 
2. 𝑓(𝑥) = 𝑐(𝑥) si 𝑥 ∈ 𝐸 ∖ 𝐹. 
3. 𝑓(𝑥) = 𝑑(𝑥) si 𝑥 ∈ 𝐹 ∖ 𝐸. 
4. 𝑓(𝑥) = 𝑐(𝑥) + 𝑑(𝑥) si 𝑥 ∈ 𝐸 ∩ 𝐹. 

On peut aussi définir la multiplication d'un multi-ensemble par un naturel. 
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Définition 3. Soit (𝐸, 𝑐) un multi-ensemble et 𝑘 ∈ ℕ un naturel. Alors 𝑘 ⋅ (𝐸, 𝑐) n’est rien d’autre 

que le multi-ensemble (𝐸, 𝑘 ⋅ 𝑐). 

Si l’on revient à présent à l’exemple initial 

4NH3 + 5O2 → 4NO + 6H2O, 

on se rend compte que l’aspect combinatoire d’un tel bilan chimique peut être formulé comme une 
égalité entre multi-ensembles. Cette égalité est donc en particulier une égalité fonctionnelle, entre les 
diverses fonctions de comptage. On pourrait la réécrire 

4𝑐 + 5𝑑 = 4𝑓 + 6𝑔 

où 𝑐, 𝑑, 𝑓, 𝑔 sont respectivement les fonctions de comptage associées aux multi-ensembles 

représentant les molécules NH3, O2, NO, H2O. Évidemment on ne peut pas a priori parler d’équation 
car il n’y a pas d’inconnues. L’équation associée, telle qu’elle serait proposée à un élève est 

𝑎𝑐 + 𝑏𝑑 = 𝑘𝑓 + 𝑙𝑔 

où l’inconnue est le quadruplet (𝑎, 𝑏, 𝑘, 𝑙) ∈ ℕ4. Comme il s’agit d’une égalité fonctionnelle, il suffit 
d’évaluer cette égalité en quatre points pour obtenir un système de quatre équations à quatre inconnues. 

Malheureusement nous n'avons que trois points disponibles : N, H, O. Effectuons ces trois évaluations 

pour voir quel phénomène est à l'œuvre. En évaluant en N, on obtient 𝑎 = 𝑘, en évaluant en O on 

obtient 2𝑏 = 𝑘 + 𝑙, en évaluant en H, on obtient 3𝑎 =  2𝑙. 

En résolvant « naïvement » ce système sous-déterminé, on tire directement une infinité de solutions 

de la forme (𝑘,
5

4
𝑘, 𝑘,

3

2
𝑘). On voit des fractions apparaitre correspondant à des rapports de 

proportionnalité. En prenant pour 𝑘 le PPCM de tous les dénominateurs (dans notre exemple, on 

prendra 𝑘 = 4), on obtient la plus petite solution naturelle non-nulle possible, ce qui correspond à 
l’usage dans l’enseignement de la chimie au secondaire. 

On voit ici que la formalisation mathématique de la pondération des équations chimiques fournit 
une stratégie de résolution de ce problème, qui, de plus, ramène en chimie le concept d’équation 
mathématique comme outil de résolution de problème. Plus théoriquement, nous venons de décrire 
une technologie au sens de (Chevallard, 1999) légitimant la technique dite “algébrique” de pondération 
des équations chimiques. Cette technique de pondération des équations chimique est-elle repérée dans 
les manuels scolaires de chimie en Fédération Wallonie-Bruxelles ? La section suivante s’intéresse 
notamment à cette question. 

IV. ANALYSE DES MANUELS DE CHIMIE 

Nous avons consulté les trois seuls manuels de chimie utilisés dans l’enseignement secondaire belge, 
en 3e année (grade 9, sciences générales ou sciences de base) : (Buschen, Degosserie, Rondelet, 
Schweininger et Van Sul, 2018 ; Bordet, Castin, Pirson et Snauwaert, 2021 ; Matthys, Feys et Suys, 
2011). C’est à ce niveau que sont abordées, en Fédération Wallonie-Bruxelles, les équations chimiques.  

La méthodologie que nous avons élaborée se base sur l’analyse du contenu des manuels et elle vise 
quatre objectifs : décrire la manière dont la représentation symbolique de l’équation chimique est 
exposée, mettre en évidence si un lien explicite existe entre l’équation chimique et la conservation de 
la masse, rechercher si les manuels exposent la formalisation mathématique des équations chimiques 
et décrire les méthodes de pondération proposées. Dans les trois manuels, nous nous sommes focalisés 
sur la section « cours » du chapitre « réaction chimique ». Le cours s’étend sur quatre ou cinq pages qui 
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définissent la réaction chimique, son passage à une équation chimique et la pondération d’une équation 
chimique.  

De nos analyses, nous retenons les éléments suivants : 

• Tous les manuels explicitent de manière plus ou moins semblable les différents composants 
de l’équation chimique. Ainsi, il est précisé que l’équation est divisée en deux « membres » 
qui sont séparés par « une flèche ». Dans le « premier membre », les réactifs sont séparés 
par un « + » qui signifie « réagissent avec » et de même pour les produits dans le « deuxième 
membre ». Finalement, la flèche « → » qui sépare les deux membres « indique le sens de 
déroulement de la réaction ». 

• Tous les manuels utilisent la flèche pour séparer les réactifs des produits.  

• (Buschen, Degosserie, Rondelet, Schweininger et Van Sul, 2018) mentionnent 
explicitement que, contrairement aux équations en mathématiques, l’équation chimique 
utilise le signe « → » au lieu du signe « = ».  

• Ces mêmes auteurs justifient ensuite l’utilisation du terme « équation » par le lien avec la 
conservation de la masse, ce que ne font pas les autres manuels. Dans ces autres manuels, 
la conservation de la masse est mentionnée plus tôt, lors de la description de la 
transformation chimique, au niveau macroscopique. 

• Enfin, la démarche de pondération des équations chimiques est abordée systématiquement 
selon une méthode de tâtonnement, marquée par des essais et des erreurs. Cependant, deux 
types de méthodes émergent en fonction du niveau de savoir convoqué dans le chemistry 
triplet de (Johnstone, 1991). Une première démarche de pondération propose un inventaire 
chiffré sous la forme d’un tableau à double entrée (niveau symbolique de Johnstone). En 
modifiant les coefficients stœchiométriques, l’élève tente d’établir un nombre identique 
d’atomes, dans chaque colonne, pour chaque symbole noté dans le tableau. Une deuxième 
démarche de pondération consiste à dessiner les molécules et atomes impliqués dans 
l’équation chimique (niveau microscopique de Johnstone) à l’aide d’un modèle moléculaire 
en boules. L’élève ajoute alors, en les dessinant, les molécules et atomes nécessaires pour 
obtenir le même nombre d’atomes de chaque type chez les réactifs et les produits. Les 
coefficients stœchiométriques sont finalement inscrits dans l’équation chimique en 
comptant les modèles dessinés pour chaque acteur de l’équation. Ainsi, aucun manuel ne 
propose de formaliser la pondération des équations chimiques au travers d’un système 
linéaire d’équations mathématiques. 

De cette analyse et de notre section III, nous retenons trois techniques de pondération des 
équations chimiques, deux basées sur le tâtonnement, cohérentes avec une volonté de mettre à distance 
les liens entre équation chimique et mathématiques, et une troisième, axée sur la construction d’un 
système d’équations mathématiques. Les deux premières font partie du curriculum actuel dans 
l’enseignement secondaire en Belgique tandis que nous n’avons pas trouvé trace de la troisième dans 
les manuels en vigueur actuellement. Cette dernière pourrait constituer une opportunité de travail 
interdisciplinaire autour de l’équation puisqu’elle s’appuie sur une situation ancrée en chimie, modélisée 
au sein de la discipline « chimie » par une équation chimique (étape que nous identifions à l’étape 1 du 
cycle de modélisation de Blum et Leiss (2007), voir Figure ), dont la pondération peut, à son tour, être 
modélisée par un système d’équations mathématiques (étape 3 du cycle de modélisation de Blum et 
Leiss (2007)), outil de modélisation présent dans le curriculum mathématique. Nous pensons 
également que cette technique est une option didactique intéressante puisqu'elle permet a priori de 
diminuer l'incertitude des élèves en leur garantissant l'existence d'une solution au problème, calculable 
en peu d'opérations. 
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Figure 1 – Cycle de modélisation de Blum et Leiss (2007), cité dans (Kuzniak, 2024) 

V. CONCLUSION ET PERSPECTIVES 

À la suite de ces différentes analyses, le travail devrait se poursuivre par une observation du savoir 
enseigné (Chevallard, 1985) dans les classes. Ces différentes observations devraient nous permettre de 
compléter les constats issus des analyses épistémologiques et des manuels concernant les liens entre 
équation mathématique et équation chimique dans l’enseignement actuel en Belgique francophone. 

Cette étude devrait également nous permettre de formuler des propositions susceptibles d’enrichir 
l’apprentissage dans les deux disciplines. En particulier, nous visons la formation des enseignants de 
chimie, que nous espérons rendre plus conscients du lent processus de modélisation qui a conduit à la 
construction de l’équation chimique et de ses liens avec les mathématiques. La recherche vise 
également la proposition d’une séquence didactique interdisciplinaire, potentiellement en lien avec 
notre section III, qui mettrait en jeu les différents aspects relevés au cours du travail relativement aux 
liens entre équation mathématique et équation chimique.   
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