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ABSTRACT 

Anders Gabriel Duhre, an important mathematician and mathematics educator in Sweden during the 18th century, 

contributed with two textbooks in mathematics, one in algebra and one in geometry. Among others, he treats 

infinitesimals based on Nieuwentijts’ theories from Analysis infinitorum and infinite sums based on Wallis’ 

method of induction from Arithmetica infinitorum. Based on these results, Duhre develops an ingenious method 

to determine the area enclosed by curves by constructing a corresponding curve. He applies his method to the 

circle in order to find an expression of   as an infinite series. The series he finds is a modified version of the 

Gregory-Leibniz’ series. In the present paper we consider in detail Duhre’s presentation in order to further 

investigate the influence upon him as well as his influence on the Swedish mathematical society of his time.  

1   Introduction  

The Swedish mathematician and mathematics educator Anders Gabriel Duhre (c.1680–1739) 

was an important and influential person in the Swedish mathematical society in the early 18
th

 

century (Rodhe, 2002). He studied mathematics at Uppsala University, Sweden, and for some 

time he was a student of the Swedish scientist, inventor and industrialist Christopher Polhem 

(1661–1751) at his school Laboratorium Mechanicum in Stjärnsund. For some years Duhre 

taught mathematics to engineering students at Bergskollegium (a central agency in the mining 

industry) and to prospective officers at the Royal Fortification Office in Stockholm. In 1723 

he opened his own school, Laboratorium Mathematico-Oeconomicum, outside Uppsala, 

where theoretical and practical subjects were taught to young boys (Hebbe, 1933). Of 

particular interest is that mathematics was taught in this school; Duhre had knowledge of 

mathematics that was not yet taught at the university, and students at the university turned to 

him to learn more on modern mathematics. Among his students were several of the Swedish 

mathematicians to be established during the 1720s and 1730s (Rodhe, 2002). Duhre taught in 

Swedish and early on planned to write mathematical textbooks in Swedish in order to 

introduce the Swedish youth to new and modern mathematics. 

Duhre contributed with two textbooks in mathematics – one in algebra and one in 

geometry. Both were based on his lecture notes from his teaching at Bergskollegium and the 

Royal Fortification Office. The first book, En Grundelig Inledning til Mathesin Universalem 

och Algebram (“A thorough introduction to universal mathematics and algebra”), was edited 

by Georg Brandt and published in 1718. In this book, modern algebra based on Descartes’ 

notation is presented, as well as examples from Newton’s, Wallis’ and Nieuwentijt’s theories 

from the end of the 17
th

 century. For example, he treats infinitesimals based on Nieuwentijt’s 

theory as presented in Analysis infinitorum (1695) and utilizes Wallis’ method of induction, as 

presented in Arithmetica infinitorum (1656), to determine the quotient of infinite series. In his 
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second book, Första Delen af en Grundad Geometria (“The first part of a founded 

geometry”), published in 1721, Duhre takes advantage of the theories he presented earlier in 

his book on algebra. Of particular interest is his use of algebra in the geometrical context 

(Pejlare, 2017).  

In this paper, we will consider Duhres’ utilization of infinitesimals and infinite sums to 

determine the quotient between the circumference and the diameter of a circle, in order to find 

  expressed as an infinite series. We will first give a short introduction to Nieuwentijt’s 

Analysis infinitorum and his utilization of infinitesimals, before we consider Duhre’s 

interpretation of Nieuwentijt’s work. Thereafter we will consider Wallis’ Arithmetica 

infinitorum and how Duhre utilizes his method of induction to determine the quotient of 

infinite series. Following that, we will consider Duhre’s method to find the area enclosed by 

curves. Finally, we will consider how Duhre utilizes this method on a circle and how he 

determines an expression for  . 

2 Infinitesimals in Nieuwentijt’s Analysis infinitorum 

The Dutch philosopher and mathematician Bernard Nieuwentijt (1654–1718) is, in particular, 

known for his critique on the foundations of Leibniz’ infinitesimal calculus. In 1695 he 

published Analysis infinitorum, a book “written by a beginner for beginners”
1
 on elementary 

infinitesimal calculus. This book is primarily of a didactic character; he attempted at 

presenting mathematics in a systematic way as a coherent unit (Vermij, 1989). In the prologue 

he presents three definitions and two axioms which enable him to deduce rules for calculating 

with the infinite and infinitesimal quantities through more than 50 lemmas. In the chapters 

following the introduction, these lemmas lead to the propositions on infinitesimal calculus.  

For Nieuwentijt, a quantity is infinitesimal if it is smaller than any arbitrary given quantity 

and it is infinite if it is greater than any arbitrary given quantity. The word infinitesimal is 

however not used in the definitions, axioms or lemmas. Instead, Nieuwentijt uses the 

expression “datâ minor” which can be translated into “the given smallest”. Of central 

importance is his first axiom:  

Anything that when multiplied, however many times, does not equal another given 

quantity, however small, cannot be considered a quantity, geometrically it is absolutely 

nothing.
2
 

The main peculiarity of Nieuwentijt’s approach to infinitesimals is represented in Lemma 10, 

where it is stated that if an infinitesimalquantity is multiplied by an infinitesimal quantity, 

then the product is zero or nothing. The product of two infinitesimal quantities, or “the 

infinite small of the infinite small”, can be interpreted as Leibniz’ second differential. 

However, whereas Nieuwentijt considered squares of infinitesimals to be equal to zero, this is 

generally not the case with Leibniz’ differentials (Mancosu, 1996).  

                                                           
1 “Tyroni scriptum tyronibus” (Nieuwentijt, 1695, præfatio). 
2 “Quicquid toties sumi, hoc est per tantum numerum multiplicari non potest, ut datam ullam quantitatem, ut ut 

exiguam, magnitudine suâ æquare valeat, quantitas non est, sed in re geometricâ merum nihil” (Nieuwentijt, 

1695, p. 2). 
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3 Infinitely small quantities in Duhre’stextbook on algebra 

In Chapter XXVI of his book on algebra, Duhre presents an interpretation of the prologue of 

Nieuwentijt’s Analysis infinitorum (1695). An infinitely small quantity is defined by Duhre 

as: 

If a quantity is divided by an infinitely big number, one should consider the received 

quotient to be infinitely small; it is something that is smaller than the smallest quantity 

that can ever be given.
3
 

Thus, according to Duhre, if   is an infinitely big number then the quotient 
 

 
 is infinitely 

smaller than the quantity  . Duhre considers the nature of an infinitely big number to be 

that it is bigger than every given number and that it thus can be seen as “ceaselessly 

growing with no return”.
4
From this it follows that 

 

 
 is smaller than the smallest quantity 

that can ever be given. Duhre gives a proof by contradiction that 
 

 
 really is “smaller than 

the smallest”: if   is a quantity that is smaller than 
 

 
 then the given quantity   is bigger 

than    and the quotient 
 

 
 is bigger than the infinitely big quantity  , but this 

“contradicts all truth”.
5
 Therefore,

 

 
must be smaller than the smallest quantity, i.e., an 

infinitely small quantity. 

The arguments above show that handling the infinite is problematic. Duhre treats the 

infinite as a fixed number, but this is in conflict with his earlier statement that an infinite 

number grows ceaselessly. Also, it seems easier to accept the infinitely big than the infinitely 

small, since the existence of the infinitely small is proven with the help of a given existence of 

the infinitely big.  

After introducing infinitely small quantities, Duhre continues with 14 lemmas with rules 

for calculating with them; 10 of these are also found in Nieuwentijt’s Analysis infinitorum. 

Among Duhre’s lemmas we find, among others, that the sum of two infinitely small quantities 

is an infinitely small quantity (Lemma 1) and that the product of any number and an infinitely 

small quantity is an infinitely small quantity (Lemma 3). Of great importance for his later 

presentation on infinite sums is Lemma 4, which corresponds to Nieuwentijt’s Lemma 10:  

If an infinitely small part 
 

 
 is either multiplied by itself or by another infinitely small 

part  
 

 
; then the received product 

  

  
 or 

  

  
 is nothing or no quantity.

6
 

Thus, Duhre, just as Nieuwentijt, considers the square of infinitely small quantities to be 

equal to zero. In the proof of this lemma Duhreuses Nieuwentijt’s first axiom: If the product 

of two infinitely small quantities is multiplied by an infinite number, this will be equal to an 

infinitely small quantity, i.e., 
    

  
 

  

 
 and 

    

  
 

  

 
, and since something multiplied by an 

                                                           
3 ”Om en förestäld quantitet hålles före wara fördehlad utaf ett oändeligen stort tahl; bör man anse then ther af 

komna quotienten för oändeligen lijten thet är för en ting som är mindre än then allerminsta quantitet som 

någonsin kan gifwas” (Brandt, 1718, p. 212). 
4 ”[…] ouphörligen växande utan någon återvända” (Brandt, 1718, p. 213). 
5 ”[…] stridande emot all sanning” (Brandt, 1718, p. 213). 
6 ”Om en oändeligen lijten dehl 

 

 
, antingen warder multiplicerad med sig sielf eller med någon annan 

oändeligen lijten dehl 
 

 
; at then ther af komna producten

  

  
 eller 

  

  
 måtte wara alsintet eller ingen quantitet” 

(Brandt, 1718, p. 214).  
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infinite number is equal to an infinitely small number then this something is not a quantity 

and geometrically is nothing. 

In this proof Duhre does not seem to have a problem handling the infinite; it is no problem 

for him to shorten the expression with the infinitely big number  . He uses Lemma 4 in 

Lemma 14 where he deals with how infinitely small quantities can be handled in equations. 

He concludes that in an equation involving infinitely small quantities, the infinitely small 

quantities can be omitted, since, if the equation is divided by an infinitely big number  , then 

it follows from Lemma 4 that these can be considered as nothing. Algebraically this lemma 

can be interpreted as   
 

 
   since 

 

 
 

 

  
 

 

 
.  

4 Wallis’ Arithmetica infinitorum 

After considering the introduction of Nieuwentijt’s Analysis infinitorum, Duhre, in 

Chapter XXVII of his book on algebra, proceeds with studying John Wallis’ (1616–1703) 

Arithmetica infinitorum from 1656. Arithmetica infinitorum was an important text in the 

17
th

 century, in particular regarding the transition from geometry to algebra and regarding 

infinite series (Stedall, 2005). For example, Isaac Newton (1642–1727) was influenced 

by Wallis in his work towards integral calculus. Introducing new methods and concepts, 

Wallis’ purpose was to find a general method of quadrature, i.e., finding the area 

enclosed by curves, or rather the ratios of those areas to inscribed or circumscribed 

rectangles. He achieved this by drawing together ideas from René Descartes’ (1596–

1650) algebraic geometry and Bonaventura Cavalieri’s (1598–1647) theory of 

indivisibles. Wallis’ results were based on the summation of indivisibles or infinitesimal 

quantities, where an indivisible can be considered to have at least one dimension equal to 

zero, as for example a line or a plane, while an infinitesimal is considered to have an 

arbitrarily non-zero width or thickness. Wallis was however not concerned with the 

distinction between indivisibles and infinitesimals and generally spoke of infinitely small 

quantities.  

In order to find the area enclosed by curves, Wallis reduced the geometric problem to the 

summation of arithmetic sequences (Stedall, 2004). Two important mathematical methods he 

developed were induction and interpolation. Wallis’ method of induction relied on intuition; 

he believed that if a pattern was established for a few cases then it could be assumed to 

continue indefinitely. Also, in his method of interpolation he relied on intuition; for example, 

he assumed continuity regarding sequences of numbers in order to interpolate intermediate 

values. One example of this is when he used his method of interpolation between the 

triangular numbers 1, 3, 6, 10 … Another example of interpolation is when he, in Proposition 

191, found the ratio of a square to an inscribed circle: 
 

 
 

               

               
 . 

5 Infinite sums in Duhre’s textbook on algebra 

We now turn our attention to Duhre’s textbook on algebra again. We will here only consider 

those parts when Duhreuses Wallis’ method of induction in order to deal with infinite sums. 

Duhre begins Chapter XXVIIby determining that the proportion of the sum of infinitely many 

squares with the roots 1, 2, 3, 4, 5 et cetera to the summan totidem terminorum maximo 

æqualium equals the proportion of 1 to 3. The summan totidem terminorum maximo æqualium 
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is explained to be “the sum of the greatest term as many times as there are terms in the 

progression”
7
. Thus, in modern notation the proportion to be determined can be interpreted as: 

 

   
   

    
   

       
 

 

 
 

 

Duhre proves this proportion using Wallis’ method of induction, as presented in 

Arithmetica infinitorum. To do this, he first examines the proportion when n equals 1, 2, 

3, 4, and 5 in the expression above:  

 
   

   
 

 

 
 

 

 
 

 

     

     
 

 

 
 

 

  
 

 

       

       
 

 

 
 

 

  
 

 

          

              
 

 

 
 

 

  
 

 

             

                 
 

 

 
 

 

  
 

 

Duhre examines the pattern of the partial proportions and concludes that the denominators 6, 

12, 18, 24, 30 et cetera form an arithmetical sequence. As long as the number of squares is 

finite the proportion is bigger than 
 

 
. However, if we have infinitely many ( ) squares, the 

proportion will be
 

 
 

 

 
, but since

 

 
 

 

 
 

 

 
 according to Lemma 14 in Chapter XXVI (see 

Section 3), the proportion will be 
 

 
. Therefore, he concludes, the proportion of the sum of 

infinitely many squares with the roots 1, 2, 3, 4, 5 et cetera to the summan totidem 

terminorum maximo æqualium equals the proportion of 1 to 3. 

In this presentation, Duhre closely follows Wallis, but unlike Wallis who in his following 

propositions offers geometrical interpretations of this result, Duhre does not do so. According 

to Wallis, the above proportion 1 to 3 geometrically corresponds to the proportion of the 

complement of half a parabola to the parallelogram completed by the same half parabola and 

its complement (Wallis, 1656, Prop. XXIII). Furthermore, Wallis’ method of induction would 

not be an accepted method of induction today, since only a limited number of cases for 

          were tested and the induction step (i.e., if the property is assumed to be true for 

    it should be proven to be true for      ) was not included.  

Duhre proceeds by proving the corresponding proportion for cubes with the help of Wallis’ 

method of induction. In modern notation, he proves the following: 

 

   
   

    
   

       
 

 

 
 

                                                           
7 ”[…] en summa innehållande then största ledamoten så ofta som progressionens ledamöter äre” (Brandt, 1718, 

p. 77). 
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After these two proofs, using Wallis method of induction, Duhre states that, again 

interpreted in modern notation, the following proportions are true: 

 

   
   

    
   

       
 

 

 
 

 

   
   

    
   

       
 

 

 
 

 

   
   

    
   

       
 

 

 
 

6 Duhre’s method of finding the area enclosed by curves 

Let us now turn to Duhre’s textbook on geometry. We will consider Duhre’s method of 

finding the area enclosed by curves in order to see how he uses the proportions including 

infinite sums that he considered in his Algebra. In Chapter XXX Duhre formulates a 

proposition where he considers the curve      and from it constructs the curve      such 

that the area of the segment       is equal to half of the area        (see Figure 6.1). 

The curve      is constructed in the following way: Let    be a tangent at the point  , 

parallel to the ordinate    and for every point   on     with a tangent    where   is a 

point on   , the ordinate    is equal to the line   . 

 

Figure 6.1: The area of the segment       is equal to half of the area        (Duhre, 

1721, p. 572). 

Duhre proves this proposition without using algebra, only considering geometrical properties. 

First, he draws a few help lines. He draws the line    parallel to    such that      is a 

parallelogram. If the point   is considered to be infinitely close to the point  , he concludes 

that the line    can be considered to be a straight line and thus it can be considered to be a 

part of the tangent   . Then he draws the line    parallel to    and the lines   ,    and 

   parallel to   . Finally, he draws the line   . The proof of the proposition follows: 

Since the two parallel lines    and    are infinitely close to each other, the points   and 

  are infinitely close to each other, and thus the mixed lines figure      must be the same 

as the parallelogram    . Furthermore, the lines   ,    and    are equal to each other 

and hence the parallelogram      equals the parallelogram     , which in turn equals the 

parallelogram     . Now, if    is considered as a base, the parallelogram      is twice 

as big as the triangle    , since the lines    and    are parallel. This implies that also the 

mixed lines figure     and the parallelogram     are twice as big as the triangle    . 
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Finally, if other lines parallel to the line    are drawn, each of the resulting mixed lines 

figures are twice as big as the corresponding triangles for the same reason that the mixed lines 

figure      is twice as big as the triangle    . Therefore, the figure       , which is 

the composite of the mixed lines figures, equals twice the sum of the corresponding triangles 

that forms the segment     , which is what Duhre wanted to prove. 

7 Duhre’s method applied to the circle  

In order to calculate the decimals of  , or more specifically, in order to show that the 

proportion between the diameter and the circumference of a circle is approximately the same 

as 100 to 314, Duhre now wants to apply the proposition from Chapter XXX to a circle, i.e., 

instead of considering the circumference he considers the area of a circle. He begins Chapter 

XXXI with considering a half circle; the area under the corresponding curve to a half circle 

should be equal to the area of a full circle (see Figure 7.1). However, the corresponding 

curve    to the half circle    in fact is an asymptote to the line   , and thus the 

“indescribable width”
8
 of the area contained by the “indescribable” line     is equal to the 

area of the circle. However, the “undescribable width” is too difficult for Duhre to consider 

further. Therefore, he instead considers a quarter of a circle    and its corresponding 

curve   . Doing this, the area      equals twice of the area of the segment     

according to the proposition in Chapter XXX. By adding half of this area to the area of the 

triangle     and multiplying the expression by four, an expression of the area of the circle 

will be given.  

 

 

Figure 7.1: The area      equals twice of the area of the segment     (Duhre, 1721, p. 

574). 

Instead of calculating the area of the figure    , Duhre’s idea is to calculate the area of the 

figure    . He states that the line   , which is equal to the line   , can be divided into 

infinitely many equal parts, and the lines   ,   ,    et cetera proceeding from these points 

of intersection will fill up the figure    .  

Now Duhre introduces the variables  ,   and  . He lets      , i.e., the radius of the 

circle equals  , the ordinate            and     . He wants to find an 

                                                           
8 ”[…] obeskrifweliga widden” (Duhre, 1721, p. 110). 
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expression for  , which can be considered as a length that varies.He does this using 

proportional reasoning: He first concludes that         and, because of properties of 

the circle the square of    equals       which is the same as       . Considering the 

two uniform triangles     and    , Duhre concludes that since  ,   ,    and    are 

geometrical proportional, i.e.,            , the squares    ,    ,     and     will 

also be geometrical proportional, i.e.,                .
9
 From this it follows that 

                       , which can be simplified into             . He 

now uses the fact that the product of the two utmost in a geometrical progression equals the 

product of the two inners, i.e.,             . By adding     and dividing by       

on both sides, Duhre now finally finds the expression   
    

     
   . This quotient can be 

expressed as an infinite series: 

 

     
    

     
 

   

 
 

   

  
 

   

  
 

   

  
    

 

Furthermore, he concludes that if       then  

 

   
   

 
 

    

  
 

     

  
 

     

  
     

 

if        then  

 

   
    

 
 

     

  
 

      

  
 

       

  
     

 

and so on. Since      is divided into infinitely many equal parts, where the first one is 

    ,      ,      , and so on, the expressions above give the corresponding 

lengths of    . These lengths could also be denoted   ,   ,    according to Figure 7.1. 

The last of these lengths is     .The infinitely many lengths together fill up the figure 

   , and therefore Duhre now has to compute the infinite sum of these infinitely many 

series. In order to compute the sum, i.e., the area of the figure    , Duhre now collects all 

terms of the same power of  . Thus, the area     will be: 

 
 

 
                 

 

  
                  

 

  
                      

 

In modern notation this expression can be interpreted as 

 

 

 
   
   

      
 

   

 
 

  
   
   

      
 

   

 
 

  
   
   

      
 

   

   

 

To compute these sums, Duhre uses the results on infinite sums from his text book on algebra 

(see Section 5). First, he has to determine the summa totidem terminorum maximo æqualium. 

The summa totidem terminorum maximo æqualium to the infinite sum              
must be     , since he considers   to be the number of terms in the infinite sum and    to 

                                                           
9 In modern notation: 

  

  
 

  

  
      

   

   
 

   

   . 
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be the biggest term in the sum. It follows that, in modern notation,              
    

 

 
  . 

In the same way              
    

 

 
  ,              

    
 

 
   and so on. Therefore, 

the infinite sum of the infinite series above, i.e., the area of the figure    , will be equal to 
 

 

 
 
 

 
    

 

  
 
 

 
    

 

  
 
 

 
        

 

 
 

 
   

 

 
   

 

 
   

 

 
       

 

Duhre can now easily find an expression for the area of the figure    ; he just has to take the 

area of the square of   , i.e.,   , and subtract the area of the figure    . Thus, the area of 

the figure     will be 

 

   
 

 
   

 

 
   

 

 
   

 

 
    

 

According to the method presented in Chapter XXX (see Section6), the area of the figure 

    is twice the area of the segment    , and therefore it follows that the area of the segmet 

    will be 

 
 

 
   

 

 
   

 

 
   

 

 
   

 

 
       

 

Now, adding the area of the triangle     to this expression and multiply with four will 

finally give an expression for the area of the circle with radius  : 

 

    
 

 
   

 

 
   

 

 
   

 

 
       

 

Duhre modifies this expression even further, in order to find an expression for the 

circumference of the circle. Since the area of a circle equals the area of a triangle where the 

base equals the circumference of the circle and the height equals the radius of the circle, he 

concludes that he will find an expression of the circumference of the circle if he divides the 

area of the circle with half of its radius, i.e., 
 

 
 . Thus, he gets the following series expressing 

the circumference of the circle: 

 

   
 

 
  

 

 
  

 

 
  

 

 
     

 

Duhre now lets the diameter of the circle, i.e.,   , equal 1 and finds that the proportion 

between the diameter of a circle and its circumference is as one to the following series: 

 

  
 

 
 

 

 
 

 

 
 

 

 
    

 

He finally modifies this series by merging the terms pairwise: 
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In modern notation we can interpret this result as 

 

     
   

 
 

         
 

 

   

 

8 Duhre’s calculation of   

After finding the proportion of the diameter of the circle to its circumference, Duhre proceeds 

with computing this proportion. He starts with constructing a table (see Figure 8.1) with the 

first 315 denominators of the series  
 

         

 
    .This table is actually not completely 

correct, possibly due to typesetting errors. For example, for k=100 it says 258.403 instead of 

158.403 and for k= 50 it says 39.204 instead of 39.203.  

 

Figure 8.1: The table containing the first 315 denominators in Duhre’s infinite series of   

(Duhre, 1721, pp. 116–117). 

Duhre proceeds with constructing a second table, containing the first 315 terms and partial 

sums of the series (see Figure 8.2). However, he does not want to consider decimals and 

therefore he considers a circle with diameter 100.000.000 instead of 1, i.e., the general 

numerator in the series will be 800.000.000 instead of 8. In modern notation this new series 

can be written as  
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In this way the partial sums, after approximations, will be natural numbers. In the table in 

Figure 8.2 we can see that the proportion of the diameter of a circle to its circumference will 

be approximately as 100.000.000 to 314.000.528, or as 100 to 314. 

 

Figure 8.2: Duhre’s table showing the first 315 approximated termsand partial sums in the 

series  
           

         

 
    (Duhre, 1721, pp. 119–121). 

Duhre concludes Chapter XXX by noting that in practice, when minor computations have to 

be made, the proportion 100 to 314 or the Archimedean proportion 7 to 22 can be used, the 

requested proportion being smaller than the former and bigger than the latter. If larger 

computations have to be performed, however, he suggests that the proportion 100.000 to 

314.159 should be used. Nevertheless, he does not perform the computations needed to find 

this proportion. 

9 Concluding remarks 

The series   
 

 
 

 

 
 

 

 
 

 

 
    which Duhre received before he merged the terms pairwise, 

we recognize as a Maclaurin series for         for   . Since          , we can 

conclude that Duhre’s series is correct. However, it converges very slowly. This series is 

known as the Gregory–Leibniz’ series after James Gregory (1638–1675) and Gottfried 

Wilhelm Leibniz (1646–1716). Leibniz was concerned with the quadrature and when he 

applied his method to the circle he received the series 
 

 
   

 

 
 

 

 
 

 

 
  . Leibniz found 

this result in 1673, but already in 1671 Gregory, who was concerned with infinite series 

representations of transcendental functions, had found the corresponding Taylor series. Also, 
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an Indian mathematician, whose identity is not definitely known, found the series for        

during the 15
th

 century (Roy, 1990). This series, written in Sanskrit verse, is usually ascribed 

to Kerala Gargya Nilakantha (c.1450–c.1550) and can be found in the book Tantrasangraha 

composed around 1500.  

Since Duhre follows Wallis’ method of induction when he considers the infinite series, it 

may be surprising that he in his book on geometry does not proceed with studying Wallis’ 

interpolation method to find the area of a circle in order to find an expression for  . However, 

Duhre’s method, where he from the circle constructs a corresponding curve where he can use 

the previously found infinite sums to find the enclosed area, is indeed ingenious. In his search 

for   Duhre also uses modern algebra that cannot be found in Wallis’ Arithmetica 

infinitorum. Duhre considers algebra to be helpful, since it enables complicated expressions to 

be transformed into simpler ones, and thus convenience in calculations is obtained.  

While Duhre primarily was an educator, his main pioneering achievement was that he 

brought knowledge of modern mathematics into the Swedish mathematical community. 

Of particular value is his choice to write in Swedish in order to find a greater audience. 

Twice he applied for a position as professor at Uppsala University, without success, but 

he still succeeded in inspiring several among the next generation of Swedish 

mathematicians. Certainly, also his students at Bergskollegium and the Royal 

Fortification Office had the opportunity to be introduced into modern mathematics thanks 

to Duhre. 
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