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ABSTRACT 

Curves and equations, also known as the Cartesian Connection, is an important and 
fundamental concept in plane analytic geometry, but it has been shown that students 
lack a rigorous understanding. Focusing on the concept of curves and equations, we 
investigated 84 American and British analytic geometry textbooks published from 1826 
to 1963. The study found that three types of non-rigorous definitions were prevalent in 
early textbooks published before the 20th century. The first type merely recognized a 
connection between curves and equations but did not express the nature of the strict 
correspondence. The second type, although intentionally emphasizing that each point 
needs to be satisfied, examined only one aspect of the correspondence, neglecting the 
bidirectional nature inherent in the relationship between curves and equations. The third 
category of non-rigorous definitions confused the concepts of curves with functions. 
Definitions of curves and equations have become increasingly rigorous in post-20th 
century textbooks, and these rigorous definitions can be divided into descriptive 
definitions, definitions based on the concept of set, and definitions based on sufficient 
and necessary conditions. It is noteworthy that the second category of non-rigorous 
definitions was not eliminated until the middle of the 20th century. Epistemological 
barriers in the historical development of the curves and equations concepts can become 
cognitive barriers for students in the classroom as well. Instructional strategies can be 
developed to guide students in recognizing non-rigorous definitions, leading them 
through a historical reconstruction of how concepts related to curves and equations have 
evolved. This approach facilitates a natural progression from qualitative to rigorous 
understanding. In addition, early textbooks also provide a variety of methods for 
verifying the Cartesian Connection, which provide abundant materials for teaching. 

1     Introduction 

The development of analytic geometry was a gradual process. Before its formal 
establishment, Apollonius (c. 262 B.C.-190 B.C.) and N. Oresme (1323-1382) 
used coordinate axes to study curves, while F. Viète (1540-1603) applied 
algebraic methods to solve geometric problems. In the 17th century, R. 
Descartes (1596-1650) and P. de Fermat (1601-1665) combined these 
approaches, establishing the connection between curves and equations within a 
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coordinate system. This lengthy evolution suggests that students may inevitably 
encounter difficulties when learning about curves and equations. 

Curves and equations, also known as the Cartesian Connection, refers to the 
principle that “a point is on the graph of the line l if and only if its coordinates 
satisfy the equation of l.” (Moschkovich et al., 1993). Despite its significance, 
research on how to effectively teach the Cartesian Connection remains limited. 
For instance, a study of high school students in Shanghai found that while 
textbooks introduce curves and equations, teachers rarely require students to 
verify the “if and only if” conditions for deriving equations, leading to 
confusion (Ruan et al., 2012). Similar findings by Knuth et al. (2000) and Moon 
et al. (2013) confirm that curves and equations remain challenging for both 
students and teachers. 

To explore this further, we analyzed 84 American and British analytic 
geometry textbooks published between 1826 and 1963. The following research 
questions guided our investigation: 

How were curves and equations defined in early textbooks? 
How did these definitions evolve over time? 

2     Methods 

This research is part of a program on studying early American and British 
textbooks (Figure 1), organized by the HPM Community in Shanghai, China. 
The program aims to provide resources for teaching from a historical 
perspective, promote a comprehensive understanding of mathematical concepts 
among pre-service and in-service teachers, and offer insights for the 
development of curriculum materials. The program primarily focuses on 
textbooks published between the 18th and 20th centuries, a period during which 
modern mathematical knowledge systems gradually evolved from exploratory 
constructions into standardized forms. Textbooks from this era not only 
preserve the historical traces of conceptual developments in fields such as 
algebra, geometry, trigonometry, and analytic geometry, but also reflect the 
early shaping of modern instructional systems. 
For this research, we focused specifically on analytic geometry textbooks, 
which became established as a distinct genre relatively late in the evolution of 
mathematics education. Based on a search in the HathiTrust Digital Library 
using the keywords “Analytic Geometry” and “Coordinate Geometry,” the 
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earliest suitable American or British textbook we identified was The Principles 
of Analytical Geometry, published in 1826. 
A total of 84 analytic geometry textbooks published between 1826 and 1963 
were selected. The textbooks were grouped into 20-year intervals, with their 
publication dates illustrated in Figure 2. In cases where a textbook was 
republished by the same author, the earliest version was selected unless 
substantial changes were made in later editions; in such cases, the revised 
edition was treated as a distinct textbook. Textbooks published after the mid-
20th century were generally excluded, as analytic geometry by that time had 
become a mature and highly standardized subject, rendering later works less 
informative for the purposes of this historical and conceptual study. 

 

Figure 1. Flowchart of the program 

 
Figure 2. Temporal distribution of 84 early textbooks 

3     Findings 

Briggs (1881) emphasized the foundational role of this connection in his 
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textbooks, noting: “This close relationship between curves and equations is the 
foundation of our discipline and warrants careful study. Once this concept is 
understood, the subject becomes natural and accessible; however, for anyone 
who neglects it or has an unclear grasp, analytic geometry will be 
incomprehensible.” (Briggs, 1881, p. 12). 

Although the idea of connecting curves and equations emerged with the 
works of Descartes and Fermat, their use of coordinates was limited to positive 
values. It was not until mathematicians such as J. Wallis (1616-1703) began to 
consciously incorporate negative coordinates that a more complete one-to-one 
correspondence between plane curves and bivariate equations became possible, 
as noted by Kline (Kline, 1990, p. 322). The rigorous understanding of this 
connection, however, took much longer to develop, as evidenced by the 
definitions found in early textbooks, which transitioned from non-rigorous to 
rigorous over time. 

3.1     Non-rigorous Definitions 

Some early textbooks offered definitions of the connection between curves and 
equations that were not rigorous enough. These can be categorized into three 
types. 

3.1.1   Type 1: Qualitative Definitions 

The first category, qualitative definitions, recognized the connection between 
curves and equations without expressing the strict or formal nature of their 
correspondence. A total of 15 textbooks adopted this approach. For example, 
Biot (1840) described the mutual representation of curves and indeterminate 
equations as follows: “We may regard every line as susceptible of being 
represented by an equation between two indeterminate variables; and, 
reciprocally, every equation between two indeterminates may be interpreted 
geometrically and considered as representing a line, the different points of 
which it enables us to determine.” (Biot, 1840, p. 27). This explanation 
addressed the relationship in a general and rhetorical manner, rather than in a 
symbolic or algebraically rigorous way. 

3.1.2   Type 2: Single-direction Definitions 

The second category, found in 14 textbooks, fell into the trap of single-direction 
definitions. Although these definitions emphasized that each point must satisfy 
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the equation, they focused on only one direction of the correspondence, 
neglecting mutuality. For instance, Young (1830) stated: “The line which any 
equation represents, or in which the variable point (x,y) is always found, is 
called the locus of that equation, or of the point (x,y).”(Young, 1830, p. 36). 
This definition focused on the equation determining the curve but overlooked 
the converse. 

A similar asymmetry appears in Hardy’s definition, which stated: “The 
equation of a locus is the equation which is satisfied by the coordinates of every 
point on the locus, and by no others” (Hardy, 1897, p. 14). While precise, this 
description emphasized sufficiency but did not explicitly require that all 
solutions of the equation must lie on the locus—thus potentially compromising 
completeness. 

3.1.3   Type 3: Definitions Confused Curves with Functions 

The third category confused the concepts of curves and functions. For example, 
Riggs (1911) conflated the terms “equation” and “function” by stating: “In each 
of the examples to be next studied, some simple locus of points will be 
considered, and the equation which expresses the dependence of the ordinate of 
any point of the locus upon the abscissa of the point will be derived. This 
equation will be known as the equation of the locus.”(Riggs, 1911, p. 41). 
Similarly, Dowling (1914) argued: “The equation of the locus defines y as a 
function of x, and the locus itself is the graph of this function.”(Dowling, 1914, 
p. 53). 

The confusion between equations and functions likely arose from historical 
developments. The function concept, as introduced by J. Bernoulli (1667-1748) 
and L. Euler (1707-1783), bore a formal similarity to equation expressions in 
19th-century algebra textbooks. Early algebra textbooks often defined functions 
through equations, and F. Klein (1849-1925) later emphasized unifying 
mathematical content under the concept of functions. This historical 
entanglement between “equation” and “function” has been well-documented 
(Liu et al., 2021). 

3.2   Rigorous Definitions 

Over time, textbooks increasingly provided rigorous definitions of the 
relationship between curves and equations. These definitions can be grouped 
into three types. 
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3.2.1   Type 1: Definitions by Describing 

The first type of rigorous definition is derived through direct description. For 
example, Peck (1876) defined it as follows: “The equation of the locus of points 
satisfying a given condition is an equation in the variables x and y, representing 
the coordinates, such that the coordinates of every point on the locus satisfy the 
equation; conversely, every point whose coordinates satisfy the equation lies 
on the locus.” (Peck, 1876, p. 42). 

3.2.2   Type 2: Definitions Based on Set 

A total of 6 textbooks utilized the theory of set to define the relationship 
between curves and equations. Hamilton (1826) was the first to propose: “Let 
f(x,y) be an indeterminate equation between x and y; then, the set of points (x,y) 
will form a curve, called the locus of the equation f(x,y) = 0.”(Hamilton, 1826, 
p. 52). 

Although Hamilton (1826) offered a rigorous definition, his proof that the 
locus of a linear equation is a straight line fell into circular reasoning, possibly 
due to the immaturity of set theory at the time (Hamilton, 1826, pp. 55-58). With 
the later widespread acceptance of Cantor’s (1845-1918) set theory, some 
textbooks began using set-theoretic notation. For example, Taylor (1962) 
represented the intersection and union of two curves using set operations 
(Taylor, 1962, p. 3). However, none of the surveyed textbooks used set notation 
to define the correspondence between curves and equations explicitly. 

3.2.3   Type 3: Definitions Based on Sufficient and Necessary Conditions 

Some textbooks provided concise definitions using logical terminology. For 
instance, after offering a descriptive definition, Taylor (1959) stated: “In other 
words, for a specific point (x,y), the ordered pair (x,y) satisfies the equation if 
and only if the point (x,y) lies on the curve.” (Taylor, 1959, p. 20). 

4     The Temporal Distribution of Chapters on Curves and Equations 

The analysis above highlights the widespread misconceptions surrounding the 
concept of curves and equations in early textbooks, as reflected in the 
prevalence of non-rigorous definitions. In contrast, rigorous definitions 
demonstrate a variety of approaches converging on the same underlying 
principles. Figure 3 illustrates the evolution of definitions in early textbooks, 



 249 

grouped by 20-year intervals. 
From the figure, it is evident that prior to the 20th century, more than half 

of the textbooks provided non-rigorous definitions, with qualitative definitions 
being the most common. This indicates that many authors of early textbooks 
approached the relationship between curves and equations primarily from a 
qualitative perspective. Entering the 20th century, the proportion of textbooks 
offering rigorous definitions gradually increased, with descriptive definitions 
remaining the predominant approach. 

 
Figure 3. Evolution of the concepts of curves and equations 

Notably, while more textbook authors attempted to rationalize the 
relationship between curves and equations quantitatively, many fell into the 
trap of focusing on only one direction of the correspondence. This 
misconception persisted well into the mid-20th century, underscoring the 
enduring challenges in achieving a comprehensive understanding of this 
foundational concept. 

5      Verification 

Peck (1876) emphasized that “The statement of the definition must be 
demonstrated, and the derived equation of the locus must be verified.” (Peck, 
1876, p. 42). The verification methods in early textbooks can be broadly 
categorized into three types. 

5.1   Type 1: Proof by Contradiction 

Tanner (1898), after deriving the equation for the line passing 
through the points and , provided two types of proof by 

3 3 0y x- - =

1(3,2)P 2 (12,5)P
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contradiction to demonstrate that “any point not on the line does not satisfy the 
equation.”(Tanner, 1898, pp. 61-63). 

Method 1: In the derivation process, he used the property of proportionality 
between corresponding sides of similar triangles. If a point is not on the line, it 
is impossible to form a similar triangle, and hence the proportionality

does not hold. 

Method 2: It was assumed that was not on the line passing through 
. A perpendicular was drawn from to the x-axis, which intersected the 

line at , where but . Substituting into 
, it was found that . Therefore, it was evident that 

no point off the line satisfied the equation . 

5.2   Type 2: Backward Reasoning 

Young (1936) used backward reasoning to verify the derivation of the standard 
equation of an ellipse. Starting from the equation of the locus,        

                                 (1)  
he derived the standard equation of an ellipse: 

                                      (2)  

He then verified that points satisfying equation (2) necessarily meet the 
condition in equation (1). By substituting values from (2) into the derivation 
steps, he showed: 

, 
Four possible cases arose for the coordinates (x,y): Case (a): ＋＋; Case (b): 

－＋; Case (c): ＋－; Case (d): －－. Young (1936) then demonstrated that 
only case (a) satisfied the condition , as in the other cases, the 
triangle ’s two sides differed by more than the third side, 2c. This 
confirmed that the standard equation must meet the original condition. (Young, 
1936, p. 36). 

Cell (1951) further noted: “The verification in the second part can often be 
simplified by reversing the numerical steps, as this ensures equivalency in the 
derivation process without repeating each step in detail.” (Cell, 1951, p. 33). 

5.3   Type 3: Direct Substitution 

Smith (1954) while deriving the equation for the locus of points 

2 3
5 2 12 3
y x- -

=
- -

3 3 3( , )P x y

1 2PP 3P

1 2PP 4 4 4( , )P x y 3 4x x= 3 4y y¹

4 43 3 0y x- - = 3 33 3 0y x- - ¹
3 3 0y x- - =

1 2 2PF PF a+ =

2 2

2 2 1x y
a b

+ =

2 2 2 2 2 2 2( ) ( ) 2  ( )x c y x c y a a c b± - + ± + + = - =

1 2 2PF PF a+ =

1 2PFFV

2 1 0x y- - =
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equidistant from and , set a point satisfying the 
equation. He substituted into the distance formula to calculate the distances 
from to and , verifying their equality and thus confirming the derived 
equation (Smith, 1954, pp. 20-22). 

The above methods exhibit general applications and can be adapted based 
on specific contexts. Some 20th-century textbooks, such as those by Roberts 
(1918), acknowledged that exhaustive verification could sometimes be omitted 
but emphasized its fundamental importance: “This step is so similar in all 
examples that the student will not be required to give it, unless called for, but 
he should never lose sight of the fact that this is one of the essential conditions 
in the determination of the equation of a locus.”(Roberts, 1918, p. 48). 

6      Discussion and Implications 

As M. Kline (1990) observed, “The polished presentations in the courses fail to 
show the struggles of the creative process, the frustrations, and the long arduous 
road mathematicians must travel to attain a sizable structure.”(Kline, 1990, p. 
xi). In this regard, non-rigorous definitions, rather than being dismissed, can 
serve as valuable teaching resources to enhance students’ understanding of the 
connection between curves and equations. 

First, qualitative definitions align well with students' initial conceptual 
understanding and can provide a foundation for deeper exploration. The second 
type of non-rigorous definition, which focuses on only one direction of the 
correspondence, highlights a common misconception. This can be utilized as 
an opportunity to guide students in identifying counterexamples and developing 
a more complete understanding of the bidirectional relationship. Finally, the 
third type, which conflates curves with functions, reflects a persistent confusion 
that many students also experience. This emphasizes the importance of 
distinguishing between the two concepts in instructional settings, fostering a 
clearer and more precise understanding. 

As Schubring (2011) argues, using “historical errors” rather than 
exclusively celebrating historical successes can be more effective in helping 
teachers recognize the origins of common student difficulties. In this sense, the 
flawed or incomplete definitions in early textbooks are not merely historical 
artifacts, but potential pedagogical tools. By addressing these non-rigorous 
definitions systematically, educators can not only help students overcome 
common cognitive obstacles but also provide historical context that enriches 

( )1 3 0P , ( )2 1, 2P - ( )0 0 0, 2 1P x x -

0P

0P 1P 2P
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the learning process. This approach underscores the value of integrating 
historical perspectives into mathematics instruction, enabling students to 
appreciate the gradual evolution of mathematical rigor while cultivating critical 
thinking and problem-solving skills.  
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