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ABSTRACT 

In this paper, we study types and roles of visualization in four historic key moments: 
Greek geometry with Euclid's Elements and Hérigone; Algebra in Renaissance with 
Jerome Cardan and Jacques Peletier du Mans; Cartesian geometry in 17th century with 
René Descartes and Bernard Lamy; Logic with Gottfried Leibniz and John Venn. For 
this purpose, we use the classification of signs and the design of diagrams of Charles 
Sanders Peirce. It leads us to a semiotic history which is rich in reflections on teach-
ing practices with the aim, in particular, of enabling teachers to explain to students the 
role and meaning of signs, but also that of diagrams in mathematical practice. 

1 Introduction  

Our aim is to emphasize the role of visualization in teaching. This requires, 
not only to know when and how signs were introduced in history, but to pre-
sent different meaning of signs, patterns and writings in teaching of mathe-
matics such as to hold a discourse on figures, to give an operating status to ob-
jects, to generalize procedures, to represent relations between objects, or to 
transport practices and knowledge from one mathematical field into another.  
We begin by presenting the semiotic of Charles Sanders Peirce before using it 
to analyze four historic key moments.  

2 The division of signs by Charles Sanders Peirce  

Peirce (1839-1914) was an American logician and philosopher, son of the 
mathematician Benjamin Peirce. His numerous philosophical and scientific 
papers on semiotics or sign theory appeared in the Collected Papers. His divi-
sion of signs in three kinds, which he called “icons”, “indices” and “symbols”, 
had been given in a paper of 1885. Peirce, 1998, 460-461). 
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 “Icons” are used to represent the objects they resemble, as the “icon” for 
the square figure (Fig. 1, left), the “indices” represent objects to indicate ob-
jects, such as A, B, C, D for the vertices of a square (Fig. 1, center), “symbols” 
represent objects arbitrarily, as √2 for the magnitude of BC (Fig. 1, right). 

 
Figure 1. The three kinds of signs by Peirce 

The roles of “icons” and “indices” are related to their uses. “Icons”, which 
look like objects, can be used to observe them with a certain intention, such as 
the three equal triangles (Fig. 2, top). While the “indices” can indicate con-
nections to be observed. “Indices” 1, 2 and 3 invite us to establish a link be-
tween the angles of the triangles, to see the three angles of the triangle joined 
together to form a flat angle (Fig. 2, bottom). They are used here to show a 
visual phenomenon. Peirce thus specified the function of an index (Peirce, 
1885, p. 362): “I call such a sign an index, a pointing finger being the type of 
class. The index asserts nothing; it only says ‘there!’. It takes hold of our eyes 
as it were, and forcibly directs them to a particular object, and there it stops.”.  

 
Figure 2. Roles of icons and indices 

Peirce’s “diagram” is also linked to the idea of resemblance, to represent 
not an object but a relation between objects. He wrote: “The pure diagram is 



 29 

designed to represent and to render intelligible, the form of relation merely. 
Consequently, diagrams are restricted to the representation of a certain class 
of relations; namely, those that are intelligible” (Peirce, 1906, p. 314). 

2 Signs and diagrams in geometry: Euclid and Hérigone  

We examine the role of “signs” and “diagrams” with the Proposition 32 of 
Book I in Euclid's Elements and then in a textbook of Pierre Hérigone (1639). 

2.1   Signs and diagrams in Euclid's Elements  

Euclid began with two statements. The first statement gives the proposition 
without letter to designate the elements of the figure, while the second state-
ment uses “indices” that refer to a drawing (Euclid, 1956, p. 316):  

In any triangle, if one of the sides is produced, then the exterior angle equals the 
sum of the two interior and opposite angles, and the sum of the three interior an-
gles of the triangle equals two right angles. Let ABC be a triangle, and let one side 
of it BC be produced to D. I say that the exterior angle ACD equals the sum of the 
two interior and opposite angles CAB and ABC, and the sum of the three interior 
angles of the triangle ABC, BCA, and CAB equals two right angles. 

 
Figure 3. Proposition 32 of Book I  

This statement introduces an “icon” for the triangle ABC, which “resem-
bles” a triangle. But is not a triangle, since its segments are more or less thick 
lines, whereas a line is defined by Euclid as a length without width (definition 
2). The “indices” A, B, C, and D allow us to follow and to understand the dis-
course of the first statement (Fig. 3, left). The proof begins after construction 
of CE parallel to AB (Fig. 3, right) (Euclid, 1956, p. 317):  

Then, since AB is parallel to CE, and AC has fallen upon them, the alternate angles 
BAC and ACE are equal to one another (I. 29). Again, since AB is parallel to CE, 
and BD has fallen upon them, the exterior angle ECD is equal to the interior and 
opposite angle ABC (I. 29). But the angle ACE was also proved equal to the angle 
BAC; therefore, the whole angle ACD is equal to the two interior and opposite an-
gles BAC and ABC. 
The two first sentences have a common discursive pattern which forms a 

disposition to be observed and serves to associate them. This pattern is a “dia-
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gram” in the sense of Peirce, that makes intelligible a relationship between 
lines and angles (Peirce, 1885, p. 363-364):  

The truth, however, appears to be that all deductive reasoning, even simple syllo-
gism, implies an element of observation. Indeed, deduction consists to construct 
an icon or a diagram such as relations between parts of this icon have to present a 
complete analogy with parts of the object of reasoning, of experimenting upon this 
image in the imagination, and of observing the result so as to discover unnoticed 
and hidden relations among the parts.  

2.2    Signs and diagrams in Hérigone’s Elements  

The French professor of mathematics and algebraist Pierre Hérigone (Massa 
Esteve, 2006) edited The first six Books of the Elements of Euclid demonstrat-
ed by notes, with a very brief and intelligible method. He wrote in his Preface 
(Hérigone, 1639, np.): “seeing that the greatest difficulties were in proofs, on 
whose intelligence depends the knowledge of all parts of mathematics: I in-
vented a new method of making proofs, brief and intelligible, without the use 
of any language.” We took his proposition 32 of Book I of Euclid (Fig. 4).  

 

Figure 4. Proposition 32 (Hérigone, 1639, p. 74) 

  
Table 1. “Icons”, “indices” and “symbols” in Hérigone 
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Hérigone used “icons”, “indices” and “symbols” (Barbin, 2011) in the sense 
of Peirce (Table 1). The use of “symbols”, that means arbitrary signs, permits 
to observe “diagrams” better and to render them to be more “intelligible”.  

3 Symbols and diagrams in algebra: Cardan and Jacques Peletier 

Most of the signs of algebra were introduced in the 15th and 16th centuries in 
books on arithmetic and algebra. In this period, each author has his own ways 
of writing arithmetic and algebraic signs. For our purpose, it is interesting to 
observe and compare some writings of the equation 2 x2 – 5x = 23 (Plane, 
2006), to find out some types of symbols and their roles (Table 2).  

 
Table 2. Writings of an equation (Plane, 2006, p. 28)  

For arithmetic operations plus and minus, Jerome Cardan used signs p and 
m in 1545, that are abbreviations. While the German algebraist used + and –, 
introduced by Johannes Widmann in 1489, that are “symbols” because they 
seem arbitrary. For the unknown of an algebraic problem and its power, the 
French Guillaume Gosselin also used abbreviations L (Ligne) for the un-
known and Q (Quarré) for its square, like François Viète and Ramus, but Jo-
hannes Buteo (alias Jean Borel) used a geometric “icon” with the form of a 
lozenge for the square of the unknown. Rafael Bombelli and Albert Girard 
used numerical signs, that allowed them to make obvious, for example, the 
rule on the multiplication of powers of numbers. These last signs have to be 
considered as “indices”, that means signs to observe and for showing.  

In 1559, Buteo adopted the sign for equality introduced by the Robert 
Recorde who wrote: “to avoid the tedious repetition of these words: is equal 
to: I will set a pair of parallels, 2 lines of one length thus = because no 2 
thinks can be more equal” (Recorde, 1557, p. 235). His sign is both a geomet-
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ric “icon” and a “symbol”, a kind of “metaphor”. For several decades, alge-
braists preferred to write in full the word “equal”, which designates the prima-
ry relation of algebra but which is also the most frequent word in algebra.   

The introduction of symbolism in algebra made it possible to write algo-
rithms for solving algebraic equations in symbolic form, thus giving rise to 
what Peirce called the “icons” of algebra. Indeed, he also used the term “icon” 
for the representation of formulas, because they are used for observing calcu-
lations and finding solutions (Peirce, 1885, p. 364): 

As for algebra, the very idea of the art is that it presents formulae which can be 
manipulated, and that by observing the effects of such manipulation we find prop-
erties not to be otherwise discerned. In such manipulation, we are guided by pre-
vious discoveries which are embodied in general formulae. These are patterns 
which we have the right to imitate in our procedure, and are the icons par excel-
lence of algebra. 
Thus, the solution of an equation can be given by a formula, as we are used 

today. Cardan in his Ars Magna (1545) wrote a solution of the equation of de-
gree 3, x3 + 6 = 20, as an “algebraic icon” (Fig. 5, left). This transition from 
arithmetic to algebra led him to write and observe an imaginary solution for 
an equation of degree 2. It seemed to him “sophisticated”, but Bombelli would 
admit imaginary solutions with profit to solve equations of degrees 3 and 4. 

              
Figure 5. Formulas in algebra (Cardan, 1545, p. 250) (Peletier, 1554, p. 159) 

As a result, too, the algebraists and geometers of the 17th century consid-
ered what they called, not numbers, but “irrational quantities” and “negative 
quantities”, because symbols made it possible to observe that arithmetic oper-
ations could be extended to these quantities (Barbin, 1995).  

In the first algebra book in French, edited in 1554, Jacques Peletier consid-
ered that irrationals can be considered as real numbers because “they have 
their algorithm, their order and infallible rules, as well as the rational ones " 
(Peletier, 1554, p. 131-132). “Symbols” permit him to show the similarity of 
the rules and the operations for rational and for irrational numbers, for in-
stance in a multiplication between (Ö24 – Ö6) by (Ö18 + Ö2) (Fig. 5, right).  
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4 Signs and diagrams in geometry: Descartes and Lamy  

In The geometry of 1637, that is a part of his Discourse of the method, Des-
cartes began by explaining how to use the operations of arithmetic in geome-
try. For example, the product of two segments is still a segment for Descartes, 
and not a rectangle, as in Euclid's Elements. That is why, he introduced a 
segment that he called “unit”, by analogy with the unit of arithmetic and 
which he denoted by the symbol “1”. This “symbol” is not, like for Peirce, an 
arbitrary sign. Taking AB the unit, the product of BD by BC is BE, thanks to 
Thales’ theorem (Fig. 6).  

 
Figure 6. The product of two segments (Descartes, 1637, p. 334) 

Descartes proposed a method that made it possible to solve “all geometric 
problems”. It is based on an algebraic calculation of segments with the sym-
bols of arithmetic operations and the square root. It proceeds in five steps: 1) 
the problem must be assumed to be solved; 2) designate each known and un-
known segment by a “symbol”, x, y, z, etc. for the unknown segments and a, 
b, c, etc. for known segments; 3) translate the problem into relationships be-
tween these letters; 4) obtain one or more equations; 5) solve the equation(s).  

If we write, like Descartes, each segment by one italic letter only (Fig. 6), 
if BD = a, BC = b, BE = d, AB = 1, then d = ab. These letters are “symbols” 
that represent segments. The transition from the geometric problem to the al-
gebraic one is therefore based on a new use of “symbols” in geometry, that 
means a symbolic arithmetization of geometry. This translation has the effect, 
as Descartes liked to remark, of no longer having to contemplate the figures of 
geometry, but to observe calculations. Therefore, there is a shift from “geo-
metric icons” to the diagrams, that are “algebraic icons”.  

Let us examine the transition from “geometric icons” to “algebraic icons” 
by reading the Cartesian method in Bernard Lamy’s textbook Elements of ge-
ometry (1734). Lamy took the proposition 4 of Book II of Euclid’s Elements. 
It must be proved that, given any point D of a given segment AB, the area of 
the square constructed on AB is equal (in area) to (the sum of) those of the 
squares on AD and DB and twice the rectangle between AD and DB (Fig. 7).  
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Figure 7. Proposition 4 of Euclid’s Book II (Euclid, 1956, p. 379). 

After the construction of the “geometric icons”, Euclid’s proof is based on the 
observation of “geometric icons”. While, after having stated the Cartesian 
method, Lamy wrote (Lamy, 1734, p. 138):  

Let a line AB be cut in two parts by a point D. We have to prove that AB2 = 
AD2 + 2 AD × DB + DB2.  

 
Let AD = b, DB = d. Therefore AB = b + d. But the square of b + d is b2 + 2 bd + 
d2. But AD2 = bb, DB2 = dd, 2 AD × DB = 2bd. Therefore AB2 = bb + 2 bd + dd. 

It is noteworthy that Euclid’s “geometric icons” have disappeared. Lamy only 
represented a segment with three points. The transition from geometry to al-
gebra requires the Cartesian translation of the problem, namely: 

AB2 = AD2 + 2 AD × DB + DB2. 
Its symbolic script, where each segment is represented by a letter, is:  

(b + d)2 = b2 + 2 bd + d2. 
Lamy concluded by observing this algebraic icon, “an icon par excellence of 
algebra”, which is true as the result of an algebraic calculation. In the seven-
teenth century, evidence of the calculation seemed more enlightening than 
Euclidean discourse, which seemed more likely to convince (Barbin, 1992). 

5 Graphics and diagrams in Logic: Leibniz and Venn  

From Aristotle, logic appears as a means of verifying propositions by using 
schemas (Barbin, 2024). Peirce considered Aristotelian syllogisms as cases of 
what he called diagrams: “For instance, take the syllogistic formula, 

    All M is P 
    All S is M 
    (so) All S is P. 

This is really a diagram of the relations of S, M and P” (Peirce, 1885, p. 364).  
Leibniz introduced two geometric graphics to represent Aristotle's premis-

es and syllogisms in a Latin manuscript of 1686, only known at the beginning 
of the 20th century, thanks to its edition by Louis Couturat. In the graphics, the 
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affirmative universal premise “All B are C” is represented by two nested seg-
ments B and C. In the second, the premise is represented by nested circles. For 
the other ones, segments and circles are disjoint or overlapping (Fig. 8). Syl-
logisms are represented in the same way and, according to Leibniz's manu-
script, they are thus “verified” (Fig. 9). 

 
Figure 8. The premises in Leibniz (Leibniz, 1686, p. 292-293) 

 
Figure 9. The syllogism “Barbara” in Leibniz (Leibniz, 1686, p. 294) 

Representation of premises and syllogisms by means of circles appears in 
Leonhard Euler's Letters to a Princess of Germany (Euler, 1802, p. 397): 

These circles, or rather these spaces, for it is of no importance of what figure they 
are of, are extremely commodious for facilitating our reflections on this subject, 
and for unfolding all the boasted mysteries of logic, which that art finds it so diffi-
cult to explain; whereas, by means of these signs, the whole is rendered sensible to 
the eye. 
He did not mention Leibniz and the success of his Letters led to the circles 

being called “Euler's circles”. Peirce studied them under the name of “Euler 
diagrams” in a paper of 1911. He explained how a syllogism is “illustrated by 
means of circles” on an example of the same type as Leibniz. He wrote that 
after Euler, there were several attempts to improve his system, but they were 
all failures until the publications of the logician John Venn.  
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In his 1881 Symbolic Logic, Venn associated syllogisms with “diagrams”: 
“This will set before the eye, at a glance, the whole import of the propositions 
collectively” (Venn, 1881, p. 123). He took care to distinguish the “Euler’s 
circles”, from his own diagrams. He took the syllogism “Celarent”: 
          No y is z 
          All x is y 

(so) No x is z 
With Euler, the circles are drawn one after the other. First, we must draw two 
disjoint circles y and z corresponding to the premise “No y is z”, then the cir-
cle x is inscribed in the circle y, to conclude that “No x is z” (fig. 10, left). On 
the contrary, with Venn diagrams, the circles are drawn from the beginning in 
a general position and then the areas corresponding to the premises are re-
moved one by one. Here, we first remove (or hatch) all of the part of the circle 
y that is in the circle z. Then we hatch the part of x that is not in y. We can 
then see that all the remaining (unhatched) part of the x-circle is not in the rest 
of the z-circle (fig. 10, right). For Venn, diagrams were a “visual aid”: “One 
main source of aid which diagrams can afford is worth noticing here. It is that 
sort of visual aid which is their especial function” (Venn, 1881, p. 118). 

           

Figure 10. Euler’s circles and Venn’s diagram (Venn, 1881, p. 115-116)  
Peirce wrote that Venn had made a marked improvement and he criticized Eu-
ler’s original proposal on the scope of “diagrams” (Peirce, 1911, p. 354):   

What is it, then, that these diagrams are supposed to accomplish? Is it to prove the 
validity of the syllogistic formula? That sounds rather ridiculous […] Suppose we 
ask ourselves why it is that, if a circle P wholly encloses a circle M which itself 
wholly encloses a circle S, the circle P necessarily wholly encloses the circle S.  

Then, he made several improvements to the Euler’s diagrams.  

6. What a semiotic history can teach us  

The extreme attention of Peirce to the “philosophy” of notations, signs, and 
diagrams in mathematics and in logic explains why his work can be so valua-
ble to mathematicians and teachers, because it linked to the meaning of the 
signs and graphics, to their usefulness in the practice of mathematics.  
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Semiotic history à la Peirce allows not to confine to a merely chronologi-
cal history of signs, but to make a way into an epistemological history, as we 
show in this paper, that leads us: 1) to better see and understand the difficul-
ties of the students with signs, especially in the introduction of algebraic sym-
bols; 2) in general, to be careful with the students when introducing “sym-
bols” by clarifying their arbitrary and their pronunciation; 3) to explicit them 
the roles and meanings of signs: signs are not simply notations, they permit to 
hold a discourse on figures in geometry, to represent relations between objects 
and to generalize procedures in arithmetic, to give an operating status to irra-
tional and negative numbers; 4) to transport practices and knowledge from 
arithmetic to algebra and then to geometry, especially in the introduction of 
cartesian geometry ; 5) in general, to be careful with the students to the pas-
sage from one meaning to another for the same symbol. 

Semiotic history also leads us to emphasize visualization in mathematics. 
Peirce broadened his discourse on signs in “An Essay toward Improving our 
reasoning in security and in uberty”, by situated them in the general frame-
work of the space, on the sheet of a paper (Peirce, 1998, p. 472):   

Reasoning is dependent on Graphical Signs. By “graphical” I mean capable of be-
ing written or drawn, so as to be spatially arranged […]. I do not believe one can 
go very deeply into any important and considerably large subject of discussion 
without using space as a field in which to arrange mental processes and images of 
objects.  

Mathematics is writing, and what we see, and which everyone can recognize 
as mathematics, is writing. I like to write "I think with my pen" with Wittgen-
stein, and "I think with my inkwell" with Peirce. In the mathematics class, a 
specific time to write and to see what is thought in writing therefore seems 
necessary 6) to encourage students to visualize (not just to see); 7) to give stu-
dents time to recognize patterns (diagrams) and to know how to use them with 
a full understanding; 8) to resort to useful diagrams to represent reasoning; 9) 
to encourage students to freely represent their ideas.  

REFERENCES  

Barbin, É., (1992). The meanings of mathematical proof: on relations between history 
and mathematical education. In Anthony, Joby M. (Ed.), Eves' Circles, The Math-
ematical Association of America, 34, 41–52. 

Barbin, É., (1995). Saisir l'irrationnel : dire, montrer, faire toucher. Bulletin de 
l'APMEP, 400, 775–796. 



 38 

Barbin, É., (2011). Voir des figures, des raisonnements et des équations : une ap-
proche sémiotique de la démonstration. In Barbin É., Lombard P. (Eds.), La figure 
et la lettre. Nancy, Presses Universitaires de Nancy, 189–211. 

Barbin, É., (2024), Sur les relations historiques entre les démonstrations mathéma-
tiques et la logique. Repères IREM, 135, 33–57.  

Cardan, J. (1545). Ars magna, sive de regulis algebraicis. In Opera Omnia, Caroli 
Spon (Ed.), IV, 1663. Lyon, Huguetan et Ravaud.  

Descartes, R. (1637). Discours de la méthode. Leyde, Jan Maire.  
Euclid (1956). Euclid's Elements, vol. 1, Heath, T. L. (Ed.). New-York, Dover. 
Euler, L. (1802). Letters of Euler addressed to a German Princess, vol. I. London, 

Murray and Highley. 
Hérigone, P. (1639). Les six premiers livres des Éléments d'Euclide, Paris, Henry Le 

Gras.  
Lamy, B. (1734). Les éléments de la géométrie ou de la mesure de l’étendue, Amster-

dam, Mortier. 
Leibniz, G., (1686). De dormæ logicæ comprobatione per linearum ductus. In Coutu-

rat, L., Opuscules et fragments inédits de Leibniz, 1903, Paris, Félix Alcan, 292–
320. 

Massa Esteve, R. (2008). Symbolic language in early modern mathematics: The Alge-
bra of Pierre Hérigone (1580-1643), Historia mathematica, 35, 285-301. 

Peirce, C. S. (1885). On the algebra of logic. A Contribution to the Philosophy of No-
tation. In Hartshorne C., Weiss, P. (Eds), Collected Papers of Charles Sanders 
Peirce, vol. III. Cambridge, Harvard University Press, 1933, p. 210–249. 

Peirce, C. S. (1911). Euler Diagrams. In Collected Papers of Charles Sanders Peirce, 
Harvard University Press, vol. IV. Cambridge, Harvard University Press, 1933, 
p. 349–371.  

Peirce, C. S. (1906). Prolegomena for an Apology for Pragmatism. In Carolyn Eisele 
(Ed), The New Elements of Mathematics, IV. Mouton, The Hague, 1976, 313–330. 

Peirce, C. S. (1998). The Essential Peirce, Selected Philosophical Writings, Vol. 2, 
(1893–1913), Peirce Edition Project, eds., Indiana University Press, Bloomington 
and Indianapolis. 

Peletier, J. (1554), L'algèbre de Jacques Peletier du Mans, Lyon, Ian de Tournes. 
Plane, H. (2006). Comment ils auraient écrit, Plot, 13, 28. 
Recorde, R. (1557). The Whetstone of Witte, London, John Kingston.  
Venn, J. (1881). Symbolic Logic. London, Mac Millan and Co.  
ion, 10(4), 391–408. 


