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ABSTRACT

Curves and equations, also known as the Cartesian Connection, is an important and
fundamental concept in plane analytic geometry, but it has been shown that students
lack a rigorous understanding. Focusing on the concept of curves and equations, we
investigated 84 American and British analytic geometry textbooks published from 1826
to 1963. The study found that three types of non-rigorous definitions were prevalent in
early textbooks published before the 20th century. The first type merely recognized a
connection between curves and equations but did not express the nature of the strict
correspondence. The second type, although intentionally emphasizing that each point
needs to be satisfied, examined only one aspect of the correspondence, neglecting the
bidirectional nature inherent in the relationship between curves and equations. The third
category of non-rigorous definitions confused the concepts of curves with functions.
Definitions of curves and equations have become increasingly rigorous in post-20th
century textbooks, and these rigorous definitions can be divided into descriptive
definitions, definitions based on the concept of set, and definitions based on sufficient
and necessary conditions. It is noteworthy that the second category of non-rigorous
definitions was not eliminated until the middle of the 20th century. Epistemological
barriers in the historical development of the curves and equations concepts can become
cognitive barriers for students in the classroom as well. Instructional strategies can be
developed to guide students in recognizing non-rigorous definitions, leading them
through a historical reconstruction of how concepts related to curves and equations have
evolved. This approach facilitates a natural progression from qualitative to rigorous
understanding. In addition, early textbooks also provide a variety of methods for
verifying the Cartesian Connection, which provide abundant materials for teaching.

1 Introduction

The development of analytic geometry was a gradual process. Before its formal
establishment, Apollonius (c. 262 B.C.-190 B.C.) and N. Oresme (1323-1382)
used coordinate axes to study curves, while F. Viete (1540-1603) applied
algebraic methods to solve geometric problems. In the 17th century, R.
Descartes (1596-1650) and P. de Fermat (1601-1665) combined these
approaches, establishing the connection between curves and equations within a
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coordinate system. This lengthy evolution suggests that students may inevitably
encounter difficulties when learning about curves and equations.

Curves and equations, also known as the Cartesian Connection, refers to the
principle that “a point is on the graph of the line 1 if and only if its coordinates
satisfy the equation of /.” (Moschkovich et al., 1993). Despite its significance,
research on how to effectively teach the Cartesian Connection remains limited.
For instance, a study of high school students in Shanghai found that while
textbooks introduce curves and equations, teachers rarely require students to
verify the “if and only if” conditions for deriving equations, leading to
confusion (Ruan et al., 2012). Similar findings by Knuth et al. (2000) and Moon
et al. (2013) confirm that curves and equations remain challenging for both
students and teachers.

To explore this further, we analyzed 84 American and British analytic
geometry textbooks published between 1826 and 1963. The following research
questions guided our investigation:

How were curves and equations defined in early textbooks?

How did these definitions evolve over time?

2 Methods

This research is part of a program on studying early American and British
textbooks (Figure 1), organized by the HPM Community in Shanghai, China.
The program aims to provide resources for teaching from a historical
perspective, promote a comprehensive understanding of mathematical concepts
among pre-service and in-service teachers, and offer insights for the
development of curriculum materials. The program primarily focuses on
textbooks published between the 18th and 20th centuries, a period during which
modern mathematical knowledge systems gradually evolved from exploratory
constructions into standardized forms. Textbooks from this era not only
preserve the historical traces of conceptual developments in fields such as
algebra, geometry, trigonometry, and analytic geometry, but also reflect the
early shaping of modern instructional systems.

For this research, we focused specifically on analytic geometry textbooks,
which became established as a distinct genre relatively late in the evolution of
mathematics education. Based on a search in the HathiTrust Digital Library
using the keywords “Analytic Geometry” and “Coordinate Geometry,” the
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earliest suitable American or British textbook we identified was The Principles
of Analytical Geometry, published in 1826.

A total of 84 analytic geometry textbooks published between 1826 and 1963
were selected. The textbooks were grouped into 20-year intervals, with their
publication dates illustrated in Figure 2. In cases where a textbook was
republished by the same author, the earliest version was selected unless
substantial changes were made in later editions; in such cases, the revised
edition was treated as a distinct textbook. Textbooks published after the mid-
20th century were generally excluded, as analytic geometry by that time had
become a mature and highly standardized subject, rendering later works less
informative for the purposes of this historical and conceptual study.
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Figure 1. Flowchart of the program
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Figure 2. Temporal distribution of 84 early textbooks

3 Findings

Briggs (1881) emphasized the foundational role of this connection in his
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textbooks, noting: “This close relationship between curves and equations is the
foundation of our discipline and warrants careful study. Once this concept is
understood, the subject becomes natural and accessible; however, for anyone
who neglects it or has an unclear grasp, analytic geometry will be
incomprehensible.” (Briggs, 1881, p. 12).

Although the idea of connecting curves and equations emerged with the
works of Descartes and Fermat, their use of coordinates was limited to positive
values. It was not until mathematicians such as J. Wallis (1616-1703) began to
consciously incorporate negative coordinates that a more complete one-to-one
correspondence between plane curves and bivariate equations became possible,
as noted by Kline (Kline, 1990, p. 322). The rigorous understanding of this
connection, however, took much longer to develop, as evidenced by the
definitions found in early textbooks, which transitioned from non-rigorous to
rigorous over time.

3.1 Non-rigorous Definitions

Some early textbooks offered definitions of the connection between curves and
equations that were not rigorous enough. These can be categorized into three

types.
3.1.1 Type 1: Qualitative Definitions

The first category, qualitative definitions, recognized the connection between
curves and equations without expressing the strict or formal nature of their
correspondence. A total of 15 textbooks adopted this approach. For example,
Biot (1840) described the mutual representation of curves and indeterminate
equations as follows: “We may regard every line as susceptible of being
represented by an equation between two indeterminate variables; and,
reciprocally, every equation between two indeterminates may be interpreted
geometrically and considered as representing a line, the different points of
which it enables us to determine.” (Biot, 1840, p. 27). This explanation
addressed the relationship in a general and rhetorical manner, rather than in a
symbolic or algebraically rigorous way.

3.1.2 Type 2: Single-direction Definitions

The second category, found in 14 textbooks, fell into the trap of single-direction
definitions. Although these definitions emphasized that each point must satisfy
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the equation, they focused on only one direction of the correspondence,
neglecting mutuality. For instance, Young (1830) stated: “The line which any
equation represents, or in which the variable point (x,)) is always found, is
called the locus of that equation, or of the point (x,y).”(Young, 1830, p. 36).
This definition focused on the equation determining the curve but overlooked
the converse.

A similar asymmetry appears in Hardy’s definition, which stated: “The
equation of a locus is the equation which is satisfied by the coordinates of every
point on the locus, and by no others” (Hardy, 1897, p. 14). While precise, this
description emphasized sufficiency but did not explicitly require that all
solutions of the equation must lie on the locus—thus potentially compromising
completeness.

3.1.3 Type 3: Definitions Confused Curves with Functions

The third category confused the concepts of curves and functions. For example,
Riggs (1911) conflated the terms “equation” and “function” by stating: “In each
of the examples to be next studied, some simple locus of points will be
considered, and the equation which expresses the dependence of the ordinate of
any point of the locus upon the abscissa of the point will be derived. This
equation will be known as the equation of the locus.”’(Riggs, 1911, p. 41).
Similarly, Dowling (1914) argued: “The equation of the locus defines y as a
function of x, and the locus itself is the graph of this function.”(Dowling, 1914,
p. 53).

The confusion between equations and functions likely arose from historical
developments. The function concept, as introduced by J. Bernoulli (1667-1748)
and L. Euler (1707-1783), bore a formal similarity to equation expressions in
19™-century algebra textbooks. Early algebra textbooks often defined functions
through equations, and F. Klein (1849-1925) later emphasized unifying
mathematical content under the concept of functions. This historical
entanglement between “equation” and “function” has been well-documented
(Liu et al., 2021).

3.2 Rigorous Definitions

Over time, textbooks increasingly provided rigorous definitions of the
relationship between curves and equations. These definitions can be grouped
into three types.
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3.2.1 Type 1: Definitions by Describing

The first type of rigorous definition is derived through direct description. For
example, Peck (1876) defined it as follows: “The equation of the locus of points
satisfying a given condition is an equation in the variables x and y, representing
the coordinates, such that the coordinates of every point on the locus satisfy the
equation; conversely, every point whose coordinates satisfy the equation lies
on the locus.” (Peck, 1876, p. 42).

3.2.2 Type 2: Definitions Based on Set

A total of 6 textbooks utilized the theory of set to define the relationship
between curves and equations. Hamilton (1826) was the first to propose: “Let
f(x,y) be an indeterminate equation between x and y; then, the set of points (x,))
will form a curve, called the locus of the equation f{x,y) = 0.”(Hamilton, 1826,
p. 52).

Although Hamilton (1826) offered a rigorous definition, his proof that the
locus of a linear equation is a straight line fell into circular reasoning, possibly
due to the immaturity of set theory at the time (Hamilton, 1826, pp. 55-58). With
the later widespread acceptance of Cantor’s (1845-1918) set theory, some
textbooks began using set-theoretic notation. For example, Taylor (1962)
represented the intersection and union of two curves using set operations
(Taylor, 1962, p. 3). However, none of the surveyed textbooks used set notation
to define the correspondence between curves and equations explicitly.

3.2.3 Type 3: Definitions Based on Sufficient and Necessary Conditions

Some textbooks provided concise definitions using logical terminology. For
instance, after offering a descriptive definition, Taylor (1959) stated: “In other
words, for a specific point (x,y), the ordered pair (x,y) satisfies the equation if
and only if the point (x,y) lies on the curve.” (Taylor, 1959, p. 20).

4 The Temporal Distribution of Chapters on Curves and Equations

The analysis above highlights the widespread misconceptions surrounding the
concept of curves and equations in early textbooks, as reflected in the
prevalence of non-rigorous definitions. In contrast, rigorous definitions
demonstrate a variety of approaches converging on the same underlying
principles. Figure 3 illustrates the evolution of definitions in early textbooks,
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grouped by 20-year intervals.

From the figure, it is evident that prior to the 20th century, more than half
of the textbooks provided non-rigorous definitions, with qualitative definitions
being the most common. This indicates that many authors of early textbooks
approached the relationship between curves and equations primarily from a
qualitative perspective. Entering the 20th century, the proportion of textbooks
offering rigorous definitions gradually increased, with descriptive definitions

remaining the predominant approach.
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Figure 3. Evolution of the concepts of curves and equations

Notably, while more textbook authors attempted to rationalize the
relationship between curves and equations quantitatively, many fell into the
trap of focusing on only one direction of the correspondence. This
misconception persisted well into the mid-20th century, underscoring the
enduring challenges in achieving a comprehensive understanding of this
foundational concept.

5 Verification

Peck (1876) emphasized that “The statement of the definition must be
demonstrated, and the derived equation of the locus must be verified.” (Peck,
1876, p. 42). The verification methods in early textbooks can be broadly
categorized into three types.

5.1 Type 1: Proof by Contradiction

Tanner (1898), after deriving the equation 3y —x—3=0for the line passing
through the points P(3,2) and P,(12,5), provided two types of proof by
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contradiction to demonstrate that “any point not on the line does not satisfy the
equation.”(Tanner, 1898, pp. 61-63).

Method 1: In the derivation process, he used the property of proportionality
between corresponding sides of similar triangles. If a point is not on the line, it
is impossible to form a similar triangle, and hence the proportionality
y=2_x-3 does not hold.

5-2 12-3

Method 2: It was assumed that P, (x,, y,) was not on the line passing through
PP,. A perpendicular was drawn from P, to the x-axis, which intersected the
line PP, at P(x,,y,) , Where x,=x, but y, =y, . Substituting into
3y, —x, —3=0,it was found that 3y, — x, —3 # 0. Therefore, it was evident that
no point off the line satisfied the equation 3y —x—-3=0.

5.2 Type 2: Backward Reasoning

Young (1936) used backward reasoning to verify the derivation of the standard
equation of an ellipse. Starting from the equation of the locus,

PF, + PF, =2a (1)
he derived the standard equation of an ellipse:

x2 y2

? + b_2 = 1 (2)

He then verified that points satisfying equation (2) necessarily meet the
condition in equation (1). By substituting values from (2) into the derivation
steps, he showed:

tJ(x—c) +12 £ J(x+c) +1? =2a (&> - =b),

Four possible cases arose for the coordinates (x,y): Case (a): + +; Case (b):
—+; Case (¢): +—; Case (d): ——. Young (1936) then demonstrated that
only case (a) satisfied the condition PF, + PF, =2a, as in the other cases, the
triangle VPEF,’s two sides differed by more than the third side, 2¢. This
confirmed that the standard equation must meet the original condition. (Young,
1936, p. 36).

Cell (1951) further noted: “The verification in the second part can often be
simplified by reversing the numerical steps, as this ensures equivalency in the

derivation process without repeating each step in detail.” (Cell, 1951, p. 33).

5.3 Type 3: Direct Substitution
Smith (1954) while deriving the equation 2x — y—1=0for the locus of points
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equidistant from P (3, 0) and P, (—1, 2), set a point P ( Xy5 2%, — 1) satisfying the
equation. He substituted P, into the distance formula to calculate the distances
from P, to P, and P,, verifying their equality and thus confirming the derived
equation (Smith, 1954, pp. 20-22).

The above methods exhibit general applications and can be adapted based
on specific contexts. Some 20th-century textbooks, such as those by Roberts
(1918), acknowledged that exhaustive verification could sometimes be omitted
but emphasized its fundamental importance: “This step is so similar in all
examples that the student will not be required to give it, unless called for, but
he should never lose sight of the fact that this is one of the essential conditions
in the determination of the equation of a locus.”(Roberts, 1918, p. 48).

6  Discussion and Implications

As M. Kline (1990) observed, “The polished presentations in the courses fail to
show the struggles of the creative process, the frustrations, and the long arduous
road mathematicians must travel to attain a sizable structure.”(Kline, 1990, p.
xi). In this regard, non-rigorous definitions, rather than being dismissed, can
serve as valuable teaching resources to enhance students’ understanding of the
connection between curves and equations.

First, qualitative definitions align well with students' initial conceptual
understanding and can provide a foundation for deeper exploration. The second
type of non-rigorous definition, which focuses on only one direction of the
correspondence, highlights a common misconception. This can be utilized as
an opportunity to guide students in identifying counterexamples and developing
a more complete understanding of the bidirectional relationship. Finally, the
third type, which conflates curves with functions, reflects a persistent confusion
that many students also experience. This emphasizes the importance of
distinguishing between the two concepts in instructional settings, fostering a
clearer and more precise understanding.

As Schubring (2011) argues, using “historical errors” rather than
exclusively celebrating historical successes can be more effective in helping
teachers recognize the origins of common student difficulties. In this sense, the
flawed or incomplete definitions in early textbooks are not merely historical
artifacts, but potential pedagogical tools. By addressing these non-rigorous
definitions systematically, educators can not only help students overcome
common cognitive obstacles but also provide historical context that enriches
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the learning process. This approach underscores the value of integrating
historical perspectives into mathematics instruction, enabling students to
appreciate the gradual evolution of mathematical rigor while cultivating critical
thinking and problem-solving skills.
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