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ABSTRACT 

The teaching and learning of the history of mathematics contributes to the 

overall education of students, whether they are prospective mathematicians, engineers 

or teachers. The use of the history of mathematics as an implicit and explicit resource 

makes it possible to improve the teaching of mathematics and the comprehensive 

training of students. The subjects that deal with the history of mathematics convey a 

perception of mathematics as a useful, dynamic, human, interdisciplinary and heuris-

tic science, while complementing the thematic study of the different parts of mathe-

matics. It is important to think of mathematics as a discipline linked to society and 

culture, as shown by the many people who have advanced the discipline by solving 

the problems of the society at each time and place. History shows that mathematics 

can be considered as a scientific and cultural activity that helps to solve problems in 

every period. This particular contribution will be focused on the use of original 

sources in the classroom; that is, on practical activities based on the history of math-

ematics for learning mathematics. Such practical activities using original sources 

drawn from the history of mathematics can provide students with a broader compre-

hension of the foundations and nature of the discipline, as well as a deeper approach 

to the understanding of the mathematical techniques and concepts used every day in 

the classroom. The aim of this paper is therefore to reflect on the use of original his-

torical sources for learning mathematics by means of practical activities, in order to 

provide new resources and ideas for teachers of mathematics. 

1 The history of mathematics for scientific education in the classroom1 

The teaching and learning of the history of mathematics contributes in two 

ways to the comprehensive training of students, whether they are prospective 

mathematicians, engineers or teachers of mathematics. On the one hand, it en-

hances the understanding and learning of some mathematical concepts and 

1 This research is included in the project “Mathematics, Engineering and Heritage: New Chal-

lenges and Practices (XVI-XIX)” (PID2020-113702RB-I00) of the Ministerio de Ciencia e 

Innovación. I am grateful to Fàtima Romero-Vallhonesta, Iolanda Guevara Casanova and 

Carles Puig-Pla. All us are members of the history of mathematics group at the ABEAM (Bar-

celona Association for the Teaching and Learning of Mathematics). Some of the practical activ-

ities presented have been worked together. 
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methods, and on the other provides a more authentic and accurate perspective 

of mathematics (Massa-Esteve, 2003).  

The history of mathematics can be used as an explicit resource for intro-

ducing and achieving a greater understanding of certain mathematical con-

cepts, methods and processes through the analysis in the classroom of selected 

original historical sources (Jahnke et al., 2000; Demattè, 2006 and Barbin, 

2022). In addition, this analysis of historical sources enables students to ac-

quire a vision of mathematics, not as a final and finished product but as a use-

ful, dynamic, humane, interdisciplinary and heuristic science. 

     - A useful science. It is important to explain to students that mathematics 

has been an essential tool in the development of different civilizations. It has 

been used since antiquity for solving problems of counting, for understanding 

the movements of the stars and for establishing a calendar. There are many 

examples right down to the present day in which mathematics has proved to be 

vital in spheres as diverse as computer science, economics, biology, and in the 

building of models for explaining physical phenomena in the field of applied 

science, to mention just a few of the applications.  

   - A dynamic science. It is also necessary whenever appropriate to teach 

students about problems that remained open in a particular period, how they 

have evolved and the situation they are in now, as well as showing that re-

search is still being carried out and that changes are constantly taking place. 

  - A human science. Teachers should reveal to students that behind the 

theorems and results there are remarkable people. It is not merely a question 

of recounting anecdotes but rather that students should learn something about 

the mathematical community; human beings whose work consisted in provid-

ing us with the theorems we use so frequently. Mathematics is a science that 

arises from human activity, and if students are able to see it in this way, they 

will probably perceive it as something more accessible and closer to them-

selves.  

    - An interdisciplinary science. Wherever possible, teachers of history of 

mathematics should show the historical connections of mathematics with other 

sciences (physics, biology, engineering, medicine, architecture, etc.) and other 

human activities (trade, politics, art, religion, etc.). It is also necessary to 

remember that a great number of important ideas in the development of science 

and mathematics itself have grown out of this interactive process.   
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   -A heuristic science. We should analyze with students the historical 

problems that have been solved by different methods, and thereby show them 

that the effort involved in solving problems has always been an exciting and 

enriching activity at a personal level. These methods can be used in teaching to 

encourage students to take an interest in research and to become budding 

researchers themselves.  

It is necessary to think of mathematics as a discipline rooted in society and 

culture, as shown by the many mathematicians who have made advances in 

the field by solving problems in society at each time and place. Indeed, the 

history of mathematics shows that the subject can be understood as a cultural 

activity, since societies develop as a result of the scientific activity undertaken 

by successive generations and that mathematics is being a fundamental part of 

this process. At the same time, the cultural and social influences involved in 

this historical development provide students with a view of mathematics as a 

subject closely linked to time and place, thereby contributing an additional 

value to the discipline itself (Radford, 2006). 

Thus, when teaching the history of mathematics in the classroom, it is es-

sential to analyze scientific discoveries in the context of both the time and 

place in which they occurred. To this end, the past, its contemporaries and its 

social and economic context must be taken into account. Some chronological 

accounts of the history of mathematics may make such discoveries appear as a 

mere linear correlation and give an impression of continuity that is not real. 

The objective of the historian of mathematics is not simply to compile lists of 

events and an enumeration of authors, but rather to shed light on influences 

and interactions, thereby helping to understand the origin of concepts and the 

different transformations of mathematics (Calinger, 1996). 

The aim of this paper is to reflect on the use of original historical sources 

for learning mathematics through practical activities using new resources and 

ideas. In what follows, I would like to address this way of introducing the his-

tory of mathematics, which will lead to the analysis of some new resources 

and ideas, and also examine many of the practical activities, especially some 

drawn from the transformation of mathematics in the 17th century. The crucial 

aspects of this period will serve to attain improvements in the mathematical 

education of students by learning new mathematical ideas, procedures and 

proofs. 
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2 Using original historical sources for learning mathematics: practical ac-

tivities.  

I have been teaching the history of mathematics in many university courses 

for twenty years. The practices analysed herein have been implemented in the 

Interuniversity Master of Formation of Prospective Teachers of Mathematics 

(UPC). I teach the compulsory subject “Mathematics from a Historical Per-

spective”, in two groups, each consisting of approximately 30 students. This 

subject is included in the Module of Complements of Formation of the above-

mentioned Master. In addition, in the University Degree in Superior Engineer-

ing (ETSEIB, UPC), I also teach the subject "The History of Applied Mathe-

matics to Engineering" for the prospective engineers, in one group of approx-

imately 25 students. In this case, the subject is not compulsory and the stu-

dents show a keen interest in both the history of mathematics and the history 

of science. Finally, in the University Degree in Mathematics (FME), I teach 

the elective subject "History of Mathematics", in one group of approximately 

15 students. I share the teaching of this course with Mónica Blanco (UPC), I 

teach the three first periods.  

The basis of my courses on the history of mathematics consists of the use 

of practical activities for learning mathematics and for reflecting on its devel-

opment. The practical activities using original historical sources provide stu-

dents with a deeper approach to the understanding of the mathematical proce-

dures and concepts used every day by the teachers in mathematics or engi-

neering classes. History may serve as an explicit resource to introduce or un-

derstand better certain mathematical concepts through the analysis in the 

classroom of selected historical texts.  

Therefore, it is necessary to explain how the practical activities are con-

ducted and why, by the analysis of some examples, we regard this way of in-

troducing the history of mathematics as very fruitful. In my courses on the 

history of mathematics I undertake a practical activity every week using orig-

inal sources in accordance with a script of questions on the subject of the 

source, with the intention of clarifying any doubts or problems that may arise 

and together discuss the development of mathematical thought in each histori-

cal period. One aspect is the use of images or videos for introducing the 

source. It is not necessary to insist too much that the image in the source is not 

a mere complement to the explanation, but that, on many occasions, it has a 

leading role in the discourse or in the proof.  
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A further key point consists in the selection of these original sources. This 

is a complex matter, especially if we wish to ensure that it is reliable and real-

ly conveys the context or the idea that is to be communicated. Therefore, we 

want to remark that the choice of the sources for teaching the history of math-

ematics has to be considered carefully. We may pose some questions such as: 

Is the source related to the historical content of the curriculum? Does it con-

tribute significantly to the improvement of the learning of mathematics? Is it 

essential to understand the origin of the mathematical concept being taught? 

Does it stimulate mathematical reflection? Has it represented the solution to 

any of the real problems of society? Does it arouse curiosity? Does it teach 

new methods? Does it enhance mathematical reasoning? (Jankvist, 2009; 

Mosvold, Jakobsen & Jankvist, 2014; Romero-Vallhonesta & Massa-Esteve, 

2016). 

The relevance of using historical sources in our courses is clear. From the 

results of our experience in the practical activities, we have observed that 

when students are faced with the historical mathematical text, they make it 

their own and create their own knowledge, which is the best way to learn 

mathematics. At the same time, thanks to these practical activities, students 

are able to learn, remember or review theorems, formulas or mathematical 

rules from another perspective. Finally, this way of introducing the history of 

mathematics transforms the class into a kind of laboratory in which ideas and 

concepts flow and are debated.  

In the following, based on the sources, I briefly describe some practical ac-

tivities with the aim of illustrating affirmative answers to some of the ques-

tions posed above. In my courses, the first three specific periods in the history 

of mathematics are regarded and will be addressed chronologically: “Mathemat-

ics in Antiquity”, as example of this period, the three first practical activities; 

“From Arab science to Renaissance algebra”, with the activities fourth and fifth 

as example and “The Birth of Modern Mathematics”, with the last five activities, 

as example. Therefore, I have selected 10 practical activities from my courses. 

1. Pythagoras’ theorem in Euclid’s Elements (300 BC) 

2. The measurement of the circle in Archimedes’ work (287 BC) 

3. The distances to the Sun and the Moon using plane geometry in Aristar-

chus’ work (280 BC) 

4. The geometrical justifications of the solution of equations in Al-

khwarizmi’s work (813) 
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5. The measure of inaccessible distances in Tartaglia’s Nova Scientia 

(1537) 

6. The negative roots of an equation in Girard’s work (1629) 

7. The “specious” algebra in François Viète’s In Artem Analyticen  

Isagoge (1591) 

8.The construction of quadratic equations in Descartes’ Géométrie (1637) 

9. The Arithmetical Triangle in Pascal’s work (1654) 

10.The quadrature of figures by using triangular tables in Mengoli’s work 

(1659 and 1672). 

2.1 Analysis of these practical activities 

 1.“Pythagoras’ theorem in Euclid’s Elements (300 BC)” 

The source is Euclid's Elements (300 BC), consisting of 13 books, which 

brings together the mathematical knowledge of different Greek schools and 

shows some geometric propositions that can be interpreted in terms of a sec-

ond-degree equation or the Pythagorean theorem. This work, which is be-

lieved to be a collective endeavour, is second only to the Bible in the number 

of editions published (more than a thousand), being one of the most culturally 

influential works in the entire history of science.  

There are many practical examples using propositions taken from Euclid's 

text. The Pythagorean theorem has been chosen because it is well known and 

it is demonstrated with equal geometric figures (triangles) that are compared 

with quadrilaterals, in an original and rigorous way (see Fig. 1). 

 

 

Figure 1. Proposition 47 of Book I in Euclid’s Elements 
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2. “The measurement of the circle in Archimedes’ work (287 BC)” 

The source is The Measure of the Circle (approx. 287 BC) by Archimedes, 

where an approximation to the number π is calculated thus helping to under-

stand its origin.   

Proposition III in this book shows that the relationship between the length 

of the circumference and its diameter is between 3 10/71 and 3 1/7, which 

represents an approximation of the number π between 3.1408 and 3.1428. 

Archimedes began by inscribing and circumscribing triangles in a circle, 

and by doubling the number of sides he arrived at polygons of 96 sides (see 

Fig. 2). To find this approximation he uses the bisector and the Pythagorean 

theorems and the relationship between the inscribed angles and the central an-

gle, among other properties of the circumference. 

 

 

Figure 2. The approximation of the number π (Archimedes, 1921) 

 

3. “The distances to the Sun and the Moon using plane geometry in Aristar-

chus’ work (280 BC)” 

The work “On the Sizes and Distances of the Sun and the Moon” by Aris-

tarchus of Samos is an attempt to calculate the distances Sun-Earth and Earth-

Moon, with an original, rigorous and correct method, using similar triangles, 

the bisector theorem and the Pythagorean theorem (see Massa-Esteve, 2005b 

for more). The geometric propositions that Aristarchus used are found mostly 

in Euclid's Elements. Eudoxus's theory of proportions from Book V of the El-
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ements is used consistently and its properties of inverting, alternating, com-

posing and multiplying are applied for both equal and unequal proportions. 

Aristarchus’ work is also implicitly based on other relations, which we now 

see and identify as trigonometric, as if he knew them or considered them trivi-

al. 

An example can be seen in the proof of Proposition VII, where Aristarchus 

states: “The distance from the Earth to the Sun is greater than eighteen times, 

but less than twenty times the distance from (the Earth) to the Moon.”  Aris-

tarchus builds a right triangle with vertices at the centres of the Earth (B), the 

Moon (C) and the Sun (A) with given angles or known by observation (see 

Fig. 3). As the Moon is shown to us split in two, the BCA angle is a right an-

gle, the ABC angle is 87º (by observation) and the CAB is 3º. In fact, he 

shows that: 18CB < AB < 20CB, which we would say with trigonometry: 

1/18> sin 3º = CB: AB > 1/20, where CB is the Moon-Earth distance, AB the 

Sun-Earth distance, and here the ratio of the distances is interpreted as the sine 

of the angle complementary to that between them. These ratios allowed Aris-

tarchus to determine the upper and lower bounds of the value we are looking 

for.  

 

 

Figure 3. Image of Proposition VII (Aristarco de Samos, 2007: 50) 

 

With this approach, it is necessary to highlight the four mathematical strate-

gies required for the development of the proof of the first inequality (18CB < 

AB): the passage from the analysis of the problem of the triangle Sun-Earth-

Moon to a similar triangle; the use of the relationship, as if it was trivial, be-

tween the tangents (current expression) and the angles (tg α: tg β> α: β, with 

the angles α, β of the first quadrant, and α > β); the establishment of a propor-

tion between the segments that determines the bisector of an angle and the 
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sides of the triangle (applying the proposition VI.3 of the Elements) and, the 

last one, the approximation of square root of 2, by 7: 5. At the end, Aristar-

chus transfers the result obtained in the similar triangle to the initial triangle 

ABC or the Sun-Earth-Moon triangle and concludes that AB > 18 CB. 

A comprehensive assessment of this work on astronomy must consider the 

close relationship that the beginnings of astronomy had with the origins of 

trigonometry, an aspect that contributes to a better understanding of the text 

and the evolution and utility of trigonometry. 

4.“The geometrical justifications of the solution of equations in Al-

khwarizmi’s work (813)” 

Arabs have played a fundamental role in the development of many branches 

of science. Arabs collected the abstraction of Greek knowledge and the prag-

matism and calculation of Hindu knowledge, for growing and transforming 

this assimilated knowledge, creating new ideas based on the resources of their 

own civilization. Baghdad emerged as the great scientific centre that enabled 

the translation of the great Greek works such as The Elements of Euclid and 

the Almagest of Ptolemy, thanks to which it was also possible to draw up new 

astronomical tables. After Baghdad, other focal points of culture were: Cairo, 

Cordova, Samarkand, Isfahan, and others. The Arabs made important contri-

butions to physics, observational astronomy, alchemy, medicine, geometry 

and especially in algebra (Romero et al., 2015). 

Abu Ja'Far Mohamed Ben-Musa al-Khwārizmī, mathematician, 

astronomer and member of the House of the Wise of Baghdad, died in 850 

(AD) and is regarded as the creator of the rules of algebra. His work Kitāb al-

Mukhtasar fī hisāb al-jabr wa'l-muqābala (ca. 813) was translated into Latin 

by Robert of Chester with the title Liber algebrae et almucabola (Segovia, 

1145), where the current name of algebra comes from. The work of al-

Khwarizmi consisted of a theoretical part with the method for solving 

equations with positive coefficients (classified into six types, up to the second 

degree) and a practical part that contained problems concerning numbers, 

trade, dowries and inheritance. 

The language was rhetorical, without the use of symbols and with some 

geometric justification of found solutions. The geometric justification used by 

the Arabs for the solutions of the equation of second-degree is based on the 

construction of a square of side “x”, completing it with two rectangles of 

measures “x” and “b/2” and one square of side “b/2”, in order to obtain a square 
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of side “x + b/2”, as may be checked in the example of following figures (Figs. 4 

and 5). 

 

      

Figure 4. Geometrical Justification in the translation by Rosen (1831) 

 

  

   

Figure 5. Solution of x2 +10x=39 with visual reasoning 

 

In this activity, students attempt to represent and solve equations of the sec-

ond-degree using geometry in the Arab way, while reflecting on the relation-

ships between two parts of mathematics that often complement each other in 

order to advance mathematical knowledge: algebra and geometry. 
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5.“The measure of inaccessible distances in Tartaglia’s Nova Scientia (1537)” 

The following historical activity deals with the work Nova Scientia (1537) 

by Nicolò Fontana (Tartaglia) (1499/1500-1557). In order to implement the 

activity in the classroom, it is recommendable: to begin with a brief presenta-

tion of the epoch, the Italian Renaissance, and the character of Tartaglia him-

self; the aims of the author as well as the features of the work would then be 

analyzed; finally, students are encouraged to construct an instrument for 

measuring degrees and follow the reasoning of a significant proof in order to 

acquire new mathematical ideas and perspectives. This classroom activity 

would be implemented also in the last cycle of compulsory education (14–16-

year-old) with the aim of introducing and motivating the study of trigonome-

try (see Massa-Esteve, 2014, for more).  

Tartaglia constructs two gunner’s quadrants, one with a graduate arc to 

measure the inclination of the cannonball and the other an instrument for solv-

ing the problem of measuring the distances and height of an inaccessible ob-

ject. In the third book, from the first proposition to the fourth proposition, he 

describes the material required for constructing the second gunner’s quadrant: 

the rule and the set square, and checks its angles in the following propositions 

(see Fig. 6).  

 

Figure 6. The gunner’s quadrant  

 

This gunner’s quadrant is used by Tartaglia for measuring the height of inac-

cessible objects in the propositions of the third book. Tartaglia uses this gun-

ner’s quadrant, while at the same time employing geometry in similar trian-

gles in the proof for measuring the distances and height of an inaccessible ob-

ject. In the implementation, students could be prompted to reproduce the rea-

soning of this proof with the geometry of triangles before introducing the trig-

onometry.   
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In Proposition VIII of third book, Tartaglia proves how to obtain the height 

of a visible but inaccessible object. The image of this proposition clarifies the 

geometric reasoning (see Fig. 7a):  

 

                

Figure 7a. Image of Proposition VIII. Tartaglia, 1537, 25r and Figure 7b. Re-

production of the mathematical problem 

 

After explaining the construction of gunner’s quadrant, accurately, together 

with the students the teacher could follow the reasoning of the proof using the 

similarity of triangles. For example, they could draw a figure with triangles 

that reproduces the geometric problem (see Fig. 7b). Together with the stu-

dents, the teacher can reproduce the geometrical proof using similar triangles, 

Pythagoras’ theorem and Thales’ theorem. The teacher can also demonstrate 

the use of this figure to solve other problems in the classroom; for instance, 

the height of a house, using this procedure. In fact, these kinds of problems 

are solved today by trigonometry, and furthermore this historical activity also 

justifies the introduction of the teaching of trigonometry. 

6.“The negative roots of an equation in Girard’s work (1629)” 

Through our experience, we have realized that many students have diffi-

culty understanding and handling negative numbers (see Romero-Vallhonesta 

et al., 2021, for more). Accordingly, first we present an analysis of some rele-

vant historical texts that deal with the product of negative signs like in Pacio-

li’s work (1494) or with the negative numbers like in Cardano’s work (1545). 

On the basis of these texts, classroom activities can be designed with contents 

related to numbering, which forms part of the numbering and calculation 

block of the curriculum. However, a deep understanding of negative numbers 

by students will come past the conceptual barrier of symbolic reasoning and 

once solving algebraic equations is introduced. For example, Girard wished to 

solve the quadratic equation: 5x2 =18 x +72, using some rhetorical instructions 
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that reminding the modern formula. In this activity they realize a clearer ac-

ceptance of the negative roots of a quadratic equation in this work by Albert 

Girard (1595-1632), Invention Nouvelle en l'algèbre (1629), situated after 

publication by Viète’s work and before by Descartes’ work. 

"When x2 (2) equals to x (1) and number (0).  

For example, if 5 x2 is equal to 18 x + 72. 

The half of the number of the x's is +9.  

Its square +81.  

To which we add the product of 5 times +72, which is +360. 

The sum + 441.  

The root of the sum is +21, 

 which added, and subtracted from the first in this order will give 30 

 and -12.  

Each of these divided by 5 will give 6 and also -12/5 values of x". 

7.“The “specious” algebra in François Viète: In Artem Analyticen Isagoge 

(1591)” 

The implementation of this historical practical activity in a mathematics 

history course is appropriated for my courses and also for the bachelor’s de-

gree in mathematics or in the last cycle of compulsory education (14–16 years 

old) (see Massa-Esteve, 2005a and 2020, for more). This activity contains 

singular geometric constructions solving quadratic equations by François 

Viète (1540-1603), in the process of algebraization of mathematics, which 

was mainly the result of the introduction of algebraic procedures for solving 

geometrical problems; in turn, this process led to two fundamental transfor-

mations in mathematics: the creation of what is now known as analytic geom-

etry, and the emergence of infinitesimal calculus (Mahoney, 1980; Mancosu, 

1996). These disciplines became exceptionally powerful when connections 

between algebraic expressions and curves and between algebraic operations 

and geometric constructions were established.  

 In his In Artem analyticen Isagoge (1591), Viète used symbols to repre-

sent both known and unknown quantities, and was thus able to investigate 

equations in a completely general form. Viète introduced the specious logistic, 

a method of calculation with “species”, kinds or classes of elements. The 

symbols of this analytic art (or algebra) could therefore be used to represent 

not just numbers but also values of any abstract magnitude, line, plane, solid 
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or angle. In my courses, I analyze Viète’s analysis as a method of solving all 

problems. 

In fact, it is important to explain to students that Viète solved equations 

geometrically using the Euclidean idea of proportion: proportions can be con-

verted into equations by setting the product of the medians equal to the prod-

uct of the extremes (Viète, 1591: 2). This Viète’s principle was taken directly 

from Euclid’s Elements VII.19. (Euclid, 1956: 318-320). In Chapter 2 of Isa-

goge, Viète states: “And so, a proportion can be called the composition (con-

stitutio) of an equation, an equation the resolution (resolutio) of a proportion”.  

In the classroom, Viète’s claims concerning the quadratic equation (x2 

+bx=d2) and how he solved a geometrical problem with a singular construc-

tion are analyzed (see Fig. 8). In this construction, Viète set up the quadratic 

equation A quadratum plus B in A, aequari D quadrato by means of a propor-

tion (A + B): D = D: A, using Viète’s principle.  

 

 

Figure 8. Viète’s three proportional construction (Viète, 1646: 234) 

 

Then, in the classroom, it is emphasized that Viète’s geometrical construction 

procedures are based on the identification of terms of an equation, both 

known and unknown quantities, as terms of a proportion, or proportional lines 

through the height theorem. 

8. “The construction of a quadratic equation in Descartes’ Géométrie (1637)” 

The other singular example that I analyze concerning the algebrization of 

mathematics is the geometrical construction in a quadratic equation found in 

La Géométrie (1637) by René Descartes (1596-1650). In the classroom, first, I 

explain the significance of Descartes’ work and describe the contents of the 

three books in La Géométrie. I begin with the book I by describing the crea-

tion of an algebra of segments by Descartes and showing how Descartes adds, 

multiplies, divides and calculates the square root of segments with geomet-
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rical constructions (see Bos, 2001; Allaire &Bradley, 2021 and Massa-Esteve, 

2020, for more). In the classroom, it is emphasized the use of Tales theorem 

for the product of segments, the introduction of the segment unity for the op-

erations between segments and the height theorem for the extraction of the 

square root. 

Next, I show how a quadratic equation (x2 = ax +bb) may be solved geo-

metrically by Descartes, reproducing the singular geometric construction (see 

Fig. 9): 

"For example, if I have z2=az+bb, I construct a right triangle NLM with 

one side LM, equal to b, the square root of the known quantity b2, and the 

other side, LN, equal to ½ a; that is, to half the other known quantity which 

was multiplied by z, which I suppose to be the unknown line. Then prolonging 

MN, the hypotenuse of this triangle, to O, so that NO is equal to NL, the 

whole line OM is the required line z. This is expressed in the following way:  

z= ½ a + (¼ aa + bb)1/2.” 

 

Figure 9. Descartes’ geometrical construction (Descartes, 1637: 302) 

 

In the classroom, after analyzing Descartes’ geometrical construction, I could 

hold a discussion with the students. Note that the symbolic formula appears 

explicitly in Descartes’ work. His geometrical construction corresponds to the 

construction of an unknown line in terms of some given lines without numeri-

cal coefficients. Therefore, the solution of the equation is given by the sum of 

a line and a square root, which has been obtained using the Pythagorean theo-

rem. However, Descartes ignores the second root, which is negative, and did 

not mention that this geometrical construction could be justified by Euclid’s 

Elements III. 36, in which the power of a point regarding a circumference is 

shown (Euclid, 1956: 75-77). 

I ask questions for comparing the two geometrical constructions and 

reflect on the relationship between algebra and geometry. I reproduce Viète's 
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and Descartes’ geometrical construction and explain the procedure; question-

ing whether this geometrical construction could be used for any quadratic 

equation. Students should give suitable reasons to the following questions. 

What about negative solutions? How are the Pythagorean and the height theo-

rem used? Explain their relationship with the solution of the equation. What is 

the main difference between Viète’s geometrical construction and that by Eu-

clid? What is the difference between Viète’s and Descartes’ geometrical con-

structions? Can we say that geometric reasoning reaches its full potential by 

relating algebra with geometry? One student of the course for prospective 

mathematicians (FME) answers this last question with these remarks:  

"Thus, the tool that emerges from the fusion of algebra and geometry 

makes it possible to select the best properties of both sciences; from the first 

(algebra), the optimization of the treatment of mathematical concepts, obviat-

ing the need to represent the respective procedures and results of a demonstra-

tion, and at the same time providing more information intrinsic to the symbol-

ism itself. From the second (geometry), the possibility of visualizing in a par-

ticular case the object studied algebraically, and at the same time having a 

large number of properties that could be used as an axis or complement to a 

proof. But this is not all; this combination not only allows for the construction 

of the mentioned method, but also catalyzes a much more effervescent devel-

opment of both sciences, and consequently the creation (to be constructed lat-

er) of new fields of study within mathematics, as would be the case of analyti-

cal geometry or the convulsion that trigonometry triggered in the seventeenth 

century". 

Students through this activity can learn that at the end of the process of al-

gebrization, algebra and geometry became complementarians and that was 

from the coordination and conjunction of both branches that new fields of 

mathematics developed in the path of modern mathematics. 

9. “The Arithmetic Triangle in Pascal’s work (1654)” 

The arithmetical triangle is the most famous set of numbers in mathematics 

arranged in a triangular table. It was useful in many fields and had been stud-

ied since ancient times and by many civilizations. Despite being used since 

the eleventh century, I may see that it is not until the seventeenth century 

when I find the first definitions of the arithmetic triangle, and where its prop-

erties are explained by Blaise Pascal (1623-1662). Indeed, the source of this 

activity, written in 1654 and published in 1665, is Pascal’s work: Traité du 
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Triangle arithmétique, avec quelques autres petits traités sur la même 

matière. Usage du Triangle Arithmétique pour les ordres numériques, pour 

les combinaisons, pour trouver les puissances des binômes et des apotomes.... 

After defining the arithmetical triangle, Pascal wrote and subsequently pub-

lished three further treatises in which he put forward and explained, in a very 

clear style, these three interpretations, their properties and uses (see fig. 10). 

 

 

Figure 10. Pascal’s Triangle (1654) 

 

The rule for forming the arithmetical triangle is simple: every row begins 

and ends with 1, and the other numbers are obtained by the addition of two 

numbers closest to the row immediately above (see fig. 11).  

 

1 

1     1 

1    2    1 

1    3     3      1 

1    4     6      4     1 

Figure 11. The arithmetical triangle 

 

The numbers that form the arithmetical triangle, arranged diagonally, are 

well known and date back at least as far the ancient Greeks, if not earlier. 

They are known as the figurate numbers (triangulars, tetrahedrals or pentago-

nals). The numbers in the rows of the triangle were subsequently recognized 

as the terms of a binomial development (now called binomial coefficients), 

and later on, as may already be seen in Pascal’s arithmetical triangle, the 

numbers apply to solving combinatorial problems (see Edwards, 2002). In the 
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classroom, the triangle is a source of ideas and enables us to calculate with 

combinatorial numbers (see fig. 12). 

 

 

Figure 12. Pascal’s triangle in the classroom (see Massa & Romero, 2009, 

for more) 

 

 

 

As far as their applications can be appreciated, it is not only used to make 

combinatory or to find the coefficients of the Newton binomial, but can also 

be used to generalize, to calculate summations of powers or later summations 

of series, and even to calculate areas, as I explain in Mengoli’s works and 

Leibniz’s excerpts (see Massa-Esteve, 2017 and 2018, for more). 

10. The quadrature of figures by using triangular tables in Mengoli’s work 

(1659 and 1672) 

The source is Mengoli‘s Geometriae Speciosae Elementa (Bologna, 1659), 

a 472-page text in pure mathematics with six Elementa whose title: "Elements 

of Specious Geometry" already indicates the singular use of symbolic lan-

guage in this work and particularly in Geometry (see Massa-Esteve, 2006 for 

more). He unintentionally created a new field, a "specious geometry" mod-

elled on Viète's "specious algebra” since he worked with “specious” language, 

that is to say, symbols used to represent not just numbers but also values of 

any abstract magnitudes. 

Indeed, throughout the book he introduced triangular tables as useful alge-

braic tools for calculations. In the Elementum primum, the terms of the trian-

gular tables are numbers and they are used to obtain the development of any 

binomial power (see fig. 13).  
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u 

a             r 

a2          2ar          r2 

a3      3a2r      3ar2       r3 

a4    4a3r     6a2r2     4ar3     r4 

Figure 13. Table of binomial power 

 

In the Elementum secundum, the terms are summations and are used to obtain 

their values (see fig. 14). 

 

O.u 

O.a        O.r 

O.a2        O.ar      O.r2 

O.a3        O.a2r       O.ar2        O.r3 

O.a4     O.a3r    O.a2r2        O.ar3        O.r4 

Figure 14. Table of summations 

 

Finally, in the Elementum sextum of Geometria and in the Circolo, the terms 

are geometric figures or forms and triangular tables are used to obtain the 

quadratures of these geometric figures (see fig. 15).  
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Figure 15. Table of geometric figures (Massa-Esteve & Delshams, 2009: 331) 

 

 I analyze with the students (prospective mathematicians) that Mengoli's orig-

inality did not stem from the presentation of these tables but rather from his 

treatment of them. On the one hand, he used the combinatorial triangle and 

symbolic language to create other tables with algebraic expressions, clearly 

stating their laws of formation; on the other hand, he employed the relations 

between these expressions and the binomial coefficients to prove results like 

for instance the sum of the pth-powers of the first t-1 integers. Mengoli found 

a rule in which the value of the sum of the pth powers is obtained. However, 

in addition to stating the rule, Mengoli also proved it and used it to perform 

these values expressing all calculations in symbolic language. 

Mengoli’s idea was that letters could represent not only given numbers or 

unknown quantities, but variables as well: that is, determinable [but] indeter-

minate quantities. The summations are indeterminate numbers, but they are 

determinate when we know the value of t. By assigning different values to t, 

Mengoli explicitly introduced the concept of “variable”, a notion that was 

quite new at the time. He applied his idea of variable to calculate the "quasi 
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ratios" of these summations. The ratio between summations is also indetermi-

nate, but is determinable by increasing the value of t. From this idea of quasi 

ratio, he constructed the theory of “quasi proportions” taking the Euclidean 

theory of proportions as a model, which enabled him to calculate the value of 

the limits of these summations. This theory constitutes an essential episode in 

the use of the infinite and would prove to be a very successful tool in the 

study of Mengoli’s quadratures and logarithms.  

Nevertheless, Mengoli’s principal aim was the computation of the quadra-

ture of the circle. Instead of just computing it, Mengoli created a new and 

fruitful algebraic method which involved the computation of countless quad-

ratures. He explicitly identified these geometric figures with the values of 

their areas, which were also displayed in another triangular table (now called 

the harmonic triangle) (see fig. 16 and 17). It is noteworthy that in the Geome-

tria, there are only three drawings of the geometrical figures whereas in the 

Circolo, he did not include any drawing. 

1 

1/2        1/2 

1/3       1/ 6        1/3 

1/4      1/12        1/12       1/4 

1/5     1/20      1/30        1/20       1/5 

Figure 16. Values of the quadratures. Harmonic Triangle 

 

Figure 17. Identification of quadratures and his values in modern notation 

 

In other Mengoli’s work, Circolo (1672), basing in the harmonic triangle, by 

interpolation, he computed quadratures between 0 and 1 of mixed-line geo-

metric figures determined by  y = xn/2 (1-x)(m-n)/2 , for natural numbers m and n. 

Note that in the special case m=2 and n=1, the geometric figure is the semicir-

cle of diameter 1.  
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However, I argue in my courses that the most innovative aspect of Men-

goli’s algebraic procedure was his use of letters to work directly with the al-

gebraic expression of the geometric figure. On the one hand, he expressed a 

figure by an algebraic expression, in which the ordinate of the curve that de-

termines the figure is related to the abscissa by means of a proportion, thus 

establishing the Euclidean theory of proportions as a link between algebra and 

geometry. On the other hand, he showed how algebraic expressions could be 

used to construct geometrically the ordinate at any given point. This allowed 

him to study geometric figures via their algebraic expressions and calculated 

its areas.  

 

3 Some reflections 

These kinds of practical activities are very rich in terms of competency-based 

learning, since they allow students to apply their knowledge in different situa-

tions and from different points of view, rather than to reproduce exactly what 

they have learned. 

The practical activities based on the analysis of historical texts using origi-

nal sources contribute to improving the students' overall education, providing 

them with additional knowledge of the social and scientific context of the pe-

riods involved. Students acquire a vision of mathematics, not as a final prod-

uct, but as a science that has been developed on the basis of seeking answers 

to questions that mankind has been asking throughout history about the world 

around us.  

These practical activities oblige students to tackle some significant histori-

cal demonstrations with different procedures, while at the same time encour-

aging debate and reflection, thereby transforming the classroom into a labora-

tory of ideas. Showing the difficulties that have been encountered throughout 

history in answering certain questions can help to motivate students who 

sometimes believe that mathematics consists of a series of formulas and rules 

that understanding is preserved for privileged minds.  

Geometry has a great visual and aesthetic value and offers a beautiful way 

of understanding the world. The elegance of its constructions and proofs 

makes it an area of mathematics that is highly appropriate for developing the 

student reasoning process and providing proofs, as well as for incorporating 

geometrical constructions as a part of the heuristic in solving problems. Geo-

metric proofs have a great potential for linking geometrical and numerical 
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reasoning in some of the activities proposed, and geometrical and algebraic 

reasoning in others. In this way, students are able to establish connections 

among numbers, figures and formulas; that is to say, calculations, geometric 

constructions and algebraic expressions.  

In addition, with these practical activities, students can work with prob-

lem-solving, reasoning and proof processes, thus addressing connections, 

communication and representation. By analysing historical texts, students are 

introduced to different ways of working from different perspectives (transver-

sal competences), which enables them to tackle mathematical problems by 

developing their mathematical thinking. 

Finally, I conclude that this "way of introducing" the history of mathemat-

ics will enable prospective engineers, mathematicians and teachers of mathe-

matics to more readily recognize the most significant changes taking place in 

the mathematical discipline, and above all to reflect more deeply on the for-

mation of their scientific thought. 
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