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ABSTRACT 

In the new curricula that are now gradually being implemented in secondary schools 

in Flanders, the Dutch-speaking part of Belgium, there is a shift towards mathematics 

as a part of STEM (Science, Technology, Engineering, Mathematics) and towards 

computational thinking in mathematics: programming, logic and electronic gates, 

graph theory, and for some pupils linear programming. Meanwhile, the new curricula 

contain less geometry and fewer references to history and art. As a first reaction, I 

welcome the introduction of graph theory, but I regret the loss of some beautiful parts 

of geometry. Instead of complaining, I try to relate the new subjects with geometry 

and the history of mathematics. There have always been algorithms in mathematics, 

long before there were electronic computers that could be programmed. Moreover, 

geometrical and visual thinking can be used to discover many algorithms. 

In this article, I would like to illustrate historical and geometrical aspects of 

algorithms with some examples: the calculation by hand of the digits of a square root 

and the algorithm for constructing a Eulerian circuit in a multigraph in which the 

degree of each vertex is even. 

1 Introduction 

1.1 My personal situation 

I teach mathematics - and especially geometry - on a half-time basis to 

future secondary school teachers. In our teacher training in Flanders, 

prospective teachers for pupils aged 12 to 16 years take two subjects: my 

students will become teachers of for example mathematics and biology, or 

mathematics and French. I also teach mathematics to pupils aged 16 to 18 

years, in a secondary school in the centre of Brussels, three days a week. 

At night and weekends, since 1984, I work on the magazine Uitwiskeling 

for mathematics teachers.  
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1.2 Recent tendencies in Flemish curricula 

New curricula are introduced in secondary education in Flanders. Due to a 

decision by the Constitutional Court, these curricula are likely to be 

reduced, but I will not go into these political issues here.  

The new curricula present the following trends. First, more attention is 

paid to the role of mathematics as a part of STEM (Science, Technology, 

Engineering and Mathematics). Second, a new term has been introduced 

in the mathematics curricula: ‘computational thinking’. In the literature on 

mathematics and technology education, this idea has been around for 16 

years (Wing, 2006), but it is now making its appearance in our 

mathematics curricula. This leads to new chapters in mathematics text 

books: logic and electronic gates, graph theory, algorithms and 

programming, and for pupils in some economics classes also linear 

programming. 

I find many of these topics interesting, especially graph theory. But 

new topics always come at the expense of other topics. What is being 

covered less? Alas, geometry (e.g. inscribed angles in circles). And the 

history of mathematics is not even mentioned in the new curricula, nor the 

link between mathematics and art. 

These trends also affect my personal work situation. In my secondary 

school in Brussels, I teach according to the new curricula. In teacher 

training, I still teach strong geometry courses to future teachers, but they 

will have to teach less geometry. My history of mathematics course, in 

which students developed workshops for colleagues, has regrettably been 

dropped. The curriculum makers’ motivation is that the new topics are 

important in this computer age: “Algorithms are becoming important 

because there are computers everywhere, even in pupils’ school bags.” 

This brings me to the question: is it true that algorithms and 

computational thinking are typically associated with computers? 

Algorithms for computers? Or are algorithms of all times? Algorithms 

before computers? Students and young colleagues mostly see algorithms 

as something to feed computers with. Let’s look to some examples of 

algorithms, using material developed by my students. 

2 Algorithms for (square) roots 

74
74



How to calculate a root? If you ask a pupil, the predictable answer is: with 

a calculator. But there have not always been calculators. Another way is 

with your naked hands. In Dutch, ‘wortel’ (root) is the same word as 

‘carrot’. The calculation of roots is ‘the extraction of carrots’. Two 

students of mine made a workshop about this. As a joke, participants who 

calculated the roots correctly were allowed to pull real carrots from a tub 

of potting soil and take them home. 

We will look in detail at two historical algorithms for calculating 

square roots: the Babylonian and the Chinese. There were also Indian 

ones. 

2.1 Babylonian algorithm 

       
Figure 1. Tablet YBC 7289 

 

Figure 1 shows a tablet from about 4,000 years ago (Yale Babylonian 

Collection 7289, USA). It testifies that the Babylonians of the time had an 

algorithm for calculating square roots. According to Fowler and Robson 

(1998), this was a hand-held tablet on which a student solved school 

problems. It could be erased and reused. Let us call it the smartphone of 

the Old Babylonian age. 

Babylonians used a numeral system with base sixty, or ‘sexagesimal’ 

numbers. This is a very convenient numeral system because 60 has a large 

number of divisors. 

On one of the diagonals, we can read the sexagesimal number 

1; 24; 51; 10, which means 1 +
24

60
+

51

602 +
10

603 ≈ 1.41421296, a good 

approximation for √2 ≈ 1.41421356. Above, we read the number 30 and 

under the previous number, the sexagesimal number 42; 25; 35, which 

equals 42 +
25

60
+

35

602 ≈ 42.42638889, an approximation for 30√2 ≈
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42.42640687. So, the pupil multiplied the side 30 of the square with √2 

to determine its diagonal. 

Another clay tablet (Vorderasiatische Abteilung Tontafeln 6598, 

Berlin, Germany) presents the following problem: “Find the length of the 

diagonal of a door 10 units wide and 40 units high.” According to the 

(later) Pythagorean theorem, this amounts to: find √1700. 

According to Swerts (2012) and others, the method used by the 

Babylonians for calculating √1700 is essentially the same as that of the 

later Heron of Alexandria (1st century AD). We make a guess, e.g. 40. 

This guess serves as a first approximation. The second approximation is 

then the average of 40 and 
1700

40
. If we stop here we find 41.25, written 

decimally, or 41;15 in sexagesimal notation. We can continue, taking as a 

third approximation the average of 41.25 and 
1700

41.25
 and so on. 

If we interpret this algorithm geometrically, it becomes much clearer, 

and I would not be surprised if the Babylonians invented it by thinking 

geometrically. The problem is: “Given a square with area 1700, find the 

side.” The guess 40 is too small. If we make a rectangle with area 1700 

and that side 40, the other side 
1700

40
 is too large because the area is still 

1700 (Figure 2). The side of the square must be somewhere in between. 

And the simplest number between two numbers is the average. 

 

Figure 2. Geometric interpretation of the Babylonian algorithm 
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Note that this ancient method is equivalent to Newton’s method. The 

approximation of √1 + 𝑥 by replacing the graph of the square root 

function by its tangent in x = 1 gives √1 + 𝑥 ≈ 1 +
1

2
x and this is the 

average of the first guess 1 and the second guess 1 + 𝑥 (Figure 3). 

Applied to our example of the door, this gives: 

√1700 = √1600 + 100 = 40√1 +
1

16
≈ 40 (1 +

1

32
) = 41.25.  

 

Figure 3. Newton’s method 

2.2 Calculating the decimal digits of a square root 

When I was in primary school in the 1960s and 1970s, we studied an 

algorithm to calculate the decimal digits of a square root one by one. This 

algorithm originates from the Ancient Chinese. You can find an example 

in chapter 4 of the Nine Chapters of Mathematics (Jiuzhang Swanshu, 10th 

to 2nd century BC). The method is called Kai Fang, opening the square 

(Burgos & Beltrán-Pellicer, 2018). In the 3rd century AD, Liu Hui gives a 

detailed description of the method. Again, I am convinced that the 

algorithm is geometrically inspired. 

Let’s look at an example: √7356 796. This is not the original example 

of the Ancient Chinese; it is the example of my students 

Vankriekelsvenne and Vanmarsenille (2003). We invite the reader to 

follow the steps in Figure 4, starting with a square determined by the first 

digit and adding gnomons in order to find the next digits of the square 

root. A gnomon is a figure to be added to a square to make a larger 

square. A gnomon can be transformed into a long rectangle. 
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Figure 4. Geometrical search for the digits of the square root 
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At school, I learned the algorithm without the geometric explanation. 

Figure 5 shows the calculation for the same example as in Figure 4, with 

the same steps. Next to it, the figure shows the calculation, with the same 

algorithm of the first digits of √2. 

  

Figure 5. Same algorithm, as we wrote it down at school 

 

There is a similar algorithm to compute the digits of the cubic root of a 

number, also inspired by geometry, starting with a cube and adding solid 

gnomons. For more details, see TwoPi (2008). 

2.3 Roots of quadratic equations 

In the 9th century, the Persian scholar Al Khwarizmi gave a systematic 

algorithm for the solution of the six types of quadratic equations. In fact, 

the word ‘algorithm’ is derived from his name. He had to distinguish 

different types because the numbers had to be positive. A negative term of 

a modern equation appeared on the other side of the equal sign in Al 

Khwarizmi’s equation. For example, one of the types was 𝑎𝑥² = 𝑏𝑥 + 𝑐, 

with 𝑎, 𝑏 and 𝑐 positive.  

The solution recipe was explained geometrically. In figure 6, this is 

illustrated with the equation 𝑥2 = 3𝑥 + 4 (Roelens & Van den Broeck, 

2015). Al Khwarizmi argues that geometric visualization helps to 

understand his algebraic algorithms (quoted by Siu, 2002): “We have now 

explained these things concisely by geometry in order that what is 

necessary for an understanding of this branch of study might be made 

easier. The things which with some difficulty are conceived by the eye of 

the mind are made clear by geometric figures.” 
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Figure 6. Al Khwarizmi’s geometric solution of the equation 𝑥2 = 3𝑥 + 4 

2.4 Conclusion so far 

The algorithms to calculate square roots and solutions of quadratic 

equations are much older than electronic computers. They are largely 

inspired by geometry and it is through geometry that they can be 

understood. The practical use of the algorithm to calculate the digits of a 

square root, has been rendered obsolete by the advent of computers and 

calculators. Still, we think that the geometric discovery, guided 

reinvention and explanation of the algorithm can be an interesting activity 

for pupils. 

3 Euler graphs 

Let's move on to another branch of mathematics. Graph theory has now 

been added to the mathematics curriculum in Flemish secondary schools 

because the internet, Facebook, ... are all big graphs, as is the road 

network in which the GPS (Global Positioning System) has to find the 

shortest or fastest routes. Graph theory is really something of the 

computer age... 

Again: this theory may not date back to the Babylonians, but it 

certainly predates computers. 

3.1 Euler’s theorem 

80
80



The origins of graphs are usually attributed to Leonhard Euler (18th 

century), the incredibly versatile Swiss mathematician. Euler wrote so 

much that, according to the Dutch Wikipedia, it would take an estimated 

50 years to transcribe all his works by hand at a rate of eight hours of 

writing a day.  

In Euler’s time, there were seven bridges across the river Pregel 

connecting the various parts of the Prussian city Königsberg (figure 7). 

After World War II, Königsberg was added to Russia as an exclave 

between Poland and Lithuania, and has since then been called 

Kaliningrad. 

Euler posed the question whether it was possible to make a walk in 

Königsberg that passes precisely once over each bridge and returns to the 

starting point. 

 

Figure 7. The seven bridges of Königsberg 

 

The solution with graph theory has become a classic. The parts of the city 

separated by the river are represented by vertices and the bridges by edges 

connecting these vertices (Figure 8). It is not a single graph but a 

multigraph, because a pair of vertices can be connected by more than one 

edge. A walk that goes precisely once over each edge and returns to the 

starting vertex is called a Eulerian circuit. The degree of a vertex is the 

number of edges adjacent to that vertex. To have a Eulerian circuit, the 

degrees of all vertices must be even. In the multigraph represented by 
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Königsberg, the degrees of vertices 𝑎, 𝑏, 𝑐 and 𝑑 are 5, 3, 3 and 3, 

respectively. So the requested walk is not possible. 

 

Figure 8. Graph representation of Königsberg 

 

I was convinced that this solution was Euler’s and that Euler effectively 

used a graph with vertices and edges. When I read Euler’s text (Euler, 

1741, Figure 9), I was surprised that Euler did not actually draw a graph, 

but continued to reason with city regions and bridges. He worked on his 

simplified drawing of the city, figure 10. 

 

Figure 9. Euler’s text about the bridges of Köningsberg 
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Figure 10. Euler’s drawing of the city of Königsberg 

 

“[The problem] could be solved by a complete enumeration of all the 

walks” he writes, but he prefers a much simpler method. He codes each 

walk by a sequence of letters, e.g. 𝐴𝐵𝐴 means start in 𝐴, take a bridge to 

go to 𝐵, return to 𝐴 with another bridge. He proves the impossibility of 

the requested walk by reasoning on the basis of the number of occurring 

letters in these codes. For more details, see Barnett (2009) or the original 

article Euler (1741). Ultimately, he concludes that the number of bridges 

for each area must be even to make a requested walk possible. He ends by 

remarking: “The question remains how the walk is to be carried out.” 

Euler’s theorem, in modern terms, is the implication: “If in a connected 

multigraph there is a Eulerian circuit, then all vertices have even 

degree.” His other theorem is about a Eulerian trail, a walk going 

precisely once over each edge but not returning to the starting vertex: “If 

in a connected multigraph there is a Eulerian trail, then exactly two 

vertices have odd degree.” 

His last comment can be understood as admitting that he does not 

actually prove the converse theorems. This will be done more than a 

century later by Hierholzer. 

3.2 Hierholzer’s algorithm 

Carl Hierholzer (1873), in a short article, proves the converse theorems: 

“In a connected multigraph: if all vertices have even degree, then there is 

a Eulerian circuit; if exactly two vertices have odd degree, then there is a 

Eulerian trail.”  

He repeats the theorems and proofs of Euler, but in a version with 

vertices and edges, much easier to read than Euler’s text. Then he proves 

his theorems, the converse theorems of Euler’s, by describing an 

algorithm for constructing a Eulerian circuit or trail. 

Let’s illustrate Hierholzer’s algorithm with an example. Take the 

multigraph with vertices 𝐴, 𝐵 … 𝐽 of Figure 11. The degrees of the vertices 

are even, so we should be able to make a Eulerian circuit. Start 

somewhere and walk on the edges, without repeating the same edge, until 

you get stuck. For example, start in 𝐴 and make the walk 𝐴𝐵𝐶𝐷𝐴𝐼𝐽𝐽𝐴. 

Colour the edges you walk on in a first colour, e.g. red. Because all 
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degrees are even, you cannot get stuck elsewhere than in the starting 

vertex 𝐴. The walk had to be a subcircuit. If all edges were coloured, you 

would have finished a Eulerian circuit, but in the example this is not the 

case. Now, start at a vertex where some but not all edges are coloured, e.g. 

𝐵, and make a new subcircuit on non-coloured edges until you get stuck 

again, for example 𝐵𝐷𝐸𝐺𝐼𝐷𝐵 (green). Repeat this procedure, e.g. make 

subcircuit 𝐸𝐹𝐺𝐻𝐼𝐸 (blue). Now in the example all edges are coloured. To 

make a Eulerian circuit from our subcircuits, you replace 𝐵 in the first 

subcircuit by the second subcircuit: 𝐴 𝐵𝐷𝐸𝐺𝐼𝐷𝐵 𝐶𝐷𝐴𝐼𝐽𝐽𝐴 and then you 

replace E in the second subcircuit by the third subcircuit: 

𝐴 𝐵𝐷 𝐸𝐹𝐺𝐻𝐼𝐸 𝐺𝐼𝐷𝐵 𝐶𝐷𝐴𝐼𝐽𝐽𝐴. This is a Eulerian circuit in the given 

multigraph. 

 

 

 

Figure 11. Example of Hierholzer’s algorithm 

 

4 Algorithms before computers 

4.1 No mathematics without algorithms 

Long before there were electronic computers, algorithms formed an 

important aspect of mathematics.  

84
84



In section 2, we discussed geometrically underpinned Babylonian and 

Old Chinese algorithms to calculate square roots and a still-used medieval 

Persian algorithm to solve a second degree equation.  

There are many other examples. Euclid (300 BC) devised an algorithm 

for the greatest common divisor of two natural numbers. Any Greek 

construction with ruler and compasses can be viewed as an algorithm in 

which, starting from a finite number of given points, circles and lines are 

added and intersected step by step to obtain the desired result. The 

Chinese mathematician Liu Hui (3rd century) systematically solved 

systems of first-degree equations using what later came to be called 

Gauss’s pivot method (19th century). 

Many proofs also contain an algorithm. In section 3 we explained 

Hierholzer’s proof of the existence of a Eulerian circuit in a multigraph in 

which the degrees of all vertices are even. Hierholzer proves this by 

giving an algorithm to construct such a Eulerian circuit. When Euclid 

proves that there are infinitely many prime numbers, he does so by 

describing an algorithm to produce, for any list of prime numbers, an 

additional prime number missing from the list. 

Man-Keung Siu (Siu, 2002) discusses the distinction between 

‘algorithmic’ and ‘dialectic’ mathematics. Algorithmic mathematics is 

about finding solutions, using fixed methods and algorithms. Dialectic 

mathematics is about explaining and proving. When I read Siu’s article, I 

was thinking that the recent trend in our curricula is towards more 

algorithmic mathematics and less dialectical mathematics. On the other 

hand, the examples I elaborated or cited above show that dialectic and 

algorithmic mathematics are inseparable and intertwined. This is also 

Man-Keung Siu’s conclusion: they are two aspects of a same reality, like 

Yin and Yang in the Chinese tradition: “In the teaching of mathematics 

we should not just emphasize one at the expense of the other. When we 

learn something new we need first to get acquainted with the new thing 

and to acquire sufficient feeling for it. A procedural approach helps us to 

prepare more solid ground to build up subsequent conceptual 

understanding. In turn, when we understand the concept better we will be 

able to handle the algorithm with more facility.” (Siu, 2002) 

4.2 Inventing and explaining algorithms geometrically 
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So, no mathematics without algorithms. But the essence of mathematics is 

not the execution of algorithms. In some first-grade mathematics 

textbooks, many solution procedures are laid down in ‘step-by-step plans’ 

that students have to perform literally. In part, of course, it is necessary 

for pupils to automate certain calculations or solution methods so that they 

do not have to think about them from scratch every time they need them. 

But let’s not overdo it: for executing algorithms, there are now computers, 

and pupils are no computers. Running an algorithm is less interesting than 

searching for solutions and explanations, coming up with algorithms... 

Let us not turn mathematics lessons into merely ‘applying algorithms’. 

Let’s teach about algorithms, their history, their geometric inspiration. 

Let’s give pupils the opportunity and the time to invent algorithms. 

4.3 More or less algorithms in our computer era? 

Obviously, computers have made algorithms more relevant. Algorithms 

and computer programmes play a big role in the background of the 

internet, social media, search engines, navigation systems... They 

determine our lives and sometimes threaten our privacy. 

On the other hand, computers have made algorithms less relevant. In 

my own job as a mathematics teacher, I had to program much more often 

in the previous century than in this one. This is because many things are 

now pre-programmed, in GeoGebra, in graphing calculators, in all kinds 

of apps. Having a graph drawn by a computer, investigating the effect of 

parameters: I remember that this required programming. In the last 25 

years, I hardly ever had to program. And now it will be necessary again, 

because the curriculum makers consider it part of the computer age. 

I want to end this article with some quotes from Donald Knuth. He is 

84 now. He is considered the father of programming and the inventor of 

TEX. He also wrote about the history of Babylonian algorithms (Knuth, 

1972). 

“Programming is the art of telling another human being what one 

wants the computer to do.”  

“An algorithm must be seen to be believed.” 

“Programs are meant to be read by humans and only incidentally for 

computers to execute.” (Knuth, 1969) 
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