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ABSTRACT 

In this paper, based on a workshop held at ESU 2022 (Salerno), aimed at secondary 

school and university teachers, as well as historians and didacticians, we suggest a 

new approach to calculus from a constructive geometric perspective. Specifically, we 

will provide a historical presentation of certain geometric instruments related to calcu-

lus, and we will introduce a new device for hands-on experiences. After that, we will 

describe the activities of the workshop presented at the latest ESU 9 in Salerno, in 

which we alternated the introduction of historical sources and laboratory activities. 

1 Introduction 

Mathematical instruments are an important focus in recent research in the 

didactics of mathematics (cf. Monaghan, Trouche & Borwein, 2016). In this 

regard, the history of instruments to trace curves (or “Zeicheninstrumente” in 

German) has also been recently studied by Bartolini Bussi & Maschietto 

(2007), Tournès (2009), and van Randenborgh (2015). 

Historically, these instruments have played a key role in the constitution of 

analytic geometry and calculus. This role gradually waned: during the 18th 

century geometric instruments were marginalized, separated from “pure” 

mathematics except when they were used as a resource for teaching, and con-

fined in some cases to treatises on instruments in general.30 This process went 

 
30 Among these treatise, we can mention: Nicolas  Bion (1652-1723), Traité de la construction 

et des principaux usages des instrumens de mathématique, Paris 1709 (cf. also Turner, 2014); 

Jakob Leupold (1664–1727), Theatrum arithmetico-geometricum, Das ist:Schau-Platz der Re-
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alongside with the separation of finite and infinitesimal analysis from geome-

try to form an independent  discipline, the so-called “algebraization of analy-

sis” culminated in the 19th century with Bolzano, Cauchy and Weiestrass. 

In this paper, we shall focus, on the basis of historical examples, on the 

epistemological implications of geometric instruments with respect to the un-

derstanding of fundamental concepts of analytic geometry and calculus.  

Moreover, we shall explore the fruitfulness of a concrete approach to cal-

culus for today's teaching by proposing learning experiences involving ma-

chines that implement historical ideas. 

2 History 

One of the explicit goals of the pioneers of calculus, such as Leibniz, Huy-

gens, and the brothers Bernoulli was the construction and study of curves, par-

ticularly those that could not be associated with algebraic equations (Blåsjö, 

2017). According to Leibniz and his friends, discovering new curves through 

already known instruments, or finding new artifacts to construct curves that 

had been previously observed in natural phenomena were still paramount. 

The episode, recounted by Leibniz and represented in Fig. 1, of Perrault’s 

posing of the problem of finding the curve traced by a watch attached to a 

chain and dragged along a tabletop is just an example of how the manipula-

tion of an artifact, initially not devised for geometrical purposes, could lead to 

the discovery of new geometric objects and new insights into the solution of 

open problems (Bos, 1988; Tournès, 2009).  

In addition to providing new materials for the geometer, the use of instru-

ments in the early modern period also had more theoretical goals. As in Des-

cartes (1637), instruments could frame the relations between symbolic compu-

tations in finite and infinitesimal analyses and the study of curves, as well as 

answer foundational questions, such as those about the admissibility of curves 

in geometry (Bos, 2001; Panza, 2011).  

 

chen- und Meßkunst, Leipzig 1727; Gianbattista Suardi (1711–1767), Nuovi istrumenti per la 

descrizione die diverse curve antiche e moderne, Brescia 1752; George Adams (1750–1795), 

Geometrical and geographical essays containing a general description of the mathematical 

instruments used in geometry, civil and military surveying, leveling, and perspective, London 

1791. See Randenborgh (2015, p. 46). 
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Broadly speaking, a geometric instrument can be defined as an “artifact”, 

that is a material object that, among other things, makes a mathematical idea 

concrete (Randenborgh, 2015, pp. 6ff., and Vollrath, 2003). For example, the 

Euclidean compass is an object employable in various ways and with different 

goals; however, when used by students to perform the constructions pre-

scribed in Euclid’s Elements, it encapsulates Euclid’s third postulate, and em-

bodies the real definition of a circle.  

 
Figure 1. Perrault’s problem as it was imagined by Giovanni Poleni around 50 years 

later (Poleni, 1729, table). 

 

However, one may doubt whether a watch dragged upon a table should be 

counted as a geometric instrument at the same level as the compass. What 

mathematical idea does this object realize? What is the nature of the curve de-

scribed by the trajectory of the watch case? Perrault posed this question as an 

explicit challenge. During a controversy that saw the involvement of Huy-

gens, Johann and Jakob Bernoulli, Leibniz declared himself to be the first to 

have answered correctly. Leibniz identified the curve traced by the moving 

watch with a “tractrix” or “tractoria” and described it as the curve having con-

stant tangent-length (Leibniz, 1693, also Bos, 1988).  

This was not a small discovery, since it shows that Perrault’s instrument 

realizes a solution to a fundamental problem for the development of analysis: 

to find a curve whose tangents have constant length. More generally, prob-

lems that involve the determination of a curve starting from given properties 

of their tangents, or relations among tangents and other segments, are called 

“inverse-tangent problems”. 
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Christian Huygens, who had also studied Perrault’s curve, was less prone 

to accept the system formed simply by a watch moved on a table as a geomet-

ric instrument (Bos, 1988, p. 29ff.; Tournès 2009, pp. 15-16). According to 

him, a “dragged watch” should fulfill certain criteria to function as a proper 

curve-tracing instrument, which are not trivially met. First, Huygens demand-

ed that the plane of the dragging be horizontal to avoid the effects of gravity. 

Second, the dragging of the weight from one position to the next should be 

reversible so that the purported instrument can change from position A to B 

and vice versa. Third, the motion should be sufficiently slow to prevent iner-

tia. Due to the existing friction, the direction of the motion, made “real” by 

the dragged chain, would always be tangent to the curve. Only in this way, 

and because the length of the chain is invariant during the motion, the traced 

curve would have tangents of constant length.  

Without suitable modifications to the physical configuration, manipulating 

the watch could easily get out of hand and fail to produce the desired curve. 

For this reason, Huygens proposed models of alternative machines that en-

sured the fulfillment of the three conditions described above, and thus would 

be fully geometrical (cf. Bos, 1988, p. 30; Tournès, 2009, p. 16; Blåsjö  2017). 

Unfortunately, Huygens never published his results on this topic. Leibniz, 

who nevertheless addressed the construction of transcendental curves in his 

published works and, at greater length, in the unpublished ones, eschewed the 

problem of constructing concrete machines. For him, the tractrix was a legiti-

mate curve once the possibility of its construction via its tangent properties 

was conceded. It did not matter much whether a device that ensured such mo-

tion could be constructed. The issue was still open during the first half of the 

18th century when the British mathematician John Perks and the Italians Gio-

vanni Poleni and Gianbattista Suardi designed, and in some cases produced, 

artefacts which could trace the tractrix and the logarithmic. Thanks to them, 

during the first half of the century, new machines to trace transcendental 

curves entered mathematics.31 

These efforts show that, for these authors, ideal machines were just not 

enough; mathematical ideas ought to be embodied into physical objects.  

 
31 For a short introduction and the construction of a new machine cf. (Crippa & 

Milici, 2019) 
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Poleni’s machines are described in all their technical details in a letter to 

Hermann published in 1729 in Padua and reprinted in the Fasciculus episto-

larum mathematicarum (1729), together with other letters for eminent Italian 

mathematicians. The machines described in the letter are also mentioned in a 

printed catalogue of mathematical and physical instruments that belonged to 

Poleni's “Cabinet of physics” (Talas, 2013, p. 58), demonstrating that they 

were also constructed and used. The explicit goal behind Poleni’s project was 

to improve known methods to construct the tractrix and the logarithmic, such 

that these curves could be generated in a way not more complex than those 

employed for the conic sections, and thus fulfill the demands for constructa-

bility laid by previous authors, in primis Huygens himself. 

The construction of the tractrix depicted in Fig. 2 (left) exemplifies this 

task (cf. Tournès 2009, pp. 72ff). In the instrument, a solid bar replaces the 

original chain in Perrault’s experience, and a toothed wheel (“rotula signato-

ria”) orthogonal to the plane of the curve replaces the weight. It is the wheel, 

and not the weight, that traces the curve on the plane with the correct property 

of tangents (“cujus rotatione curva signatur”, Poleni, 1729, § 26), acting 

through a single continuous motion. 

The fundamental difference with respect to previous models and descrip-

tions is the introduction of a wheel to guide the tangent to the curve. The 

wheel replaced Perrault’s original watch and served as a fundamental compo-

nent to obtain a precise mechanical device to guide the tangent. With respect 

to the dragged point of Perrault’s construction, a wheel (working in a similar 

way as when we turn the front wheel of a bike) also greatly enhances the pre-

cision. In this way, the wheel maintains the bar always tangent to the curve, so 

that a tractrix can be traced.32 

 

 
32 This technical innovation is not merely related to the accuracy of the output. As high-

lighted in (Dawson, Milici & Plantevin, 2021), the principle underlying the wheel and the 

dragged point are mathematically different, even though they coincide in the simplest cases.  
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Figure 2. Poleni’s drawings from his “Fasciculus”. Left: a machine to trace the 

tractrix (the original chain in Perrault’s watch has been replaced by a bar and the 

watch-case by a wheel). Center: a machine to trace the logarithmic curve. Right: the 

wheel marks infinitesimal segments corresponding to the direction of the tangents at 

each point. 

Poleni employed a similar procedure to construct the logarithmic curve. As 

shown in Leibniz (1684), the logarithmic (or exponential) is a curve whose 

subtangents have constant length. The machine for the logarithmic, depicted 

in the center of Fig. 2, is then a variation of the instrument for the tractrix. The 

bar representing the tangent to the curve has a variable length, whereas a hori-

zontal bar, namely the side of a moving rectangle in the figure, ensures that 

the subtangent to the curve is constant for any of its points. After a period of 

oblivion, geometric methods to solve the inverse tangent problem were inde-

pendently rediscovered in the second half of the 19th century (Tournès, 2009, 

pp. 271ff.). At that time, the mechanical resolution of the inverse tangent 

problem was adopted not to legitimate or introduce specific curves, but to per-

form transformations related to the resolution of differential equations. Such 

machines are called “integraphs”. They are devices that integrate functions 

introduced as geometrical curves. The main aim of these devices was to solve 

practical problems (e.g. finding solutions to differential equations that do not 

allow symbolic resolution). In at least two periods, during the 18th, and 20th 

centuries, machines for the construction of curves became part of cabinets 

with a pedagogical function. We find these in the 18th century “Cabinet of 

experimental philosophy” of Giovanni Poleni in Padua (Talas, 2013) and in 

the 20th century “Cabinet of Differential Calculus” of Ernesto Pascal in Na-
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ples (Tournès, 2009, p. 271ff.). It is significant that both scholars designed 

and constructed new devices. Even though there is no evidence that Poleni 

used them in his lectures, it is attested that he employed instruments in his 

classes of experimental philosophy (Talas, 2013, pp. 52ff.). Furthermore, 

machines in brass to trace the logarithmic and the tractix are mentioned in a 

printed list of Poleni's machines, and Poleni himself had samples built in order 

to circulate them among his colleagues.33 Therefore, we cannot even exclude 

the possibility that Poleni might have used his machines to enhance students’ 

understanding of the fundamental concepts of calculus. Manipulating curves 

with a machine would not justify the principles of calculus, but it may have 

helped pupils accept operations involving counter-intuitive objects such as in-

finitesimal segments and familiarize themselves with abstract relations and 

definitions, such as the new definition of tangent as the line connecting two 

infinitely close points. Thanks to the action of the wheel, in particular, these 

machines may have made concrete and visible a fundamental principle of the 

Leibnizian calculus: “a curve line can be considered composed by infinitely 

many small lines, or elements, infinitely small … which include angles, from 

which the curvature is generated” (Poleni, 1729, §44).34 As Poleni himself no-

ticed, the wheel marks the infinitesimal segments 𝑎𝑒, 𝑒z …  (Fig. 2, on the 

right), corresponding to the directions of the tangents at each point of the 

curve, so that these “infinitely small lines are described by the motion of our 

instrument” (Poleni, 1729, §49). This example shows that, by making abstract 

 
33 Poleni sent exemplars of his machines to the mathematicians Gabriele Manfredi and Jacopo 

Riccati, and to his friend Antonio Conti (Tournès, 2009, p. 79). Although an exemplar of an 

alleged machine to draw transcendental curves is preserved in the Museum of History of Phys-

ics in Padua, its function and design are presently unknown. We thus have to conclude that 

none of Poleni's geometrical machines has survived until today in its original form. Following 

Poleni’s tables and descriptions, models of the machines for the tractrix and the exponential 

have been recently reconstructed (Milici & Plantevin, 2022). A video of such a reconstruction 

is available online at the link www.youtube.com/watch?v=LIsQkML2Tis 
34 Poleni’s definition (“lineam curvam … mex conſiderari posse ceu compositam ex infinitis 

lineolis (sive elementis) rectis, infinite parvis, ma, ae, ez, zr, rx comprehendentibus inter se an-

gulos, ex quibus lineæ curvature progignitur”) is actually a postulate in L’Hopital treatise: “We 

suppose that a curved line may be considered as an assemblage of infinitely many straight lines, 

each one being infinitely small, or (what amounts to the same thing) as a polygon with an infi-

nite number of sides, each being infinitely small, which determine the curvature of the line by 

the angles formed amongst themselves.” (Bradley, Petrilli & Sandifer, 2015, p. 3). 
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notions of differential calculus concrete and more manipulable than the origi-

nal devices using weights and strings, Poleni’s machines can represent a suit-

able basis for didactical experiences.  

3 The material artifact 

With the idea that the historical machines discussed above can be possible 

vectors of “didactical ideas” (van Radenborgh, 2015, p. 6), in the workshop 

we merged a presentation of selected excerpts from the historical sources sur-

veyed above with related laboratory activities involving material artifacts. 

Specifically, we proposed a “kit for calculus” (patented, invented and con-

structed by the second author) integrating the 18th and 20th centuries resolu-

tions of inverse tangent problems, with a specific focus on the simplicity of 

the design. The machine, that can be called a “T-sliding integraph” (because 

there is a T-shaped rod with two perpendicular guides), is introduced in 

www.machines4math.com (also with some related videos); it is built by digi-

tal construction tools, and the source files (together with assembling instruc-

tions) are freely available at www.thingiverse.com/thing:5532958. A previous 

version of the kit is described in more details in the same volume (Maschietto 

and  Milici, 2023). 

  

  

  

Figure 3. The proposed kit for calculus: its components and various uses. 
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The components of the proposed device are shown at the top left of Fig. 3. 

There are two pointers (one with a couple of wheels) that can be used to fol-

low an already traced curve or trace a curve-to-be using a marker. There is al-

so a wooden base (where paper sheets can be attached) and a transparent plas-

tic case that can slide on it. Finally, there are two rods that can be joined to 

make a “T": these rods can be used as guides for the pointers. These compo-

nents can be assembled in several ways as required for various possible activi-

ties. 

4 The workshop 

In the workshop, we alternated the introduction of historical sources (with 

guided discussions) and laboratory activities (participants were divided into 

small groups with one kit per each group). 

4.1 First activity: the tangent. After a historical introduction to organic 

geometry, we considered the historical problem of justifying the existence of 

transcendental curves in an organic way, that is, through an instrument. To 

demonstrate how the limits set by Descartes can be overcome, we proposed 

the following laboratory activity. After tracing an arbitrary curve on a sheet of 

paper, the audience was invited to move the pointers on the traced curve. The 

aim of this activity is to focus on the difference of use between the “smooth 

pointer” (the one whose bottom is smooth) and the “wheeled pointer” (the one 

whose bottom has two parallel wheels). The introduction of the wheels im-

poses the restriction that, to move the wheeled pointer on a curve, the piece 

must be rotated so that its direction is tangent to the traced curve. The audi-

ence then experienced the passage from direct to inverse tangent problems, by 

linking the direction of the wheels to a rod and moving the other extremity of 

the rod along a line (cf. top right of Fig. 3). After a brief description of the ex-

perience of Perrault’s watch and some historical references to Huygens and 

Leibniz, the audience was guided to reenact the construction of the tractrix in 

the manner of early modern geometers and link the mechanical components to 

the possibility of tracing a curve given its tangent properties. 

4.2 Second activity: the exponential (cf. bottom left of Fig. 3). In this ac-

tivity, the audience was invited to assemble the kit for calculus in a way that 

imposes the constant subtangent. After presenting Poleni’s letter to Hermann 

and the tables reproduced in fig. 2, the audience realized that they were han-

dling a modern version of Poleni’s machine for the logarithmic curve. The 
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guided analysis of the machine resulted in the construction of an exponential 

curve without introducing notions of limits or summations (from an analytic 

perspective, the machine geometrically solves a differential equation). As a 

variation, if one imposes the direction of the wheel not as the one passing 

through the peg fixed on the sliding case but perpendicular to it, the device 

can trace parabolas (cf. Maschietto, Milici & Tournès, 2019). In this case, 

with a suitable choice of reference frame, the differential equation is easily 

converted into an integral. 

Third activity: derivatives and antiderivatives (cf. bottom right of Fig. 3). 

In this case, a sheet with two reference frames, one for each pointer, was 

adopted (cf. Maschietto & Milici, 2023, §2). This activity ideally follows the 

first one, in which one can show that, when the wheeled pointer follows a 

curve, the direction of the wheels must be the tangent to the curve. Further-

more, the T-shaped rod imposes the restriction that the direction of the tangent 

must be parallel to the line passing through the peg fixed on the case and the 

other pointer. With a suitable reference frame, the ordinate of the smooth 

pointer can be shown to represent the slope of the tangent to the curve fol-

lowed by the wheeled pointer. This geometric configuration corresponds to 

the definition of the derivative. In contrast to the previous case, if the smooth 

pointer is moved, the wheeled pointer traces an antiderivative. This activity is 

in the direction suggested by Blum (1982), according to which integraphs may 

be used to make students discover the fundamental theorem of calculus by 

themselves (e.g., by approximating piecewise the function to be integrated by 

many constant functions). The third activity was integrated with historical 

notes on integraphs. 

5 Conclusions 

Geometric instruments for curve tracing can play an important role in di-

dactics, because they are artifacts that embody multiple ideas: historical, 

mathematical, technical, and pedagogical. In this article, we presented a pos-

sible convergence of historical considerations and hands-on activities. We be-

gan with a case study to introduce historical machines for the construction of 

certain transcendental curves. These machines embody a mathematical idea, 

namely the concept of a curve known through the property of its tangents (for 

a modern mathematical setting of these machines see Milici, 2020). Then, we 

proposed a series of activities presented during a workshop at the latest ESU-9 
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in Salerno,  based on the suitable use of a machine to present some key con-

cepts of differential and integral calculus. Even though these experiences do 

not directly reproduce historical episodes, they are devised in the same spirit: 

to use concrete artifacts to visualize and anchor abstract concepts, such as the 

notions of tangent and slope, or epistemologically difficult ones, such as that 

of an infinitesimal segment. The workshop highlighted the fact that most par-

ticipants, who are teachers or researchers in history and didactics, were sym-

pathetic with the rationale behind this workshop, and with the importance of 

developing more concrete, engaging and intuitive approaches to calculus than 

the standard ones. They also agreed that the activities presented at the work-

shop  could be fruitfully applied in secondary education. However, this step is 

far from obvious, as several questions during the discussion following our 

presentation have pointed out. A major critical aspect concerns the use of the 

calculus kit as an exploratory device and can be summarized as follows. To 

enhance students' understanding of calculus, didactical activities should be 

carefully designed so that students are guided in the process of discovery and 

each step of their activity is duly motivated in terms of what the questions 

they should pose and the conclusions they should achieve through the ma-

nipulation of the device. Therefore, we also plan to find new collaborations to 

improve these underdeveloped aspects of our proposal and to bring this histor-

ical and tangible approach to calculus in high schools. 
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