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ABSTRACT 

Motivated by the historical connections between the Wallis’ product formula for π and the 

approximation of the binomial by the normal distribution in probability theory, we dis-

cussed with our students - prospective elementary school teachers - an elementary proof of 

this formula, which, though initially given in a geometric context, admits a probabilistic 

interpretation as we showed. 

1. Introduction

In 1656, Wallis published his product formula for π (W.P.) and the relevant in-

vestigation in his Arithmetica infinitorum (Stedall, 2004, pp. xvii-xx, proposition 

191). W.P. is an important mathematical result that historically had equally im-

portant applications, particularly in relation to the early development of 

probability theory in the 18th century. Specifically, in 1733 De Moivre used it as a 

key tool in his pioneering work on the normal approximation of the symmetric 

binomial distri-bution, which in turn was historically the first normal 

approximation (Hald, 2003, pp. 468-484; Khrushchev, 2006; Stigler, 1986, ch. 2). 

Moreover, in this context both Stirling and De Moivre found in 1730 (slightly 

different) approximations of n! (Hald, ibid). This use of the W.P. shows its crucial 

role in the development of prob-ability, so that even in the 18th century the 

connection between analysis and proba-bility was already coming to light. 

Therefore, given the importance of the W.P. in this context, we looked 

exhaustively at its historical development, for getting aided by history to find out 

how to teach its proof in our introductory course on probabil-ity and statistics 

addressed to prospective elementary school teachers (no publica-tion seems to 

exist on empirical didactical work concerning its proof). Our students have a very 

limited (and in many cases, weak) mathematical background, but never-theless, 

have to cope with elementary probability and statistics, including the bino-mial 

distribution, an understanding of the significance of the law of large numbers, the 

normal distribution and its significance in relation to the central limit theorem and 

in particular as an approximation to the binomial distribution. This led us to 
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wonder whether there is an elementary probabilistic proof of this formula adequate 

for our purpose. Although in our historical investigation we identified 15 proofs of 

W.P. since Wallis’ time (most after 1980), none was an elementary probabilistic 

one48, and all but two, use advanced mathematics: Yaglom and Yaglom (1987, 

pp.24, 36-37) use complicated trigonometry; Wästlund (2007) uses elementary al-

gebra and geometry (both proofs employ the squeezing theorem of limits). Howev-

er, we realized that a feature implicit to the latter (not mentioned by Wästlund) is 

that basic quantities in the proof can be interpreted as probabilities, hence related 

algebraic relations as probabilistic properties. 

So, with Wästlund's proof translated into an elementary probabilistic one and 

with a variant of his geometric argument, we taught the proof in the context of the 

normal approximation to the symmetric binomial. This allowed to comment on how 

W.P. was used in De Moivre’s work even though we did not develop the connection 

in the way he did. Nevertheless, along these lines it became possible through history 

to provide the students with hints on the historical connections between probabilis-

tic concepts and mathematical analysis. 

2. The teaching framework

In the teaching activity 26 volunteers participated, 17 having followed no intro-

ductory course on calculus. All were taught in high school the algebra and geome-

try necessary for the proof, though in an initial test (including questions on poly-

nomial expansion, solving a linear system of equations, properties of powers and 

fractions) 7 gave answers that indicated significant weaknesses in elementary al-

gebra. Discussion on the proof and applications of W.P. started on the 5th course 

week for 12 hours. 

 Until then students had been taught basic elements of combinatorics, the addi-

tive and multiplicative rules of probability and its extension to more events (the 

chain rule of probability) and the binomial and hypergeometric distributions, to-

gether with examples and applications. 

3. The implemented teaching approach

Originally, the teacher told the students that they were going to consider the limit 

48 Though several recent proofs employ advanced tools and results of probability theory and mathemat-

ical analysis (Chin, 2020; Kovalyov, 2011; Miller, 2008; Wei et al., 2017). 
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of an important product, 
1×3

22 ×
3×5

42 × … ×
(2𝑛−1)×(2𝑛+1)

(2𝑛)2 , and that this limit was 

initially found by Wallis in 1656 and provided information about Wallis, his work, 

and the importance of W.P. (Stedall, 2004, pp. xi-xxxiii; Khrushchev, 2006). He al-

so said that they were going to study a variant of Wästlund’s proof, because it needs 

only elementary mathematics. 

3.1 The first properties discussed with the students 

(a) The probability at the center of the symmetric binomial with even number of tri-

als is B(n,2n,0,5) = 
(2𝑛)!

(𝑛!)2 ×
1

22𝑛 =  
(2𝑛−1)‼

(2𝑛)‼
 with bn = B(n,2n,0,5) for n ≥ 1, and b0 = 1 

by definition. (b) 2n×bn = bn-1+...+b1+ b0. 

3.2 The partial Wallis product and its relation to bn 

The teacher explained that, for 𝜑0 = 0, 𝜑𝑛 = 𝑏𝑛
2 × (2𝑛 + 1), n∈ℕ, and rearranging 

the factors in the numerator of 𝑏𝑛
2, the inverse of the partial W.P. becomes 

 𝜑𝑛 =
1×3

22 ×
3×5

42 × … ×
(2𝑛−1)×(2𝑛+1)

(2𝑛)2  .  

Moreover, setting 𝑎𝑛 = 𝑏𝑛
2 × 2𝑛, 𝑎0 = 0, 𝑎1 =

1

2
 , and for n > 2 rearranging the 

factors in the denominator of 𝑏𝑛
2, gives 𝑎𝑛= 

1

2
×

32

4×6
×

52

6×8
× … ×

(2𝑛−1)2

(2𝑛−2)×2𝑛
.  

Then he discussed that (i) φn > φn+1; (ii) αn+1 > αn; (iii) 
𝑎𝑛

𝜑𝑛
=

2𝑛

2𝑛+1
  

Thus φn > αn and αn approaches φn as n increases; (iv) by (i)-(iii), αn and φn have 

the same limit C, still to be found, and φn > C > αn. 

3.3 A simple Pólya-Eggenberger urn model  

The following property is of central importance in Wästlund’s proof 

                           b0bn + b1bn-1 +・ ・ ・+ bnb0 = 1                                    (1) 

He proves it algebraically, but we proved it probabilistically. For this we conceived 

a simple Pólya urn model, running as follows: Initially, an urn contains a black and 

a red ball. At each trial, we draw randomly a ball from the urn and return it to the 

urn plus two new balls of the same color. The model was discussed with the stu-

dents; in particular, finding the probability Pl(k,n) to get k black balls in n succes-

sive random trials, with their order of occurrence being immaterial. We proved that 

Pl(k,n) = bk×bn-k. Then we got Pl(0,n) + Pl(1,n) +…+ Pl(n,n)= 1, since it is the sum 

of probabilities of all possible events, all being mutually exclusive. Finally, substi-

tuting the probabilities in this sum and using Pl(k,n) = bk×bn-k the desired property 
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resulted. 

The generalization of the urn model with three parameters was discussed next 

and information on Polya’s work in mathematics, physics, and mathematics educa-

tion was given (e.g., Alexanderson, 2000). Students’ work on Polya’s urn models, 

though limited, was a significant introduction to the subject. 

3.4 A grid for representing the probability Pl(k, n)=bk×bn-k and its properties 

 

The first column of the grid has width b0, the next has width b1, etc. The rows are de-

termined similarly. Columns and rows are enumerated starting from 0. So, column k 

has width bk and row m has height bm. Their intersection is a rectangle, Rec(k, m), 

with dimensions bk, bm and area AreaRec(k, m) = bk×bm, e.g. in black color the Rec(1, 

6). Let Ak be the sequence of rectangles Rec(0,k), Rec(1,k-1), …, Rec(k,0) (e.g., A4 

is the sequence in grey). Since AreaRec(i, j)= bi×bj, the union of the surfaces of 

the rectangles of Ak has area: AreaAk = b0×bk + b1×bk-1 +…+ bk×b0 =1, by (1). Let Πn 

be the polygon whose surface is the union of the surfaces of the rectangles of the se-

quences A0, A1, A2, …, An-1 (e.g., in the figure the last bold perimeter is the perimeter of 

polygon Π11.). Since AreaAk =1, the area of Πn is n. We set sk = bk-1+...+b1+ b0 for 

k>1 and s0 = 0, sk = 2k×bk (recall §3.1). The outer corners of the polygon Πn have 

coordinates (sk, sn+1-k), with k integer from 1 to n. The inner ones have coordinates 

(sk, sn-k), with k integer from 0 to n. These results were discussed with the students 

step by step and using many examples. 

3.5 Circular quadrants containing and contained in Πn 

The teacher explained that the quadrant of a circle (O, Rn), with delimiting radii 
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on Ox and Oy, contains Πn if and only if √𝑠𝑘
2 + 𝑠𝑛+1−𝑘

2 ≤ Rn, for k∈ℕ 1kn.  

With sk = bk-1+...+b1+ b0 = 2k×bk, 𝑎𝑘 = 𝑏𝑘
2 × 2𝑘 and αk an increasing sequence, it 

was obtained that if Rn = √(2𝑛 + 2) × 𝑎𝑛, then the above quadrant contains Πn. 

Since the area of this quadrant is greater than that of Πn, which is n, we have  

n < 
1

4
𝜋×(√(2𝑛 + 2) × 𝑎𝑛)

2
=

1

4
𝜋(2𝑛 + 2) ×  𝑎𝑛   

2𝑛

𝜋(𝑛+1)
 < 𝑎𝑛 ⇒    

lim
𝜈→+∞

2𝑛

𝜋(𝑛+1)
  ≤ lim

𝜈→+∞
𝑎𝑛 = 𝑐 =>  

2

𝜋×𝐶
≤ 1  (2) 

Then, the teacher discussed that similarly there is a quadrant of the circle (O, 

rn) with rn = √(2𝑛−2)𝜑𝑛, contained in Πn, and from this it was obtained that:  

                                          1 ≤
2

𝜋×𝐶
                                                            (3) 

(3) and (2) imply that C = 
2

𝜋
 which is the limit sought lim

𝜈→+∞
𝜑𝑛 = lim

𝜈→+∞
𝛼𝑛 

3.6 Τhe approximation of 𝒃𝒏  

Using this limit and the properties in §3.2 the teacher discussed with the students 

the derivation of the approximation of 𝑏𝑛;  

that for large n (i) 𝑏𝑛 ≈  
1

√𝜋×𝑛
, (ii) 𝑏𝑛 ≈  √

2

𝜋(2𝑛+1)
 and 

1

√𝜋×𝑛
> 𝑏𝑛 >  √

2

𝜋(2𝑛+1)
.  

He also discussed the historical importance of this approximation; that in 

1729, after Stirling's suggestion, De Moivre used W.P. to obtain (i); that this was 

an important step in his work leading to the normal approximation of the symmet-

ric binomial (the historically first normal approximation); and that in 1730 Stir-

ling and De Moivre used W.P. for approximating n! - still another important result 

(Hald, 2003, pp. 468-484). 

4. On the evaluation of the implemented teaching approach  

In the final test, 17 students answered correctly or with minor errors the questions 

on the proof of W.P., and 9 made important errors and/or gaps. Among the 7 stu-

dents, with significant weaknesses in elementary algebra in the initial test (group 

B) only one answered correctly these questions, whereas, among the 19 students 

with no such weaknesses in the initial test (group A), 16 answered correctly or 

with minor errors. This difference between groups A and B is significant at the 

level of 0.01 (Fisher exact test p = 0.00223). 

5. Final remarks 

Teaching a version of Wästlund’s proof about W.P. in a probabilistic context, was a 

journey based on the interplay among elementary algebra, probability, and geome-
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try. In its context history played a double role: 

(1) At the meta-cognitive level by contributing to the development of our di-

dactical background as teachers/researchers (Tzanakis et al, 2000, section 7.2(c), 

p. 206) in the sense (i) of enriching our didactical repertoire; (ii) in getting aware 

of how “advanced” may be the subject to be taught in relation to the students to 

whom its teaching is addressed; and (iii) in getting involved into the creative pro-

cess of “doing mathematics”. 

(2) Part of (iii) above, and a lot of information on the role of W.P. in De Moi-

vre’s and Stirling’s related work were presented and discussed in the classroom, 

both in the form of “historical snippets” (Tzanakis & Arcavi, 2000, section 7.4.1) 

and strictly as a mathematical subject. For instance, we examined the application of 

W.P. for approximating bn and discussed its importance in the context of De Moi-

vre’s work for the normal approximation to the symmetric binomial. Furthermore, 

we discussed some interesting properties of probabilities and their geometric repre-

sentations, including an introduction to Pólya’s urn models. This in turn, motivated 

further discussion on the origin and importance of these models and Polya’s multi-

faceted contributions, including mathematics education. By devoting enough teach-

ing time and a significant amount of work, the proof of W.P. presented here was ac-

cessible to students with no significant weaknesses in elementary algebra, though 

this was not possible for the weaker students. 

In summary, our approach could be understood as an example of an “illumina-

tion approach” in the sense of Jankvist (2009, section 6.1, pp. 245-246). 
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