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ABSTRACT 

The idea of the fusion of plane and solid geometry originated from projective and descriptive geometry, 

which worked with projections in space and sections. Different authors of textbooks (starting from 

Bretschneider in 1844 to Méray in 1874/1903; de Paolis in 1884; Lazzeri & Bassani in 1891, also translated 

into German by Treutlein in 1911) adopted this idea, mixing plane and solid considerations. For instance, 

the chapter on the properties of incidence also referred to the mutual position of a plane and a straight line, 

while homothety was defined in space and then on the plane. Pupils were supposed to have a better intuition 

of spatial relations when passing from space to plane, and to reason by analogy. Moreover, proofs could be 

presented of plane theorems using projections in space of simple known configurations. In the textbook of 

Lazzeri and Bassani we can see that one of the aims of the authors is to prove plane theorems with the help 

of considerations in space that allow to avoid part of the congruence axioms and the theory of proportions. 

This is not a novelty within history of mathematics, the development of conic sections is linked to this point, 

and Monge, too, used it in 1799. The question was also considered at the ICMI Congress of 1911—within 

the more general theme of the fusion of different branches of mathematics—by giving examples of 

successful textbooks (Fehr, 1911; Barbin & Menghini, 2013). This paper will discuss the methodological 

question of the fusion of plane and solid geometry bringing examples from different textbooks, and 

presenting some of the discussions on the subject, with particular reference to Italy, where there was even 

talk of a fusionist school (Borgato 2006 and 2016). 

1 Introduction 

This paper concerns the fusion of plane and solid geometry in the teaching of 

mathematics; that is the simultaneous use of plane and solid considerations when 

presenting and proving geometric properties at school. In Italy, at the turn of the 19th and 

20th century this methodological question was deeply debated and there was even talk of a 

“fusionist school” (Borgato, 2006 and 2016). 

We will consider the history of mathematics education starting from about two 

centuries ago, in the era of Gaspard Monge. However, the method of “fusion” does not 

belong only to the history of mathematics education but to history of mathematics in 

general. Indeed, it was used already by Apollonius to determine plane properties of the 

conic sections. 

In 1911 the first plenary meeting of the International Commission on the Teaching of 

Mathematics (IMUK / ICMI / CIEM) was held in Milan (Italy). On this occasion a 

broader concept of fusion was discussed. The report of the discussion (Fehr 1911) was 

published in the Journal l’Enseignement Mathématique, which was at that time the official 

organ of the Commission. The report, based on an overview presented by Charles Bioche, 

refers to the teaching in various countries, and to the way in which they realize the 

different types of “fusion”: geometry and arithmetic, plane geometry and trigonometry, 

plane and solid geometry (which is of interest for us), solid and descriptive geometry 

(which, as we will see, has also some interest for our question). 
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As to the fusion of plane and solid geometry, we read in the report (p. 469) that “the 

fusionists do not wait to have finished the treatment of all plane geometry before starting 

with spatial considerations”
1

, and that “generally the two teachings are separated, 

excluding the entrance classes, because of the programmes. But “notable works appeared 

on geometric fusionism”. The mentioned textbooks are those written by the German 

Anton Bretschneider (1844), the French Charles Méray (1874/1903), and the Italians 

Giulio Lazzeri &Anselmo Bassani (1891).The report does not say very much about the 

educational pros or cons of the different of proposals. 

Concerning the fusion of solid geometry and descriptive geometry, the report notes that 

these teachings are generally separated, and often not given by the same teacher (the 

report refers mainly to Realschulen in German speaking countries). 

In the same number of the Journal we find a book review (Book review 1911) of 

Lazzeri & Bassani’s Elemente der Geometrie, the German edition of the textbook, 

translated by Peter Treutlein and published by Teubner. 

The review underlines that the idea of the fusion of plane and solid geometry is not new, 

since this methodology had already been presented in the Journal by “one of the main 

founders, Ch. Meray”. 

The first edition of his [Méray’s] book dates back to 1874, while the first Italian work –

established on different bases –was published by De Paolis in 1884.The present work 

broadly follows the order traced by De Paolis (Book review 1911, p. 429). 

The review lists the contents of the book but does not describe the methodology used. 

Rather, it seems aimed at proving the priority of Méray (who died in 1911) with respect to 

“fusionism”. 

But the important sentence in the review is “established on different bases”. What does 

it mean? 

We do not know what the author of the review was meaning, but surely we can 

distinguish between two kinds of approach: 

- a methodological/educational approach based on a “new order” of the content 

allowing a “neighbourhood” of analogous properties in plane and space (mainly the one of 

Bretschneider, but also of Méray and de Paolis, with some exceptions). We describe this 

approach in section3. 

- a mathematical/foundational approach based on the proof of plane theorems by means 

of space configurations (mainly the one of Lazzeri & Bassani). 

This second approach is shown in the next chapter. 

2 Proofs by means of space configurations 

The link between plane and space dates back to the beginning of the history of conic 

sections, which are defined as plane sections of a solid. It is not only a question of 

definitions: their properties can be proved looking at their position with respect to the cone. 

2.1 Apollonius 

One of the major works about conic sections is The Conics by Apollonius of Perga (3
rd

-2
nd

 

cent. B.C.). In Book 1, Proposition XI (ver Eecke, 1963, p.22) we find a sort of “equation 

of the parabola”. 

                                                           
1
All translations are by the author. 
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The cone is defined by Apollonius as the set of straight lines that join a point A (the 

vertex) to the points of a circumference. It is therefore an oblique circular double cone. 

Fig. 2.1 (taken from Ver Eecke, 1963, p.22) represents the case in which the cone’s 

section yields a parabola. 

 
 

Figure 2.1 Figure 2.2 

To slightly simplify the proof, let us consider a right circular cone, where BC is the 

diameter of the base circumference. In Fig. 2.2 we consider 

EF BC; H = EF BC; VH   AC. 

The plane EFV is therefore parallel to a generatrix of the cone and cuts it in a parabola. 

Now we chose any circumference whose diameter B’C’ is parallel to BC, and take MN 

on the circumference and on EFV so that MN   EF and K = MN B’C’ 

Euclid’s “geometric mean theorem” holds for triangle B’C’M: 

MK
2
=B’K▪KC’ 

What does it mean to find the equation of the parabola? We need a relation between 

two mutually perpendicular segments, in this case MK and KV,      ,which 

correspond to our x and y. 

To find this relation Apollonius considers the similarities between VB’K and ABC, and 

between AVS and ABC, obtaining  

   

   
  

  

  
                  

  

  
 =        

  

  
 

  

  
  

  

  
              

  

  
     

In the previous formulas we replaced B’V by KV (two sides of an isosceles triangle, 

note that this is the only point in which we use the fact that the cone is a right cone) and 

VS by KC’ (two opposite sides of a parallelogram).  Substituting in the formula for the 

geometric mean theorem we obtain 

MK
2
=               

  

  
 
 

x
2 
=p y 

In the previous equality we have considered that MK and KV are variables which 

depend on the changeable circumference whose diameter is B’C’. All the rest is constant 

and depends on the cone and the point in which the plane of the parabola cuts the cone. 
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The original proof is of course more difficult because Apollonius uses only proportions 

between geometric objects (for instance our p of the last equation corresponds to a 

segment – name d  in Fig. 2.1 – with certain properties). Apollonius finds analogous 

relations for the ellipse and the hyperbola, but what is interesting for us is that starting 

from a space definition and considering (always in space) elementary geometric properties 

we find a relation between two segments in the plane. 

2.2 Gaspard Monge 

In 1799 the Géométrie Descriptive by Gaspard Monge was published. The book is “pour 

l’usage des élèves de la première École Normale” and is devoted to future teachers. 

Descriptive geometry deals with the representation of three-dimensional objects 

through drawings in two dimensions by projection and section (its first aim).In a certain 

sense it can be seen as a generalization of conic sections: the latter rise from a projection 

of a circle from a point and a successive section with a plane. Descriptive geometry deals 

with parallel or central projections of different geometric objects, and plane sections. The 

second aim of descriptive geometry is, according to Monge, “to research truth in 

geometry”. The exactness of drawings and the research for truth render the content 

important for all the students of the French educational system (Barbin, to appear).  So we 

have again to do with the history of mathematics education. 

The first part of the book deals with the method of projections and shows how to 

determine the position of a point in space. The second part concerns tangent planes and 

normals to surfaces. It requires the capacity of seeing relations in the space. Here we find 

very interesting proofs of plane theorems made with the help of space considerations. 

Let’s for instance consider one of the properties proved by Monge (1847, p. II, n. 39, 

see Fig. 2.3). Our proof follows the notation of Fig. 2.4. 

 
Figure 2.3 

Let’s take a line and points on it Q, Q’, etc. From each point Q, Q’, … we draw 

tangents to a given conic section (e.g. an ellipse E). For each pair of tangents, we draw 

line r cutting the ellipse in two points R and R’. All the lines constructed in the same way 

pass through a same point P. 
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Figure 2.4 Figure 2.5 

Proof: let the ellipse rotate about one of its axes, thus obtaining an ellipsoid. A cone with 

vertex Q touches the surface in an ellipse C (Fig. 2.5). 

If the two tangent planes trough the line QQ’ touch the ellipsoid in two pointsP1, P2 

(see Fig. 2.6, where P and P1 are exchanged), the ellipse C passes through P1 and P2. 

Figure 2.6
2
 

 The plane of C is   to  1 (the plane containing the original ellipse E), and C E = R, 

R’ (note that C is any circumference rotating about the line P1P2, while the dark 

circumference indicated with   in figure 2.6 is a limit case of C when Q is the point at 

infinity of the line common to the two planes). The intersection P1P2   RR’ yields the 

point P. This happens for any point Q, so the theorem is proven. 

2.3 Pierre Germinal Dandelin 

In a paper of 1822 Pierre Germinal Dandelin, a former student of the Ecole Polytechnique, 

                                                           
2
 Retrieved from https://commons.wikimedia.org   

683

https://commons.wikimedia.org/


  

Figure 2.7
3
 Figure 2.8

4
 

presents a well-known proof that links the definition of a conic as a section of a cone to its 

definition as a locus of points. We are in a period in which the development of descriptive 

geometry brings with it also a revival of synthetic geometry. 

For the proof, Dandelin considers two spheres tangent to a cone and to the plane that 

yields a conic section. We will consider the case of an ellipse, following the notation of 

Fig. 2.8: 

A plane cuts a cone in an ellipse E. The sphere S touches the cone in a circumference 

C, and touches the plane containing E in f. The sphere S’ touches the cone in a 

circumference C’ and touches the plane containing E in f’. Take p on E. The generatrix 

through p touches S in s, and S’ in s’. It holds 

pf = ps; pf ’ = ps’ (equal tangent segments to the spheres) 

 pf+pf ’ = ps + ps ’ = ss’ 

The distance ss’ = constant. We thus obtain that for any point p on E the sum of the 

distances pf + pf ’ is constant. This is the definition of an ellipse as locus of points. As for 

the proof by Apollonius, we used elementary geometric properties in space to find a 

relation in the plane. 

This proof can be found in some textbooks, but strangely I did not find it in books 

which present a fusionist approach; instead I found it in the part concerning solid geometry 

                                                           
3
 From Dandelin, 1822, p. 169 

4
 Retrieved from https://xavier.hubaut.info/coursmath/2de/belges.htm 
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of books as Henrici & Treutlein (1891/1901) and Cateni & Fortini (1958). 

3 A new order in the textbooks 

3.1 Carl Anton Bretschneider 

One of the first textbooks to present a new order allowing a better integration of plane and 

space considerations is the one by Carl Anton Bretschneider in 1844. The aim is clearly 

stated in the introduction:  

Basing the synthetic part of my book on the division into geometry of position, of 

form, measure, and organic geometry, which is offered by the nature of this science, 

the separation of the matter into the two main sections of plane and solid geometry 

could not be allowed anymore […]The pedagogical value cannot be denied 

(Bretschneider, 1844, p. VI). 

Let’s see in which way Bretschneider groups the various topics; in the following list of 

contents the chapters 1, 3, 4 of Book one concern plane geometry, the other concern 

geometry of space. In Book 2, the first five chapters are about plane geometry, the others 

about solid geometry. 

Book 1. Geometry of position 

Ch. 1 the straight line 

Ch. 2 the plane 

Ch. 3 plane angles 

Ch. 4 parallelism in the plane 

Ch. 5 wedges[dihedral angles in the 

space] 

Ch. 6 Angles between lines and planes 

Ch. 7 parallelism in space 

Book 2. Geometry of form 

Ch. 1 plane figures 

Ch. 2 plane triangles 

Ch. 3 quadrilaterals 

Ch. 4 circles 

Ch. 5 circumscribed and inscribed circles 

Ch. 6 solid angles 

Ch. 7 polyhedra in general 

Ch. 8 pyramids 

Ch. 9 prisms 

Ch. 10 the sphere 

Book 3 concerns the Geometry of measure and also contains the theory of proportions 

and of similarity. The first 6 chapters are about plane measures, the 4 last chapters are 

about volumes and surfaces and lengths in the space. 

The second part of the book is on analytic geometry, more precisely: 

Book 4 and 5 are on plane goniometry and trigonometry,  

Book 6 is on coordinates, and Ch. 5 considers coordinates in space. 

Then we find five appendices, about geometric constructions in the plane; geometric 

loci in the plane, in particular conics; the method of projections; the area of a parabola and 

of an ellipse; the area of spherical triangles. 

Appendix 3 deserves particular attention. It presents the method of projections (the 

“new geometry”) in plane and space and contains interesting propositions, including the 

proofs of Apollonius for parabola, ellipse and hyperbola. Other plane propositions, proved 

by Monge using 3D geometry, are proved here using the theory of polars in the plane.  

So, we can see that in the textbook of Bretschneider there is still a separation between 

plane and solid considerations, but similar topics are – when possible - the one near the 

other. The only really “fusionist” argumentations are the proofs by Apollonius, which are 

presented using the proportions among similar triangles, as shown in chapter 1. 
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3.2 Charles Méray 

Another very interesting book is the one by Charles Méray, written in1874, which reached 

its major success in 1901, when it was revived thanks to the new programmes for the 

teaching of mathematics of France. 

In the introduction Méray criticizes the “disorder” of Euclid’s Elements. In particular, 

he states that the division between plane geometry and solid geometry makes no sense, 

because nature only presents objects in space (Méray, 1874, p. XI). In his text, Méray 

substitutes most axioms with intuitive properties of motions in space (folding a piece of 

paper on itself, translating an object, rotating about a line). 

The subdivision of the matter is not very different from Bretschneider, as in all other 

fusionist books, but in some chapters there is a better integration of plane and space 

thanks to the use of geometric transformations. 

The chapters from 1to 4 deal with intersection, perpendicularity, and parallelism of 

lines and planes, and with plane and dihedral angles. 

Translation is defined as a motion of figures in space. Two lines are parallel if a 

translation maps the one onto the other (independently from being in a plane or in space). 

The same for parallel planes and for lines parallel to a plane. 

A plane is perpendicular to a line if it is mapped onto itself by the rotation about the 

line. Two lines are perpendicular if they meet and each of them is on a plane perpendicular 

to the other. 

So, we can see that in these chapters plane and space are treated simultaneously and, 

for instance, perpendicularity between straight lines is defined using the perpendicularity 

between a plane and a line. 

Not all chapters present such an integration, but we find it again in chapter 5, dealing 

with the comparison of segments. The intercept theorem (Thales theorem) about the 

proportion of segments is given both for plane and space. In chapter 10 areas are 

compared by means of a projection of an area on a plane (using trigonometry) (Méray, 

1874, p. 96, see Fig. 3.1). 

Not all chapters present such an 

integration, but we find it again in 

chapter 5, dealing with the comparison 

of segments. The intercept theorem 

(Thales theorem) about the proportion of 

segments is given both for plane and 

space. In chapter 10 areas are compared 

by means of a projection of an area on a 

plane (using trigonometry) (Méray 

1874, p. 96, see Fig. 3.1). 

In chapter 13 homothetic figures and 

similarity are treated both in plane and 

in space. (ibid. p. 122, see Fig. 3.2) 
 

 Figure 3.1 
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Figure 3.2 

Let us note that Méray presents separately the parabola, hyperbola and ellipse referring to 

their eccentricity. He never uses the term “conic sections”. Indeed, we can suppose that - 

being his a fusionist book – he would be then obliged to link the eccentricity to the 

definition of these figures as sections of the cone. 

3.3 Riccardo De Paolis 

The textbook by the Italian Riccardo De Paolis of 1884 is mentioned in the review of the 

textbook by Lazzeri & Bassani published in1911 inl’Enseignement Mathématique(see 

section 1). 

In his introduction De Paolis writes: 

There is a big analogy between certain figures in the plane and certain figures in the 

space; by studying them separately we renounce to know all that we can learn from 

this analogy, and we fall into useless repetitions. If we look for the properties of a 

line or a surface without being able to use the geometrical entities placed outside 

the line and the surface, we limit the forces we can dispose of and we renounce to 

geometric tools that would help to simplify constructions and proofs. In fact, how 

can you construct the midpoint of a given segment without leaving the segment 

itself? Instead, using the geometrical tools of a plane that contains it, the 

construction is known and very simple. How can one construct an isosceles triangle 

that has each of the two angles equal to twice the third? The triangle is easily 

constructed, and without applying the theory of equivalence or proportions, if we 

use the geometric objects placed outside its plane (page 92) (De Paolis, 1884, p. III-

IV). 

The proof mentioned by De Paolis is not as easy as he states, but what is important in 

this last sentence is the fact that proofs can be performed without applying the theory of 

equivalence or proportions. Indeed, it is necessary to observe that if – as was the case in 

Italy – the textbooks follow the books of Euclid, the theory of proportions takes much 

time and is quite difficult. Therefore the possibility to avoid it has a particular value. 

Do not object that for beginners it is easier to conceive a plane angle than a 

dihedral angle; it is exactly because the mind of the students is forced to think and 
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draw only flat figures in the first years of their geometric studies, that they find 

difficulties afterwards (ibid. p.IV). 

In his book De Paolis gives much importance to geometric transformations, as Méray 

does. He also presents many interesting exercises and problems. But his proofs are often 

too long, being the author also much interested in rigour. 

As in Méray, the first part of the book concerns properties of incidence and parallelism. 

Let’s look, for instance, at the following theorem: 

The angles formed by two intersecting lines are equal to those formed by two lines 

parallel to them, which meet (ibid., p. 33) 

The formulation does not state if 

we are speaking of a plane theorem 

or of a theorem in solid geometry. 

This means that the theorem holds 

in both cases. The first part of the 

proof is performed in space and is 

based on the sliding of the pair of 

lines APC and BPD on the dihedral 

angle formed by the two couples of 

parallel lines AC, A’C’ and BD, 

B’D’ …(Fig. 3.3) 

Only afterwards De Paolis presents 

the proof for lines lying all in the 

same plane, which refers to 

previous theorems based on the 

properties of parallel lines. 

 

 Figure 3.3 

A further theorem presents what we could call a “fusionist” proof: 

Given           . Suppose that             all meet in  , and that        and 

       ; we want to prove that        (ibid., p. 92). 

 

 

Figure 3.4 Figure 3.5 

If the given triangles are not on the same plane, the proof is obvious: the two planes 
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          are parallel, because of the hypotheses, and hence also        (Fig. 3.4). 

If              are on a same plane, take two points    on any line (in space) 

through P, from which we project the triangles. So we have twice the solid case. For the 

transitivity of parallelism, the proof is completed (Fig. 3.5). 

To follow the second part of the proof, we need to consider the same configuration of the 

first case, but looking at it differently: in the first case we “see” a solid configuration, in 

the second case a plane one.  

Let us also note that this theorem is a particular case of the Desargues theorem, 

corresponding to the situation in which the intersection points of correspondent sides are 

on a line at infinity (i.e., correspondent sides are parallel). Hilbert shows that the 

Desargues theorem can be proven using only the incidence axioms for the space, and 

avoiding the congruence Axiom III, 5 (Hilbert, 1899). 

3.4 Giulio Lazzeri and Anselmo Bassani 

We arrive now to the last and most important book presenting a fusionist approach: the 

book by Lazzeri and Bassani, which was written in 1891 for the pupils of the Accademia 

Navale (naval academy) in Livorno – at that time a secondary technical school – and had a 

second edition in 1898 devoted also to the Lycées. 

The introduction is very similar to the one of De Paolis. The authors mention - as their 

predecessors - Bretschneider, De Paolis, Angelo Andriani(Andriani 1887; another Italian 

fusionist book) and – above all –Monge, 

who showed the utility of the fusion by proving, with the help of three-dimensional 

figures, many theorems concerning plane figures in a very simple way (Lazzeri & 

Bassani, 1891, p. X). 

Moreover, they add that this method of proving plane theorems with the help of solid 

geometry “is well accepted today in projective geometry […] and has now been realized 

also in elementary geometry” (ibid.). 

Indeed, in the book by Lazzeri & Bassani the method is very often applied. 

Substantially there is no chapter in which plane and space are separated. Moreover, they 

state that they "succeeded in making many questions independent from the theory of 

proportions and of measures" (ibid., p. XI).A first example is given by the following 

theorem: 

Two lines r and r’ are given, with r parallel to r’, and A, B, C, D on r.  Consider a point 

O and the lines OA, OB, etc. which cut r’ in A’, B’, C’, D’. We want to prove that if AB = 

CD then A’B’ = C’D’. 

The theorem could be easily proven using proportions and similarity. But we can find a 

different proof that avoids the theory of proportions: 

With reference to Fig. 3.6, move OAB to O’CD, so that A’B’ = A”B”. 

Take V not on the plane of the figure, and consider the tetrahedral OCDV and O’CDV 

and a plane containing r’ parallel to the plane VO'O": this plane intersects the triangle 

VCD (common to the two tetrahedra) in HK. 
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Figure 3.6 

  

A previous theorem states that in a 

tetrahedron we can always consider a plane 

parallel to two opposite edges and at an 

intermediate distance from them. This plane 

cuts the tetrahedron in a parallelogram (fig. 

3.7).  

Thanks to this theorem we have that HKC’D’ 

and HKA”B” are parallelograms; therefore 

HK = A”B”= A’B’; HK = C’D’, hence A’B’ 

= C’D’. 

 

 Figure 3.7 

This proof only involves questions of parallelism and intersection. It is not a difficult 

proof, if we have the habit to “see” in space. 

Let us look at second example, with the following theorem: 

Given two circumferences       (      ) on the plane, the locus of points such that 

the tangent segments led from each point to the two circumferences are equal is a straight 

line perpendicular to the line joining the two centres, and external to the circumferences if 

the circumferences are the one external to the other (Fig. 3.8) 

 

Figure 3.8 

The proof refers to Fig. 3.9, which is taken from Lazzeri & Bassani (1891, p. 188). 

Consider two equal spheres      passing through      , with centres   
    

 . Take 

    
   

         in its midpoint (plane of reflection of      ). 
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Figure 3.9 

Call r =    α; r is the locus on α such that the tangent segments led from each point to the 

two spheres are equal and hence also to the two circles. We show that      
       :the 

perpendiculars to α through   
    

 meet αin      and forma plane     , 

containing     
           

   
       . Also                         being     

   
       , so planes 

 and meet in a line   and hence       
       . 

The book by Lazzeri and Bassani presents very interesting and beautiful proofs. It is not 

easy to judge its difficulty without knowing in depth the teaching methods of such a topic 

in that period, and in particular of Lazzeri himself, who was a teacher in the naval 

academy. Indeed, at the time the book was well considered by teachers, but the question 

does not have a definite answer, as we can see in the next section. 

4 Discussions about the question 

In 1899 the Journal l’Enseignement Mathematique published a paper by Giacomo 

Candido, where the author describes the debate that takes place in Italy, presenting the 

arguments against fusion and the arguments in favour of fusion (Candido, 1899). 

Against the fusion are the programmes of the Lycées, which present stereometry only in 

the third year, following the same order of Euclid; moreover the fusion seems too difficult, 

too much linked to systematization (with reference both to De Paolis and to the book of 

Andriani, who – according to Candido – found “non-existing connections” between plane 

and space). 

In favour of fusion are the fact that it is time saving (it is not necessary to repeat certain 

parts of the school programs) and allows a simplification of some considerations on 

planimetry by explaining them through considerations in space. Furthermore, it allows a 

major harmony between the study of mathematics and that of other topics. 

The author mentions the book by Lazzeri & Bassani among the arguments in favour of 

fusion. Indeed, it contains better proofs “through” space. The success in a technical 

institute (the Accademia Navale of Livorno, where Lazzeri was a teacher) brought the 

book to be used also in Lycées (Candido, 1899). 

The Italian association of mathematics teachers Mathesis published different 

discussions and also asked to change the programs so as to allow fusion (Borgato 2006 

and 2016). 

Again in l’Enseignement Mathematique, Méray presents the 1903 edition of his 

Eléments (Méray, 1904) with a big critique to Euclid, as contained in the introduction of 

the book (see 3.2). He mentions the great Italian “fusionist” school, but notes that his book 

was written earlier. 
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In the second book of the series on Elementary Mathematics from a higher standpoint, 

first published in 1908 with a new English translation in 2016, Felix Klein presents the 

book by Scheffers & Kramer (1925): 

The text is based on the view that for the development of the best possible space 

intuition, the fusion between planimetry and stereometry has to be dealt with more 

systematically and from an earlier time in school than has happened so far. If we 

start to realise this idea of fusion, we encounter soon the necessity to perform 

spatial constructions graphically and to imagine solids on the plane. The 

planimetry-stereometry-fusion urges therefore a broader notion of fusion, which 

comprises descriptive geometry (Klein, 2016, p. 303). 

In a book of 1928 discussing the teaching of geometry in German schools Kuno Fladt 

states: 

Already in the 1840s the need was felt of merging stereometry closely with 

planimetry. Even if too much weight was given at that time to a scientific 

systematization, there was anyway an educational idea: that the pupil who has to do 

only with planimetry is almost educated to “space blindness”. Both types of reasons 

lead in Italy to an extended “fusion” of planimetry and stereometry. But there was a 

setback: the too early and extended employment of stereometry turned out to be too 

difficult. 

This does not exclude that, on the one hand, in the first teaching of geometry plane 

objects are shown on solids, from which they are then abstracted, and that, on the 

other hand, when presenting new plane figures, we always consider and present the 

solid bodies in which they can be found. This is a “moderate fusion” as now 

required in the new programmes of Würtenberg of 1926/27 (Fladt, 1928, p. 126) 

A compromise is indeed often a good solution, and this can happen also in the case of 

fusionism. A presentation of the incidence properties as presented in the first chapters by 

Méray is surely a wonderful help to space representation. 

In the case of conic sections, proofs as the one by Apollonius or by Dandelin allow the 

link between different definitions of conic sections, which is not usual in schools. 

But also other suggestions come from this historical overview, which could help the 

construction of a curriculum that avoids “space blindness”. 
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