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ABSTRACT 

The idea of parallelism between the way mathematics has evolved through the math-

ematicians’ creative work and the way students learn mathematics (called the “paral-

lelism” issue) is well-known and its naïve formulations have been rightly criticized as 

untenable oversimplifications. Βy means of a case study based on an example from 

Euler’s Algebra, we provide more nuanced views, thus pointing to the complementary 

character of similarities and dissimilarities between past and present, its significance 

for appreciating the complementarity of the historians and mathematics educators’ 

aims and commitments, and the need for and basic features of an effective didactical 

transposition of historical knowledge.  

1 Introduction: The parallelism issue 

The idea that teaching and learning mathematics should follow or/and corre-

spond to the historical development, is a whole spectrum of views and meth-

odological prompts or recipes appearing under various names since the late 

19th century (Furinghetti & Radford, 2008). For brevity, we call it the “paral-

lelism issue”. In the last decades its naïve formulations have been rightly crit-

icized as untenable oversimplifications, but appreciation of the inherent sub-

tleties is implicit in early publications, albeit not discussed in detail (Freuden-

thal, 1973, pp. 101, 103; Memorandum, 1962, pp. 190–191; Vergnaud, 1990, 

p. 16). Among several relevant interesting ideas, Sierpinska (1990) pointed to 

a negative and a positive aspect of parallelism, corresponding respectively, to 

overcoming epistemological obstacles and understanding, as two complemen-

tary perspectives in Bohr’s sense introduced via quantum physics as an epis-

temological principle to understand reality (Bohr, 1934, p. 10). This notion of 

complementarity can be useful for understanding deeper what so far has been 

considered as incompatibilities or clash of commitments between the history 

of mathematics (HM) and mathematics education (ME); i.e., manifestations of 

complementary perspectives not to be used simultaneously, but equally legit-

imate and necessary in order to teach and learn mathematics both as a struc-
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tured corpus of human intellectual products and as a cultural endeavor leading 

to them (Thomaidis & Tzanakis, 2022, section 2). Here, this notion is consid-

ered only in relation to the similarities and dissimilarities between past and 

present. 

2 Complementarity between similarities and dissimilarities of the past and 

the present, and the didactical transposition of historical knowledge 

In the 1980s-1990s the HPM domain expanded, leading to an influential ICMI 

study (Fauvel & van Maanen, 2000). Theoretical issues became essential and 

the need to theorize from actual implementations went hand in hand with criti-

cism as to the role of the HM in ME, including the parallelism issue. A charac-

teristic example of such a criticism is Fried’s (2007) pointing to the subtleties 

inherent in any use of the HM in ME that - for practical reasons - adopts an 

anachronistic perspective of the historical development in an educational con-

text. Fried points to a “clash of commitments” between HM and ME, by stress-

ing the distortions of historical knowledge caused by considering similarities 

between past and present without due attention to their dissimilarities. 

This debate stresses the subtleties inherent in the attempt to serve “proper-

ly” the aims and commitments of both ME and the HM, hence the subtle bal-

ance that has to be achieved so that none of them gets distorted or/and ineffec-

tive. According to Fried the historical and the mathematical ways of knowing 

should be conceived as complementary epistemologies (Fried, 2007, p.204). 

In a series of papers advocating a multiple-perspective approach to history, 

Kjeldsen went further, calling for a more nuanced view of history in ME, that 

(just as for school mathematics) requires a didactical transposition of scholar-

ly historical knowledge in order to capture the variety of ways in which HM 

can be beneficial for learning of and about mathematics (Kjeldsen, 2012, pp. 

333-334).  

In the light of this critical discourse, further discussion of the parallelism is-

sue raises several more subtle points: Are there similarities between past math-

ematicians’ creative work and students’ ways of learning mathematics? If so, 

how could they be beneficial both for ME and for understanding further the his-

torical development? What are the limitations imposed by the differences be-

tween these two worlds? These questions complement the preceding critical ac-

count: History gets distorted by considering similarities between past and pre-

sent without attention to their dissimilarities, and ME gets mis-focused by con-
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sidering dissimilarities between past and present without attention to their simi-

larities. Here, similarities refer to drawing possible parallels between, either ob-

stacles, misconceptions, errors, difficulties, premature formulations met by stu-

dents and also by past mathematicians (a kind of negative parallelism), or/and 

innovative, idiosyncratic ways to cope with questions, problems, etc., that can-

not be adequately treated with the (available at the time) knowledge of the 

mathematicians’ community, or in the students’ classroom (a kind of positive 

parallelism; Thomaidis & Tzanakis, 2007, 2022). Dissimilarities concern taking 

account of the differences between the social, cognitive, cultural, and scientific 

conditions of the past mathematicians’ world and that of students today. Thus, 

in the context of ME, similarities and dissimilarities between past and present 

are complementary. This is what could be understood as an appropriate didacti-

cal transposition of historical knowledge inspired and guided by similarities be-

tween past mathematicians’ creative work and students’ ways of learning, how-

ever, on the condition of both being properly contextualized, i.e., dissimilarities 

between past and present are carefully accounted for. 

In addressing these issues systematically, historical analysis has to be 

compared with empirical data on how students conceive and use specific 

pieces of mathematical knowledge. Below we report on a case study, illustrat-

ing these ideas about complementarity and didactical transposition, and serv-

ing as an example of how historical research motivated by didactical problems 

can contribute to still open or debated historical issues.  

3 A case study: On Euler’s “mistake” and its didactical significance 

Euler (1770), in his essentially didactic treatise on algebra, develops about 

one third of volume 1 without introducing the equality symbol, though it in-

cludes all basic operations, exponentiation and roots’ extraction. In order to 

apply algebraic operations to the transformation of proportionality relations 

and the solution of equations, = is introduced in chapter 20 (ibid, Vol. 1, 

§206). To our surprise, this remarkable and peculiar – from a modern perspec-

tive – “delayed” introduction of = seems to have passed unnoticed by histori-

ans of mathematics. 

Without =, standard algebraic rules, including the square roots of negative 

numbers, are verbally formulated in this part of the book; for instance, for the 

product of two square roots of positive numbers, or the square roots of nega-

255
255



 

 

tive numbers Euler writes: 

…if it is required to multiply√𝑎 by √𝑏, the product is √𝑎𝑏…the square 

root of the product ab…is found if the square root of a…is multiplied 

by the square root of b… (Euler, 1770, Vol. 1, §132 p. 56) 

Since –a is as much as +a multiplied by –1 and the square root of a 

product is found by multiplying together the roots of its factors, so the 

root of a multiplied by –1, that is –a is as much as a multiplied by –

1. But √𝑎 is a possible number, therefore the impossibility appearing 

therein, always can be led to –1. Consequently, because of this, –4 is 

as much as 4 multiplied by –1: But 4 is 2, hence –4 is as much as 

2–1 and –9 [is] as much as 9–1, that is 3–1... (Euler, 1770, Vol. 

1, §147 p. 61) 

Euler uses the expression “is as much as”, (“ist so viel als”), not “is equal 

to” (“ist gleich”), indicating an operational meaning of the two factors giving 

the product as a result via multiplication. Moreover, the above two citations 

lead to opposite results for the product of the square roots of negatives (Tho-

maidis & Tzanakis, 2022, section 4.2). This is the reason for attributing to Eu-

ler grave elementary mistakes (Cajori, 1993, p. 607; Grattan-Guinness, 1997, 

§6.15, p. 334; Katz, 2009, §19.1.3, p. 670; Kline, 1980, p. 121) 43. But Euler's 

formulation is not “relational”, but “procedural”, conveyed by standard ex-

pressions not containing the word “equal” or the equality symbol. Thus, if one 

wants to symbolize Euler’s verbal expressions “is as much as”, “is found”, 

“can be led to”, in principle a different symbol should be used, denoting the 

reduction of the left-hand side to the right-hand side (we call this the reduc-

tion-conception of equality); e.g., for the two citations above one can write 

respectively (-2)(-3)→6, (-2)(-3)→2(-1)3(-1) → -6. 

After introducing =, Euler deals with transforming equations in equivalent 

forms, and not just with algebraic or arithmetic operations that produce a re-

sult. Therefore, = concerns operations between equations: Equalities now be-

come symbolic objects, hence = is necessary for their representation, with 

equality acquiring here its standard meaning of an equivalence relation. 

Thus, there are two distinct equality conceptions: a procedural “reduction 

 
43Martinez (2007) is the first to question this interpretation, however, following a dif-

ferent rationale.  
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conception” and a relational “equivalence conception”, clearly separated by 

the introduction of = in Euler’s book. This is crucial because it questions the 

established historical interpretation about Euler’s elementary mistakes. 

In fact, there are clear indications that Euler was not constrained by any 

single-valuedness of the square root either before, or after the introduction of 

the square root symbol (Euler 1770, Vol.1 §§122, 150). Therefore, since in 

evaluating the square root of the product of two numbers, Euler uses only the 

reduction-conception of equality, (-2)  (-3) → 6 and (-2)  (-3) → -6 

are equally valid reductions (not equivalences)! In Euler’s Algebra, the two 

equality conceptions, though coexistent, are carefully separated with distinct 

operative roles, and used in a contradiction-free manner before and after the 

introduction of =. However, from didactical research it is well-known that 

though both conceptions are used by school students, they are often muddled. 

For instance, Kieran notes that  

In elementary school the equal sign is used more to announce a result than to 

express a symmetric and transitive relation. In attempting to solve the problem 

Daniel went to visit his grandmother, who gave him $1.50. Then he 

bought a book costing $3.20. If he has $2.30 left, how much money did 

he have before visiting his grandmother? 

6th graders will often write 2.30 + 3.20 = 5.50 – 1.50 = 4.00 

…the equal sign … is read as “it gives”, that is, as a left-to-right direc-

tional signal. (Kieran, 1990, p.98) 

Freudenthal notes that = is “…primordially read as a task, or a question… as 

unilaterally directed towards a ‘reduction’.” (Freudenthal, 1983, pp. 477, 

481). 

Although the reduction-conception of equality is evident in the above 

chain of “equalities”, the pupils understood the problem and how to solve it. 

Their solution can be formulated without =: “adding 2.30 to 3.20 gives 5.50”, 

then “subtracting 1.50 from 5.50 gives 4.00”. 

Bearing in mind the systematic use of this conception in Euler’s Algebra, 

this is an example of “positive parallelism”. That is, the reduction-conception 

of equality is used successfully – albeit in a symbolically idiosyncratic way – 

to tackle a problem by students who developed this conception apparently 

without having been taught it. But the inadequacy of this conception is also a 

case of “negative parallelism”: 
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[Many college students] …continue to view the equal sign as a separa-

tor symbol rather than as a sign for equivalence [as] seen in their 

shortcutting of steps in equation solving, and in their staggering of 

“adding the same thing to both sides”: Solve for x: 2𝑥 + 3 = 5 + 𝑥 , 

2𝑥 + 3 − 3 = 5 + 𝑥,  2𝑥 = 5 + 𝑥 − 𝑥 − 3, 2𝑥 − 𝑥 = 5 − 3, 𝑥 = 2. (Kieran, 

1990, pp. 100–101) 

Students solving 2x + 3 = 5 + x in this way use the reduction-conception of 

equality in the successive transformation of each individual member, thus vio-

lating the very notion of an equation and the logical consistency of the solu-

tion’s method. Hence, they meet insurmountable difficulties to proceed effec-

tively in situations involving more elaborate algebraic manipulations. 

Being aware of the primitive character of the reduction-conception of 

equality and its inadequacy for issues more elaborate than simple algebraic 

calculations, Euler went beyond it after introducing =, that he henceforth used 

to denote the deeper and effective equivalence relation conception of equality. 

4 Concluding remarks and comments on the didactical transposition of 

historical knowledge 

Since students hold and mix up the two equality conceptions, what could be 

done? In teaching mathematics today, it is impossible to ignore the established 

meaning of equality and to avoid setting as a principal aim its understanding by 

the students as an equivalence relation. But it is here that historical and educa-

tional research in cooperation could help from several perspectives that outline 

main points of the didactical transposition of historical knowledge in this case, 

namely: to appreciate the coexistence of the reduction and equivalence concep-

tions of equality; to point to the pitfalls and misinterpretations resulting when 

the two notions are muddled; to help teachers get aware of their existence in 

students’ mathematical understanding. In view of this didactical problem, there 

are many alternatives for realizing this didactical transposition, adapted to the 

target population’s characteristics and limitations (Thomaidis & Tzanakis, 

2022, section 5). 

With the example from Euler’s Algebra, and the critical discussion that preced-

ed, we emphasized some issues we consider important for understanding better 

the connections between HM and ME: the nuances related to the “parallelism 

issue” (in particular, the “positive-negative” aspects and their limitations); the 
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complementary nature of similarities and dissimilarities between past and pre-

sent and their educational significance; the fact that this complementarity can be 

a key idea for appreciating that the historians and mathematics educators’ aims 

and commitments are complementary rather than in conflict; and the need of a 

constructive collaboration of these communities for the appropriate didactical 

transposition of historical knowledge. 
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