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ABSTRACT 

Recognizing the contributions in research on teaching and learning of mathematics of 

change, we present a first approximation to the process of the mathematization of flu-

id motion from a practice-centered approach. To study this process, we carried out an 

analysis of original sources in the area of Hydrology, from where we infer some var-

iational practices. 

1 Introduction 

In research on teaching and learning of mathematics of change (see Kaput, 

1994) we find at least two approaches focused on variational aspects. On the 

one hand, the Covariational Reasoning framework (Carlson et al., 2002) de-

veloped on the notion of mental action, and on the other, the Variational 

Thinking and Language research line adopts a social point of view and it’s the 

basis of the Socioepistemological Theory (ST) (Cantoral, 2020; Cantoral & 

Farfán, 2004). Our project arises within the last approach, where specific 

mathematical practices have been identified as fundamental in the mathemat-

ics of change, such as comparison, seriation, estimation, and prediction 

(Cantoral et al., 2018). Recognizing in the literature that most contributions in 

this research approach are being developed around the mathematization of a 

particle motion (see Cantoral et al., 2018), our project seeks to extend it by 

studying the process of the mathematization of fluid motion and begins ana-

lyzing original sources searching practices that accompany this process. In a 

later phase of the project, the results of this one will base a design research 

that promotes variational practices in university students. 

2 Theoretical and methodological considerations 

The ST prioritizes practices that accompany work with mathematical objects, 

interested in their role in the construction of mathematical meaning (Cantoral, 
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2020). For this, a sociocultural posture is adopted, recognizing different forms 

of mathematical knowledge as valid, among them, scientific, popular, and 

technical (Cantoral et al, 2018). For this reason, studies are carried out in var-

ious scenarios (school, historical, and professional, among others). 

According to a practice approach, practice is conceived as organized nex-

uses of activity composed of actions, which are executions of bodily doing 

and saying (Schatzki, 2001). In the ST focusing on their mathematical charac-

ter, these practices are organized in a nested model composed at the first lev-

els by actions, activities, and socially shared practices (see Cantoral, 2020). 

In the methodological phase, these practices are identified with analytical 

questions: what is done and said?, how is it done and said?, and why is it 

done?, (see Cantoral et al., 2023). 

Here, we present a synthesis of the analysis of technical knowledge (Hy-

drology) in a historical setting, to identify variational practices that accompa-

ny the mathematization process of groundwater motion. 

3 Preliminary results 

As a first approximation to the mathematization of fluid motion, relied on 

Freeze & Cherry (1979), we analyze mathematical practices on the Darcy’s 

experiments developed for the water supply of Dijon (reported in 1856). 

First, we identify the consideration of a straight circular cylinder filled 

with sand with a cross-section with area A, hermetically closed at each end 

with tubes allowing water inlet and outlet and equipped with a pair of ma-

nometers at a distance Δl from each other (see Fig. 1a). We interpret [what is 

done?] geometrize the phenomenon and recognize variables involved; [how is 

it done?] using geometric shapes and establishing a reference system. Imme-

diately, a specific flow rate as v = Q/A (where Q is the volume of water per 

time unit) and Δh = h2 – h1 (difference of heights at the manometers) are de-

fined. We assume [what is done?] constructing new comparison ways; [how is 

it done?] establishing other variables composed of more than one magnitude. 

Darcy’s experiments showed that v is directly proportional to Δh when Δl 

is held constant, and inversely proportional to Δl when Δh is held constant. 

This relationship known as Darcy's Law describes groundwater flow in po-

rous media and can be written as v = –K dh/dl (where K is the hydraulic con-

ductivity, a soil property). We interpret [what is done?] establishing a rela-
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tionship between variables; [how is it done?] measuring and comparing the 

change of variables. 

  

Figure 1a. Darcy's Law Experiment Figure 1b. Elemental control volume 

 

This law is used to establish the equations for a steady-state flow in an iso-

tropic homogeneous medium (the conductivity K is constant and independent 

of the measuring direction). Consider an elemental control volume (see fig. 

1b) and establish the continuity equation . 

We identify [what is done?] geometrizing the phenomenon; [how is it done?] 

using geometric shapes, establishing a reference system, and using physical 

principles. Then, incompressible fluid is considered where density is constant, 

, and replacing vx, vy, y vz by its corresponding Darcy's 

Law we obtain the steady-state flow equation through an anisotropic saturated 

porous medium:
 

. Later, for an 

isotropic homogeneous medium Kx = Ky = Kz y K (x, y, z) = C, the equation is 

reduced to the Laplace equation:
 

. Here, [what is done?] 

Simplifying the differential equation; [how is it done?] using physical princi-

ples to constantifying variables]. 

In synthesis, a geometrization of the phenomenon is made by considering a 

straight circular cylinder (rectangle in fig. 1a) and a cube (fig. 1b), a reference 

system is constructed for comparing magnitudes: in the first case (fig. 1a), be-

tween heights at the manometers and distance between them; and second case 

(fig. 1b), between amounts of mass entering and leaving the elementary con-

trol volume. Also, physical principles are used to express the relationships be-

tween magnitudes in way of differential equations: in the first case, the pro-
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portional relationships are expressed in the form of Darcy's Law; and in the 

second, the Laplace equation. Finally, variables are constantified using physi-

cal principles, i.e., mathematical expressions are reduced by considering cer-

tain variables as constants, for example, by limiting the flow to a steady state 

or a homogeneous and isotropic medium. 

4 Conclusion 

In this process of mathematizing of fluids motion in the case of groundwater, 

based on the nested model (Cantoral, 2020) we recognize as actions: geome-

trizing of movement phenomena, and constructing a reference system; as ac-

tivities: measuring and comparing magnitudes; as socially shared practices: 

constantifying variables using of physical principles to arrive to differential 

equations that relating variables and describe the behavior of phenomena. 
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