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LA NOTION D’AIRE COMME OUTIL DANS LA PREUVE MATHÉMATIQUE : 

QUELQUES CAS HISTORIQUES  

|  EL IDRISSI ABDELLAH, AIT OUNEJJAR LAHOUSSAINE ET ROUAN OMAR  

Résumé | L’article présente des situations historiques où la notion d’aire intervient à titre d‘outil pour justifier ou 
prouver des résultats mathématiques n’ayant apriori aucune référence à la notion d’aire.   Les exemples 
sont empruntés à des cadres ou domaines mathématiques différents, géométrie, analyse, algèbre et 
combinatoire. Nous analysons la place de la notion d’aire dans chaque preuve et distinguons les aspects, 
les caractéristiques et les manières spécifiques à la notion d’aire qui sont exploités.  

Mots-clés : aire, preuve, épistémologie, cadres, outils, algèbre, géométrie 

Abstract | The paper presents some historical problems where the notion of area is used as a tool to justify or 
prove mathematical results that, at first glance, have no reference to the concept of area. The examples 
are drawn from different mathematical contexts or fields, including geometry, analysis, algebra, and 
combinatorics. We analyze the role of the concept of area in each proof and distinguish the specific 
aspects, characteristics and ways this concept is utilized.  

Keywords: Area, proof, epistemology, fields, tools, algebra, geometry 

I. INTRODUCTION 

La notion d’aire a été envisagée de plusieurs points de vue : comme objet d’enseignement, objet de 
recherche didactique, mathématique et historique. Historiquement, les problèmes de surfaces et de 
calcul d’aires, dits de « quadrature » ont joué un rôle dynamique et fructifiant dans le développement 
des mathématiques aussi bien anciennes que modernes. Comme objet d’enseignement, plusieurs 
recherches didactiques en ont traité et se sont intéressés aux difficultés de calcul et de mesure d’aires 
de surfaces, aux relations entre surface et périmètre, aux formules de calculs d’aires, aux unités de 
mesure d’aires et leurs conversions, etc. (Castenbaum, 1988 ; Douady et Perrin, 1986, 1987 ; Moreira 
Baltar et Comiti, 1993).  

Ce texte s’attarde sur le triplet « aire-outil-preuve » en examinant certaines situations historiques où 
la notion d’aire intervient comme un outil inattendu permettant la justification de résultats 
mathématiques recherchés. Nous traiterons d’exemples glanés dans divers domaines des 
mathématiques et à diverses époques. Notons d’emblée que notre préoccupation principale n’est pas 
d’ordre didactique, ni historique ; elle est d’obédience épistémologique.  

Trois types de travaux ou d’éclairages théoriques y seront investi ; ils se rattachent à la notion d’aire, 
à la notion de sens et partiellement aux notions de cadre et d’outil.  

II. ÉCLAIRAGES THÉORIQUES 

Depuis quelques décennies, on constate un recourt constant à l’histoire des mathématiques non 
seulement dans le but d’éclairer les analyses didactiques de concepts mathématiques mais aussi afin 
d’éclairer et fonder les concepts didactiques. Ainsi, pour Sierpinska (1989), « La signification d’un 
concept ne se réduit pas à sa définition mais est la résultante de l’histoire du concept et de ses diverses 
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applications aussi bien dans le passé que dans le futur ». Quant à Vergnaud (1990), il propose de 
rattacher le sens d’un concept à quatre composantes complémentaires, ce sont les composantes 1) 
langage, 2) propriétés, 3) techniques et 4) problèmes », cette dernière réfère justement aux problèmes 
que le concept a permis de résoudre.  

Douady (1986) dans l’introduction de la notion de changement de cadres, souligne que l’analyse de 
l’évolution historique des mathématiques passé, récente montre que le travail du mathématicien 
consiste principalement à « … interpréter les problèmes, à changer de point de vue, à les reformuler 
autrement, à les transporter d’un cadre dans un autre… », elle note à propos de ce transport que la 
traduction d’un problème dans un second « cadre conduit à poser de nouvelles questions et suggère le 
recours à des outils autre que ceux initialement sollicités. » Concernant la notion de cadre elle-même, 
Douady y intègre aussitôt les cadres algébrique, géométrique, arithmétique, etc. relatifs aux branches 
mathématiques connues mais elle l’enrichie par d’autres cadres (dynamique, algorithmique) et surtout 
par l’intégration « d’images mentales associées » et suggérées lors de la résolution de problèmes. Nous 
verrons que c’est à cette dynamique que renvoient les exemples dont nous traitons.  

Pour la notion d’aire, Castenbaum (1988) se situant dans un contexte scolaire, dresse la liste des 
opérations ou procédés à l’aide desquels on peut opérer sur des surfaces lorsqu’on veut déterminer ou 
comparer leurs aires. Elle distingue cinq opérations principales et qui font consensus notamment entre 
différents éditeurs de manuels scolaires, ce sont :  

1. La superposition de figures. En plus de sa participation dans la construction même du sens 
de la notion d’aire, la superposition est le premier moyen primitif de comparaison 
puisqu’on ne peut se fier à une observation intuitive dans plusieurs cas et le résultat de la 
comparaison par superposition est souvent immédiat.  

2. Le pliage. Il suppose une certaine symétrie dans la surface et nécessite la possibilité de plier 
d’abord et de retourner dans certains cas.  

3. Le découpage et recomposition. Le découpage-recomposition se prolonge par la 
superposition. Mais on doit justement avoir la possibilité de découper, de déplacer et 
d’ajuster les surfaces soumises à l’examen. 

4. Le quadrillage. Le quadrillage est un support qui, s’il n’est pas présent peut être adjoint à 
une figure donnée.  Il permet par un comptage de carreaux d’avoir une mesure d’aire exacte 
ou approximative.  

5. Le pavage. Il se distingue par la présence d’un patron et par l’itération de ce patron en vue 
de couvrir une surface. Le pavage tient au quadrillage mais dans le cas du pavage, le 
quadrillage intervient à postériori. 

Il va de soi qu’à ces procédés élémentaires peuvent être ajoutées d’autres, résultant notamment de 
combinaisons valides. Nous tiendrons compte de ces opérations ou procédés dans l’analyse de nos 
exemples issues de l’histoire et examinerons si des procédés inédits ou particuliers peuvent être 
identifiés.  

III. LA PREUVE PAR L’AIRE 

Pour présenter notre propos, partons du théorème de Pythagore. Quoiqu’il puisse être formulé à 
l’aide de distances, considérons le tel qu’énoncé dans les éléments d’Euclide. 

Dans un triangle rectangle, le carré sur le côté « soutendant » l’angle droit est égal à la somme des carrés sur les côtés 
contenant l’angle droit (Euclide).  
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D’emblée, signalons que cette figure illustre bien le théorème et tient lieu de support indispensable 
à sa démonstration (Euclide, 1993 ; Heath, 1921). 

La preuve consiste à montrer les égalités d’aires suivantes :  

Aire AEDC=2.aire DCB=2.aire CIA= aire CIJK et aire GBAF=2.aire GBC=2.aire 
BHA= aire BHJK.  

Ce qui suffit pour justifier le résultat annoncé. 

L’aire est traitée via un certain nombre d’opérations de découpage, de 
comparaisons et d’assemblage de portions d’aire, opérations qui prennent 
appui sur et se justifient par des propositions géométriques justifiées par 
ailleurs. Toutefois, par le fait que l’énoncé de ce théorème est justement 
présenté avec et sur la notion d’aire il nous intéresse moins. La notion d’aire y est explicitement 
sollicitée et il est normal qu’elle apparaisse dans la preuve.  

Les exemples dont nous traiterons ci-dessous revêtent un intérêt historique intrinsèque certain et 
notre mérite, si mérite il y a- est de les avoir repérés, assemblés et analysés sous l’œil du triplet « aire-
outil-preuve ».  

IV. LA NOTION D’AIRE ET LA PREUVE EN « GÉOMÉTRIE ». 

Le théorème de Thalès est une proposition historiquement très riche quoique surchargée de mythes. 
Son utilisation première semble être dans une situation très particulière, en géodésie, dans une 
configuration de triangle rectangle isocèle et sans preuve aucune. Selon le mythe, au moment où la longueur 
« du bâton », la cane de Thalès (VIe AC) égale celle de son ombre, la hauteur de la pyramide égale aussi celle de son 
ombre. Quoi de plus évident. Le théorème de Thalès, mieux que celui de Pythagore repose sur un 
résultat assez fascinant. A partir du parallélisme de deux droites, propriété purement géométrique on 
ressort des égalités de rapports de longueurs, une propriété métrique.  

Voici comment Euclide énonce et justifie le théorème que nous disons de Thalès. 

Dans un triangle ABC, si une droite MN parallèle à BC coupe AB en D et AC en E alors les longueurs AD, AB et 
les longueurs AE, AC sont dans le même rapport. La réciproque est également vraie.  

La démonstration du théorème de Thalès par Euclide consiste à montrer des égalités des aires de 
portions construites sur la figure par différents segments de droites. Elle s’appuie sur une propriété 
primordiale sur les aires de triangles, la proposition 1 du livre VI qui s’énonce comme suit : « Les 
triangles (et les parallélogrammes) qui ont la même hauteur sont entr’eux comme leurs bases » (Euclide 
VI, 1, 1993). (Figure 2) 

La preuve du théorème de Thalès.  

Les triangles ADE et ABE ont le même sommet E et la même 
hauteur. Leurs aires sont dans le même rapports que leurs bases, 

comme dirait Euclide : 
𝑎𝑖𝑟𝑒 𝐴𝐷𝐸

𝑎𝑖𝑟𝑒𝐴𝐵𝐸
=

𝐴𝐷

𝐴𝐵
 (Figure 2).  

De même, les triangle AED et ACD ont le même sommet D et la 
même hauteur. Leurs aires sont dans le même rapports que leurs 

bases : 
𝑎𝑖𝑟𝑒 𝐴𝐸𝐷

𝑎𝑖𝑟𝑒𝐴𝐶𝐷
=

𝐴𝐸

𝐴𝐶
. 

Or les triangles ECD et DBE, de même base ED sont situés entre 

deux parallèles ; ils ont donc la même aire :  𝑎𝑖𝑟𝑒 𝐸𝐶𝐷 = 𝑎𝑖𝑟𝑒 𝐷𝐵𝐸  

 

 
Figure 2 

 
Figure 1 
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On en déduit  𝑎𝑖𝑟𝑒 𝐴𝐶𝐷 = 𝑎𝑖𝑟𝑒𝐴𝐵𝐸  et par suite 
𝐴𝐷

𝐴𝐵
=

𝐴𝐸

𝐴𝐶
. CQFD. 

Le théorème de Thalès est un théorème qui met en relation une propriété métrique et une propriété 
géométrique ; partant de parallélisme de deux droites on aboutit à une proportion entre longueurs de 
côtés. La notion d’aire y intervient comme subterfuge ingénieux amenant à la justification ; l’astuce : 
« insérer des segments appropriés dans un triangle ». La propriété des aires de triangles de même hauteur 
permet de transférer le rapport entre les aires de triangles construits sur ces mêmes segments vers leurs 
aires. En fait, on utilise deux fois les propriétés sur la notion d’aire : 

• La propriété sur la parallèle qui permet d’inférer une égalité d’aires (37, I). 

• La propriété de proportions qui relie des rapports d’aires à des rapports de longueurs (1, 
VI). 

La représentation figurale est importante et le choix des triangles et des segments est cruciale. On 
opère sur la figure, qui doit être « attestée conforme », respecter les propriétés de l’énoncé, par des 
considérations de figures ou de morceaux, des recollements virtuels, des comparaisons en tenant 
compte de parties communes entre figures : « une certaine algèbre des aires ». Dans les lemmes utilisés, on 
constate un procédé de « complétion d’une figure » afin de la rendre conforme à une configuration 
habituelle. En fait, en plus des procédés que nous avons mentionnés il est considéré que deux figures 
étant données, lorsque on « rajoute ou on enlève » une partie « commune », la comparaison des parties 
résultante est la même que celle des figures d’origine.  

V. LA NOTION D’AIRE ET LA PREUVE EN « COMBINATOIRE ». 

L’analyse combinatoire est une branche des mathématiques qui étudie comment compter les objets. 
Son but est d’apprendre à compter le nombre d’éléments d’un ensemble fini mais de grande cardinalité 
(techniques de dénombrement). On peut déjà deviner que la recherche de régularités et de 
généralisations y soient importants.  

Soit à calculer la somme des nombres impairs jusqu’à un ordre donné n, ou à l’aide de symboles : 

∑ (2𝑝 + 1)𝑝=𝑛
𝑝=0 . Pour commencer, considérons le calcul de la somme des 8 premiers termes de cette 

suite : 1+3+5+7+8+9+11+13. On pourrait très bien procéder de manière calculatoire en recherchant 
une régularité arithmétique qu’on pourrait généraliser d’emblée ou éventuellement justifier par un 
recourt à la loi d’induction complète (récurrence). 

On peut également considérer les nombres à additionner comme des « nombres de » et faire comme 
si on avait à additionner des portions d’aires qu’on pourrait disposer de manière convenable et 
pertinente. On constatera que la somme (1 + 3) forme un carré de côté 2, que (1+3+5) forme un carré 
de côté 3, que la somme (1+3+5+7) forme un carré de côté 4, etc. (Figure 5) 

 

 
Figure 3 

 
Figure 4 
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La configuration montre que, partons de 1, chaque nombre impair, (2p+1) ajouté permet de 
compléter un carré de côté (p+1) et donc d’aire (p+1)2. Le constat est évident pour tous les nombres 
jusqu’à 8, (Figure 3) et on ne voit pas de raison pour qu’il ne soit pas juste pour tout nombre impair 
choisi N = (2p+1) (Figure 4).  

Nous aurons donc : 1+3+……+ (2n+1) = (n+1)2 ou alors  ∑ (2𝑝 + 1) = 𝑛2𝑝=𝑛
𝑝=0 . 

Ce procédé peut être appliqué moyennant certaines précautions pour calculer des termes de suites 

décroissantes, comme la série de terme général (½)n , soit ∑
1

2𝑝

𝑝=𝑛
𝑝=1   (Figure 5). 

 

Figure 5 

Le calcul combinatoire est très ancien et on en retrouve des traces depuis les Grecs, les Chinois et 
les Arabes appliqués à divers problèmes. Mais les recherches se sont accentuées pendant le vingtième 
siècle et le recours aux preuves géométriques sur les configurations est devenue plus familier pendant 
les cinquante dernières années que l’avènement de l’informatique et des fractales ont sans doute permit 
d’accélérer.  

Les preuves de ce type, basées sur des configurations sont nombreuses et permettent de calculer 
des résultats assez importants et parfois complexes. Certains les qualifient de preuve sans mots ou 
« proof without words » (Delahaye, 2008). Le raisonnement serait toujours vrai en remplaçant les carreaux 
par des lapins ou des laitues tout en conservant la configuration. Le raisonnement, quoiqu’il opère sur 
les aires peut être pris sur les emplacements, la configuration. Néanmoins, la notion d’aire est bien plus 
familière dans ses manipulations et par ses formules de calcul ; elle est spontanément accessible à nos 
sens, notamment notre vision et semble saisissable d’emblée pour notre intuition.  

Pour cette somme, la configuration est importante. Le choix des éléments d’aires qui puissent 
représenter les éléments à additionner doit être judicieux, voire opportuniste. On fait représenter aux 
termes de la suite les morceaux susceptibles de nous faire aboutir au résultat recherché. Ceci, se fait 
fort heureusement dans le respect total des règles géométriques et arithmétiques permises. La 
procédure peut être assimilée à un pavage spécifique ou le modèle, le gabarit est appelé à changer de 
grandeur tout en conservant la même forme, la même configuration.  

En fait, on est bien en présence d’un changement de cadre, du cadre numérique ou combinatoire 
dans un cadre géométrique. Aussi, on est contraint de choisir une unité de mesure d’aire « carrée » et 
de s’y conformer tout au long du raisonnement, qui se veut discret et seule la formule du calcul d’aire 
du carrée est sollicitée. Cependant, pour le théorème de Thalès, il n’y a pas de changement de cadre 
apparent, tout se déroule dans un cadre géométrique mais le traitement peut être dit continue avec des 
propositions géométriques générales sur les aires.  

VI. LA NOTION D’AIRE ET LA PREUVE EN « ALGÈBRE ». 

L'algèbre mathématique est une branche qui permet de manipuler des quantités inconnues à l'aide 
de symboles, tout en opérant sur elles librement comme si elles étaient connues.  
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C’est dans un contexte analogue qu’est apparue la preuve que nous analysons (Djebbar, 2001). Elle 
est due à Al-Khwarizmi et marque un tournant dans l’émergence et le développement de la pensée 
algébrique.  

Dans son traité, Al-Khwarizmi se propose de résoudre des équations de premier et de second degré 

dont la suivante 𝑥2 − 10𝑥 + 21 = 0, approchée plutôt sous la forme  𝑥2 + 21 = 10𝑥. En fait, 
l’équation n’est pas formulée de la sorte. Al-Khwarizmi énonce ses équations à l’aide de trois notions 

ou paramètres : 1) le nombre, 2) le mal, qui réfère au bien ( 𝑥2), et 3) la racine du mal (𝑥). Ainsi, dans 

ce cas nous avons « un bien et 21 équivaut à dix racines du même bien ». En supposant que 𝑥 < 10, il 

construit un rectangle ABGH d’aire 10𝑥 sur lequel il déploie son raisonnement. Encore une aire, dirons-
nous ! 

Soit à résoudre l’équation   𝑥2 + 21 = 10𝑥 

Al-Khwarizmi représente 𝑥2 par un carré ABCD. On a donc AB = AD = BC = DC = 𝑥. Il 

complète ce carré par un rectangle FABE de largeur AB ( = 𝑥) et de longueur EB, arbitraire. Le 
rectangle résultant FABE doit avoir une aire égale à 21. Pour rendre l’équation vérifiée, l’aire totale du 

grand rectangle FDGE doit être égale à 10𝑥  et la longueur EC égale à 10. 

 

Figure 6 

 

Figure 7 

 

Figure 8 

La démarche de résolution. On construit le rectangle KJGE tel que AH=HJ. Or, GH=DA.  

Alors GJ = DH (=CG=EG= EK).  KJGE est donc un carré.  

Or G est le milieu de EC, et EG = 5 et l’aire de KJGE = 25.  

On construit les points L et M tel que LJHM soit un carré, on aura FM = KL = AB.  

L’aire du rectangle KLMF est égale à celle du rectangle HABG. 

Rappelons que l’aire du rectangle FABE est égale à 21. L’aire du carré LJHM est donc égale à 25 – 

21 = 4 et alors JH (=LJ) mesure 2. Par suite KL, qui n’est autre que 𝑥 mesure 3.  

Vérifions. On voulait :  𝑥2 + 21 = 10𝑥.  Or  32 + 21 =  9 + 21 = 30  et  10 x 3 = 30   

Al-Khwarizmi, sans se soucier de l’exactitude des dimensions de la figure dessinée, qu’il ne connaît 
pas d’ailleurs, a pu raisonner sur la figure comme si elle répondait au problème et, ayant retrouvé une 
figure avec des composants reconnaissables, il a procédé aux calculs nécessaires. C’est le propre du 
raisonnement algébrique de permettre ces deux opérations : supposer le problème résolu et rechercher 
les conditions nécessaires pour cette résolution. C’est la modélisation par l’aire qui lui a permis toutes 
ces opérations. Ainsi, il a été amené à construire : 

• Un carré, figure dont il connait la forme justement avec une aire arbitraire,  

• un rectangle dont il connait l’aire et une seule dimension,  

• un rectangle identique en forme et en aire à un rectangle donné, 
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Il a enfin dû compléter par un petit carré, une figure tronquée pour en faire un grand carré.  

La constitution de la figure lui a permis de calculer le côté du petit carré et par un raisonnement, « à 
reculons », il a pu déterminer la mesure du côté du carré de départ, soit x, l’inconnue de son équation. 
Nous croyons que ce raisonnement n’a été rendue possible, applicable et vérifiable avec autant de 
latitude que parce qu’il s’appuie sur la notion d’aire. La notion d’aire comme modélisation de l’inconnue 
assure une capitalisation sur les formules de calcul d’aire, les procédés de calcul et de comparaison 
d’aires et sur tous les acquis des constructions géométriques. Comme nous l’avons mentionné plus 
haut, il est aussi accessible à nos sens et sollicite favorablement notre observation. Dans ce cas, Al-
Khwarizmi a eu recourt à des formes très régulières. Nous constatons également que d’apparence, 
nous sommes partis d’un problème formulé dans un cadre algébrique et l’avons traité dans un cadre 
géométrique. Il faut d’emblée souligner que, notamment dans le cas présent, cette assertion doit être 
nuancée, voire, nous amener questionner le choix de la notion de jeu de cadres comme cadrage 
théorique à notre analyse globale. En fait, peut-on dans ce cas précis parler de changement de cadre 
dans le sens de Douady, alors que la situation dont nous traitons a participé à la création, la naissance 
justement d’un nouveau cadre ? 

VII. LA NOTION D’AIRE ET LA PREUVE EN « ANALYSE ». 

Ptolémée, dans son Almageste entreprend la construction d’une table de cordes, où il cherche à 
associer à chaque arc, la longueur de la corde correspondante (Toomer, 1998). Les calculs algébriques 
provenant de l’addition, la soustraction, la duplication ou la division en deux des arcs connus ne lui 
permettent pas d’avoir la mesure de la corde d’un arc de 1°, disons : crd 1°. En fait, les manipulations 
algébriques permettent de calculer cord3° et la formule de la corde de la moitié lui donne d’abord crd 
(1.5°) puis crd (0.75°) avec une précision satisfaisante. C’est alors que Ptolémée s’est ingénié à encadrer 
« d’assez près » cord1°.  

Ptolémée considère deux arcs de cercles 𝑎𝑟𝑐𝐴𝐵 𝑒𝑡 𝑎𝑟𝑐𝐵𝐶 tels que 𝑎𝑟𝑐𝐴𝐵 < 𝑎𝑟𝑐𝐵𝐶, et affirme 

que : 
𝐵𝐶

𝐴𝐵
<

𝑎𝑟𝑐𝐵𝐶

𝑎𝑟𝑐𝐴𝐵
, ou autrement    

𝑐𝑟𝑑𝐵𝐶

𝑐𝑟𝑑𝐴𝐵
<

𝑎𝑟𝑐𝐵𝐶

𝑎𝑟𝑐𝐴𝐵
.  Sur la figure 9, on a BD bissectrice de 𝐴𝐵𝐶̂, E point 

d’intersection de la bissectrice et de la corde AC. 

 

Figure 9 

 

Figure 10 

On a alors : A𝐸 < 𝐸𝐶, car A𝐵 < 𝐵𝐶     (BD n’est pas une médiane) et 𝐴𝐷 = 𝐶𝐷, car le triangle 
ADC est isocèle.  

Si G est la projection de D sur AC, alors 𝐴𝐷 < 𝐸𝐷 < 𝐺𝐷, car DAG est rectangle en G (Figure 10). 
On construit le cercle de centre D et de rayon DE.   

Ce cercle rencontre DA en H et DG en F, donc 𝐷𝐻 < 𝐷𝐴 et 𝐷𝐺 < 𝐷𝐹  

Et par suite   𝑠𝑒𝑐𝑡𝐷𝐻𝐸 < 𝐴𝑖𝑟𝑒𝐷𝐴𝐸  et  𝐴𝑖𝑟𝑒𝐷𝐸𝐺 < 𝑠𝑒𝑐𝑡𝐷𝐸𝐹  

Alors 
𝑎𝑖𝑟𝑒𝐷𝐸𝐺

𝑎𝑖𝑟𝑒𝐷𝐴𝐸
<

𝑠𝑒𝑐𝑡𝐷𝐸𝐹

𝑠𝑒𝑐𝑡𝐷𝐻𝐸
  et on a aussi 

𝑎𝑖𝑟𝑒𝐷𝐸𝐺

𝑎𝑖𝑟𝑒𝐷𝐴𝐸
=

𝐸𝐺

𝐸𝐴
  et  

𝑠𝑒𝑐𝑡𝐷𝐸𝐹

𝑠𝑒𝑐𝑡𝐷𝐻𝐸
=

𝐸𝐷𝐹̂

𝐻𝐷𝐸̂
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donc : 
𝐸𝐺

𝐸𝐴
<

𝐸𝐷𝐹̂

𝐻𝐷𝐸̂
 et en additionnant.  

𝐸𝐺

𝐸𝐴
+

𝐸𝐴

𝐸𝐴
<

𝐸𝐷𝐹̂

𝐻𝐷𝐸̂
+

𝐻𝐷𝐸̂

𝐻𝐷𝐸̂
  et par suite   

𝐴𝐺

𝐸𝐴
<

𝐻𝐷𝐹̂

𝐻𝐷𝐸̂
 ,  

En doublant on obtient : 
𝐴𝐶

𝐸𝐴
<

𝐻𝐷𝐶̂

𝐻𝐷𝐸̂
  ,   

Puis en soustrayant,     
𝐴𝐶

𝐸𝐴
−

𝐸𝐴

𝐸𝐴
<

𝐻𝐷𝐶̂

𝐻𝐷𝐸̂
 −  

𝐻𝐷𝐸̂

𝐻𝐷𝐸̂
, ce qui donne  

𝐸𝐶

𝐸𝐴
<

𝐸𝐷𝐶̂

𝐻𝐷𝐸̂
 .   

Or les triangles BEC, BAD et AED sont semblables, en combinant les différentes proportions on 
aboutit à : 

𝐸𝐶

𝐸𝐴
=

𝐶𝐵

𝐵𝐴
     d’où enfin    

𝐵𝐶

𝐴𝐵
<

𝑎𝑟𝑐𝐵𝐶

𝑎𝑟𝑐𝐴𝐵
  

Par un double usage de cette même inégalité et en comparant crd1° à crd(0.75°) d’une part et à 
crd(1/5°) d’autre part, Ptolémée encadre crd1° puis en donne une valeur approchée.  

La preuve de Ptolémée peut être décomposée en trois étapes. La construction géométrique de base 

et le choix de la bissectrice de l’angle 𝐴𝐵𝐶̂ est une première étape importante. Si le choix technique de 
la bissectrice est justifié son indication heuristique demeure mystérieuse et exige davantage 
d’investigation historique (Lemme de la bissectrice). La deuxième étape est une application d’une 
inégalité avérée par observation visuelle à des arcs et cordes particuliers.  

La troisième étape, pertinente pour notre propos, consiste dans la construction du cercle de centre 
D et de rayon DE, une construction qui permet une riche exploitation des notions de surface et d’aire. 
Partant de constats et d’observations visuelles d’une situation d’inclusion de portions de surfaces, des 
triangles et des sections de cercles, Ptolémée tire des conclusions sur les aires des surfaces 
correspondantes, puis, en appliquant des formules de calcul à ses aires il déduit des relations de 
comparaisons entre des rapports de longueurs, qui sont en fait des longueurs d’arcs et de cordes.  

En fait, cette propriété combinant des cordes et des arcs est rendue possible grâce à un passage par 
les aires de surfaces, résultat d’une observation fine de la figure. La dimension analytique est incarnée 
dans le fait que même en modifiant la figure, en réduisant les paramètres l’observation-propriété 
demeure « juste ». D’ailleurs, en langage analytique, la relation prouvée est équivalente à dire que la 

fonction 
𝑠𝑖𝑛𝓍

𝓍
 est décroissante sur 0, /2. 

VIII. CONCLUSIONS 

En conclusion, nous ferons une courte synthèse des propos énoncés et formulerons deux 
observations, la première est rétrospective, la seconde est prospective. 

Les exemples dont nous avons traités sont empruntés à différents domaines et pour chaque 
domaine, des opérations spécifiques sont effectuées sur la notion d’aire. A chaque fois, la notion d’aire 
est inattendue et à chaque fois elle intervient pour permettre une opération mathématique particulières. 
A chaque fois elle sollicite des capacités cognitives et des images mentales appropriés. Elle a permis 
successivement : en géométrie, de déduire une relation métrique à partir d’une condition typiquement 
géométrique, en combinatoire de déterminer la somme des termes d’une suite numérique, en algèbre, 
de représenter une quantité inconnue, d’opérée sur celle-ci et de la calculer, en analyse, de justifier une 
relation d’inégalité entre des rapports de longueurs d’arcs et de longueurs de cordes.  

Nous nous sommes permis d’évoquer la notion de changement de cadre dans nos analyses, mais il 
importe de signaler que c’est un choix peu approprié. L’exemple dit d’algèbre est très problématique à 
cet égard puisqu’il participe même au fondement de la pensée algébrique. Le cas de Ptolémée nous 
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revoie à une époque où la mathématique était une, où les frontières entre « domaines » étaient nuancées 
et le passage d’un domaine à un autre se fait de manière spontanée et fluide.  

Enfin, nous nous sommes demandé s’ils existaient d’autres notions pouvant jouer des rôles 
similaires à celui que joue la notion d’aire dans la preuve mathématique. Une première exploration 
d’ordres didactique et historique nous a orienté vers trois notions qu’il faudra explorer : la notion de 
volume, la notion de levier et la notion de vecteur. Peut-être que l’étude de ces notions dans cette 
même perspective révélera des dimensions cachées de ces notions et de l’heuristique de la notion de 
preuve.  
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