
 39 

EVOLUTIONARY ARGUMENTS FOR HISTORY OF MATH-
EMATICS IN MATHEMATICS EDUCATION: A CRITICAL 

AND CONTRUCTIVE DISCUSSION 

 
Tinne Hoff KJELDSEN1 & Uffe Thomas JANKVIST2 

1 Department of Mathematical Sciences, University of Copenhagen, Copenhagen, DK 
2 Danish School of Education, Aarhus University, Copenhagen, DK 

thk@math.ku.dk, utj@edu.au.dk 
 

ABSTRACT 
 
In research done in the field of history and pedagogic of mathematics, theories from 
other areas of didactics of mathematics are often an integral part. The vice versa is not 
the case, and when history of mathematics finds its way into general mathematics ed-
ucation research, it is often in forms related to so-called evolutionary arguments. In 
this paper, we discuss this by analyzing three influential theories in didactics of 

mathematics, which have been informed by history of mathematics: works by 

Anna Sfard (1991, 1995), Guy Brousseau (1997), and Guershon Harel and 

Larry Sowder (2007). We analyze their work with respect to how they use the 

history of mathematics and for what purposes in order to invite a discussion of 
the potential influence of HPM in more general mathematics education research.  

1 Introduction  

When we look at theories and theoretical frameworks and constructs within 

the HPM research area, which deal with the roles of history of mathematics in 

mathematics education and the significance of history for the teaching and 

learning of mathematics, a variety of theories from other areas of mathematics 

education form an integral part of much of the research. If we look at it from 

the other side, from mathematics education research at large, the history of 

mathematics does not play a significant role, and when it finds its way into the 

more general mathematics education research literature it is often in a form 

which is related to so-called “evolutionary arguments” (Jankvist, 2009). In 

this paper, we take a closer look at this by displaying some examples from 

mathematics education. We look at three firmly rooted and influential theories 

in didactics of mathematics, which have been informed by history of mathe-

matics: Anna Sfard’s model for learning of mathematical concepts, Guy 

Brousseau’s work on epistemic obstacles, and Guershon Harel’s and Larry 

Sowder’s development of students’ proof schemes. We analyze their work 
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with respect to how they use the history of mathematics and for what purpos-
es. Before presenting our analyses, we provide a brief introduction to evolu-
tionary arguments resorting to the history of mathematics in mathematics edu-
cation. Upon the analysis of the three cases, we invite a critical and construc-
tive discussion of the role of history of mathematics in mathematics education 
research and point towards other ways in which history (may) inform theoret-
ical developments in the field. 

2 Evolutionary arguments in mathematics education research  

The idea that “ontogenesis recapitulating phylogenesis” permeated education-
al thoughts, by transferring the idea from biology to psychology and cognitive 
development, and philosophies from the turn of the nineteenth century and 
well into the twentieth century—eventually known as the “genetic principle”. 
In mathematics, the German mathematician Felix Klein1 advocated for the 
genetic principle in teaching, that (quoted from Schubring, 2011, p. 82): 

… teaching should, by tieing to the natural disposition of the youth, lead them 
slowly to higher things and eventually even to abstract formulation, by following 
the same path on which the entire mankind struggled to climb from its naïve prim-
itive state upwards to more developed insight. 

In the early 1960s, leading mathematicians from North America published 
a memorandum “On the Mathematics Curriculum of the High School”, for-
mulating “fundamental principles and practical guidelines”, such as their 5th 
principle, labeled the “Genetic method” (Ahlfors et al., 1962, p. 190-191):  

It is of great advantage to the student of any subject to read the original memoirs 
on that subject, for science is always most completely assimilated when it is in the 
nascent state” wrote James Clerk Maxwell. There were some inspired teachers, 
such as Ernst Mach, who in order to explain an idea referred to its genesis and re-
traced the historical formation of the idea. This may suggest a general principle: 
The best way to guide the mental development of the individual is to let him re-
trace the mental development of the race—retrace its great lines, of course, and 
not the thousand errors of detail. This genetic principle may safeguard us from a 
common confusion: If A is logically prior to B in a certain system, B may still jus-
tifiably precede A in teaching, especially if B has preceded A in history. On the 
whole, we may expect greater success by following suggestions from the genetic 
principle than from the purely formal approach to mathematics.  

 
1 For a discussion on Felix Klein and the genetic principle, see Jahnke et al. (2022). 
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This plea for the genetic method was commented on by the director of the 
School Mathematics Study Group (SMSG), Edward G. Begle from Stanford 
University, who made it clear that most of the guidelines formulated in the 
Memorandum agreed with the texts of the SMSG, except, probably   

… the “Genetic Principle” stated in the fifth guideline. This principle, as stated, 
would, for example, deny to our students the efficiency of using algebra in the first 
course in geometry and would require children to learn to compute with Egyptian, 
Babylonian, Greek and Roman numerals before being introduced to the historical-
ly later but far more efficient place-value decimal system. (Begle, 1962, p. 426). 

Nonetheless, the genetic principle was put forward by at least the 65 mathe-
maticians in the USA and Canada, who signed the memorandum that was 
published in The American Mathematical Monthly in 1962.  

3 Three cases of theory building in mathematics education drawing on 
the history of mathematics 

The genetic principle re-entered the discourse in mathematics education in the 
1980s with Jean Piaget and his studies on the relation between psychogenesis 
and history of science (Schubring, 2011, p. 84). In the following, we will look 
at three cases from the past 30 years where evolution and genesis in the histo-
ry of mathematics is used to advocate theoretical constructs. 

3.1 A model for concept development informed by history  
In a well-known series of papers, Anna Sfard (e.g. 1991, 1995) presented 
a theoretical model for concept development. The model is based on ob-
servations from the history of development of mathematical concepts and 
is applied to the individual learning of mathematical concepts. Sfard 
(1995, p. 15) wanted to find the “roots of the difficulties experienced by 
students” when they are confronted with abstract mathematical concepts.   

She distinguishes between two different ways of conceiving mathemat-
ical objects: operational conception and structural conception. Her thesis 
is that there is an ontological gap between the two, which she found to be 
an explanation for the difficulties experienced by learners of mathematics 
in conceiving mathematical objects. By structural conception she meant 
being able to see and understand a mathematical entity as an (abstract) ob-
ject, which means being able to refer to it as a “real” thing. In contrast, or 
rather dual, to this conception, by operational conception she referred to 
processes, algorithms and actions, meaning, she explained: “interpreting a 
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notion as a process implies regarding it as a potential rather than an actual 
entity, which comes into existence upon request in a sequence of actions” 
(Sfard, 1991, p. 4). She argued that “In the process of concept formation, 
operational conceptions would precede the structural” and claimed that 
“this statement is basically true whether historical development or indi-
vidual learning is concerned” (Sfard, 1991, p. 10, italics in the original). 

Sfard took this as a basic conjecture from which she deduced her model for 

concept acquisition. It led to a model describing a cyclic process consisting of 

three phases: (1) The preconceptual stage, where mathematicians accustomed 

themselves to certain operations on already known (i.e. constructurally con-

ceived) objects. (2) A period of predominantly operational approach. In this 

phase the coming, new object begins to emerge. (3) The structural phase, 

where what has been emerging in the previous phases, becomes recognized as 

a full-fledged new mathematical object (Sfard, 1991, p. 13).  
She connected her model to students’ individual learning, quoting Pia-

get: “the [mathematical] abstraction is drawn not from the object that is 
acted on, but from the action itself.” (Sfard, 1991, p. 17). Comparably to 
the three phases above, she distinguished between three stages in individ-
ual learners’ concept formation. (1) Interiorization: the stage where “a 
learner gets acquainted with the processes which will eventually give rise 
to a new concept [...] These processes are operations performed on lower-
level mathematical objects.” (2) Condensation: the stage where “a person 
becomes more and more capable of thinking about a given process as a 
whole, without feeling an urge to go into details. [...] The condensation 
phase lasts as long as a new entity remains tightly connected to a certain 
process.” (3) Reification: happens “when a person becomes capable of 
conceiving the notion as a fully-fledged object. [...] Reification, therefore, 
is defined as an ontological shift.” (Sfard, 1991, p. 18-19) 

In her model, reification requires that one have tried to make operations 
with the notion as a whole. This is exactly, she argued, why reification is 
so difficult for mathematics learners, and this is her answer to her initial 
question of why students experience such difficulties when they are con-
fronted with abstract mathematical concepts. Sfard called it a vicious cir-
cle: In order to reify a mathematical object, one must already have used it 
as a (reified) object in higher-level interiorization processes. 
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In 1995, she further elaborated on her claims of historical and psycho-
logical parallels (Sfard, 1995, p. 17). She collected instances from history 
of algebra and from classroom experiments to argue that it is inherently 
difficult to transition from an operational to a structural approach to math-
ematical thinking (Sfard, 1995, p. 22). Because of this, she concluded, 

for those who teach, therefore, familiarity with the history of mathematics is not 
just optional; rather, it seems indispensable to make them alert to the deeply hid-
den difficulties concerned with new concepts. (Sfard, 1995, p. 34).  

3.2 Unavoidable epistemological obstacles 
Our next case stems from Guy Brousseau’s (1997) well-known Theory of Di-
dactical Situations, where history of mathematics comes into play when talk-
ing about epistemological obstacles—a notion Brousseau has borrowed from 
the French philosopher, Gaston Bachelard. Obstacles are often identified 
through students’ difficulties with or errors related to certain concepts. Ac-
cording to Brousseau, an obstacle is to be considered as a piece of knowledge, 
wrong as it may be, and not as a lack of knowledge. 

Brousseau distinguishes between obstacles of ontogenetic, didactical, or 
epistemological origin. The first ones are those due to limitations (e.g. neuro-
physiological ones) of a student at a given time. The second ones are those 
which depend on choices made within an educational system. The third kind 
is the ones of most interest to us here.  According to Brousseau, these obsta-
cles play a formative role and should not be avoided. They may, he wrote, be 
identified in the history of the concept itself. Brousseau’s general hypothesis 
was that “certain of the students’ difficulties can be grouped around obstacles 
attested to by history” (Brousseau, 1997, p. 96): 

It is in the analysis of resistance and in the debate […] one must look for elements 
which will allow the identification of obstacles for the students. In any case, it will 
never be enough to tack—to apply without modification—historical study onto di-
dactical study. It is from this origin, too, that we must draw arguments in order to 
choose a genesis of a concept suitable for use in schools and to construct or ‘in-
vent’ teaching situations that will provide this genesis. 

An important element is that historical studies may not be applied directly 
in a didactical situation; a modification must take place. Although it is not di-
rect ontogenesis-phylogenesis that Brousseau argues for, it still contains cen-
tral elements of evolutionary argumentation. Here, it may be relevant to al-
so notice Brousseau's concept of “genèse fictive” (fictive genesis), relat-
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ed to the “true functioning of science,” in the context of his distinction 
between savoir (knowledge as a body of content) and connaissance (per-
sonal understanding) (Brousseau, 1986). 

3.3 Historical-epistemological factors of students’ proof schemes 
According to Guershon Harel and Larry Sowder (2007, p. 809), “A per-
son’s (or a community’s) proof scheme consists of what constitutes ascer-
taining and persuading for that person (or community)”. They categorize a 
proof scheme into one of three main classes, each containing various sub-
classes. The first class is what they refer to as ‘external conviction proof’ 
schemes. These can appear as an authoritarian proof scheme, where some-
thing is believed to be true because an authority figure or textbook says so. 
Their second class is the ‘empirical proof’ schemes, which includes induc-
tive proof schemes, where one is convinced by specific empirical exam-
ples or a “crucial” generic example. Their third class is deductive proof 
schemes from mathematics, based on deduction from a set of premises. 

Upon describing their construct of proof schemes, Harel and Sowder 
turn to a discussion of mathematical and historical-epistemological factors 
in relation to proof schemes. They provide an analysis of the proof scheme 
constructed across three historical periods of mathematics: “Greek math-
ematics, post-Greek mathematics (approximately from the 16th to the 19th 
century), and modern mathematics” (p. 811). The reasoning that they pro-
vide is that proof schemes are used to validate assertions within specific 
contexts. Therefore, it is essential to consider the nature of these (histori-
cal) contexts when discussing proof schemes. Additionally, they argue, the 
motivation or intellectual need driving conceptual changes over time is 
important, hence their discussion focuses on three interconnected aspects 
of historical and epistemological development: (a) the context of proving, 
(b) the methods of proving (proof schemes), and (c) the motivation behind 
conceptual changes. An understanding of these elements can provide in-
sights into key aspects of learning and teaching proof, they assert, and this 
also with reference to evolutionary arguments: 

It is still an open question whether the development of a mathematical concept 
within an individual student or a community of students parallels the development 
of that concept in the history of mathematics, though cases of parallel develop-
ments have been documented (e.g., Sfard, 1995). If this is the case, one would ex-
pect that the path of development would vary from culture to culture. (p. 816) 
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Harel and Soweder are interested in what extent the history of mathe-
matics may reveal the motivation for the shift from more empirical proof 
schemes (and even external proof schemes) to deductive proof schemes:  

To what extent did the practice of mathematics in the 16th and 17th centuries re-
flect global epistemological positions that can be traced back to Aristotle’s speci-
fications for perfect science? These are important questions, if we are to draw a 
parallel between the individual’s epistemology of mathematics and that of the 
community. (p. 818) 
Although several of the references to evolutionary arguments that 

Harel and Sowder provide, are phrased as questions, e.g., as in the quotes 
above, their very endeavor of trying to find parallels between students’ 
learning of mathematics and the coming into being of mathematical con-
structs reflects the authors’ conception of the potential role of the history 
of mathematics in mathematics education.  

4 Discussion 

To be sure, the recapitulation thesis has been subject to criticism from the var-
ious domains of history, psychology and biology. Here we will only mention 
one aspect of the discussions within the field of history and didactics of math-
ematics, namely the underlying theory of history. As has also been pointed out 
by Schubring (2011) and by Furinghetti and Radford (2002), taken strictly, 
the recapitulation theory in the learning of mathematics leaves no room for a 
genuine history of mathematics. It presupposes a view of the history of math-
ematics as a subject that in essence only has a history in the sense that defini-
tions and theorems are articulated and written down in historical contexts. 
What is missing is sensitivity to the contexts in which the development of 
mathematics took place by people who lived and acted under specific histori-
cal circumstances. 

Harel and Sowder draw no conclusions regarding the evolutionary na-
ture of their investigation. Although they do not argue for or against the 
ontogenesis-phylogenesis thesis, it is still saying that when they refer to 
the history of mathematics, it is this thesis that underlies and permeates 
their investigation. An investigation that at its heart is “onto-phylo” since 
it searches for parallels between the historical, mathematical communities’ 
proof schemes and that of modern-day individuals. They are not blind, 
though, to the critiques (Harel & Sowder, 2007, p. 816): 
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Are there common elements or phases to different paths of development across 
cultures? Did the development of the concept of proof in, for example, China and 
India follow a similar path to that of the Western world or was there a leap in time 
from using perceptual proof schemes to modern axiomatic proof schemes? 
Brousseau suggested that history serves a role in the teaching of mathemat-

ics due to the inevitability of epistemological obstacles, although it is not to 
serve in a direct manner. Rather it must be considered from a didactical point 
of view and adapted to the teaching and learning situation of today. In that 
sense, it is perhaps not too different from the way Freudenthal saw history as 
a “guide” to guided reinvention (see Jahnke et al., 2022). Brousseau (1997, p. 
101) concluded that “historical arguments can intervene in choices of teaching 
under the surveillance of a Theory of Didactical Situations”.  

Sfard wrote against what she called a structural way of teaching new con-
cepts to students, which she found was in custom in high school teaching at 
that time. She is using historical observations to construct a model for the 
formation of mathematical concepts. She uses the model to understand stu-
dents’ cognitive behavior, and this is where her second thesis comes into play: 

what has been said (about the formation of concepts learned from history [in the 
1992 paper with the function concept as case, p. 65]) applies also to cognitive de-
velopment of mathematics students.  
She wants to make a case for another way of introducing mathematical 

concepts to students. She uses her model to say that we should begin opera-
tionally—and she uses traits from the history of mathematics to show instanc-
es where former mathematicians, according to her, have worked in that way. 
If we look at the practice of teaching, she is advocating for history of mathe-
matics as part of pre-service teacher education, so they can teach with history 
of mathematics, which, as we interpret her writings, may have similarities to   
the distinction of teaching with and about the nature of science in science 
teaching from Abd-El-Khalick’s (2013) framework (see also Kjeldsen, 2014). 

Our three cases are influential theories in didactics of mathematics, and 
they are examples of theory building that are informed by history of mathe-
matics—and for all three, it is in a form, which is related to evolutionary ar-
guments. On the one hand, in the huge amount of research done in the HPM 
community over the past decades (see e.g., Chorlay et al., 2022), we find in-
spiration and opportunities for research where the history of mathematics has 
potential to inform theory building in general mathematics education without 
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reference to evolutionary arguments. On the other hand, there are other theo-

ries in didactics of mathematics where history is a coherent domain to look for 

in order to inform further theory building, and there are (at least a few) ‘voic-

es’ in mathematics education research outside the HPM-group, pointing to-

wards history of mathematics having such a role. 

One such theory is Anna Sfard’s (2008) theory of commognition She did 

not herself make the connection, but within that theory it is possible to make a 

theoretical argument for using history of mathematics to make students aware 

of meta-discursive rules in mathematics and make them explicit objects of 

students’ reflections (Kjeldsen & Blomhøj, 2012; Kjeldsen & Petersen, 2014). 

This has been further investigated in teaching practice within the impressive 

TRIUMPHS project (e.g., Barnett, 2022), see also Bernardes and Roque 

(2015). 
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