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ABSTRACT 

After the French Italian wars, military architects tried to reply to the power of cannons by creating new 

shapes taking into account the straight lines of cannonballs trajectories: the bastions. Different models were 

invented by a variety of authors, but none of them gave real reasons for their constructions. The first 

mathematical proofs were given by Jean Errard de Bar-le-Duc, a military engineer of King Henry IV of 

France. His works were well received in the Low Countries, where they inspired a new Dutch “manner of 

fortification” (i.e. shapes with algorithms of construction). Among the authors linked to the Leiden school of 

engineers, Samuel Marolois was the first to explain the use of trigonometry to compute the distances and 

prove the shapes to be fitted for defense. This paper compares different manners of constructing bastions and 

different uses of geometry to be found in the original texts. 

1 A short history of “modern fortification” 

Fortification is a matter of geometry, as anyone would agree considering the star shaped 

forts, citadels or cities enclosures that are still visible around the world including Norway, 

with the famous Akershus fortress in Oslo. All of them are visible from the sky through 

Google Earth or other satellite imagery services
1
. The reasons for that geometric choice 

must be sought in the history of war technologies, as it is a response to the progress of 

artillery in the 15
th

 century. Let’s give the floor on this subject to a Dutch writer of the 

golden age, Matthias Dögen, whose Architecture militaire moderne ou fortification 

(Dögen, 1648) gives one of the best short histories of fortification. 

According to Dögen, the oldest usual way to protect people in the cities was to build 

large stonewalls around them, but there was a huge drawback: the assailants could come 

under the cover of the walls, when the defenders had to get uncovered to try to repel them. 

In the Antiquity, architects invented the principle of flanking: they built outer towers to 

allow defenders to shoot their enemies from behind when these enemies dared to approach 

the walls. This principle was still in use in the medieval castles with their round towers at 

the edges of the main walls.  

But as Geoffrey Parker showed (Parker, 1988), when the Western world discovered the 

use of gunpowder, it was a real revolution in attacking as well as in defending and 

building fortresses. The high medieval towers were ideal targets for the newly melted 

cannons and their easy remote destruction caused casualties inside the cities without any 

damage for the assailants. Height had become a tactical disadvantage; bastions were to be 

born. The bastions are a kind of low pentagonal towers, intended to host the defenders’ 

canons and cannonballs, hence their names bulwarks (from the German Bollwerke). The 

                                                           
1 For regular polygons, we recommend travelling by Google Earth in this order: Forte San Pedro, Cebu, 

(Philippines); Vardøhus, Finnmark (Norway); Fort Belgica, Banda Neira (Indonesia); the citadel of Saint 

Tropez (France); the Alba Carolina citadel in Alba Iulia (Romania); the cities of Neuf-Brisach (France) and 

Palmanova (Italy). Finally, the old city of Nicosia (Cyprus) with its eleven bastions might hold the record. 
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geometric shape of the bastions was generated in such a way as to force the trajectories of 

gunfire and to reduce damage on the walls, but as we can see on heritage monuments or 

original maps, there is a variety of sizes and angles according to their creators and time of 

their conception. The set of consistent shapes, along with their algorithms of constructions 

and even their justifications, were called manners of fortification. Early modern writers 

distinguish three principal manners at the turn of the 17
th

 century: the Italian, the French 

and the Dutch
2
. All of them find their origin in the Italian one, but we can question the 

reasons of their differences and the use of mathematics for the generation and justification 

of shapes, especially the use of Euclidian geometry. In order to render unto Caesar the 

things which are Caesar’s, we start with the Italian architects and follow their inventions 

towards North, to France and the Low Countries, where military architecture would find 

their (temporary) perfection through mathematics. Then we give examples of 

constructions described in texts designed for officers to study or practice the “new” 

fortification. 

2 The creators of modern fortification 

Modern fortification was invented in Italy around the end of the 15
th

 century, during the 

Italian Wars. Architects like Michelangelo or Leonardo took part to a large movement of 

research about new shapes of city enclosures. The first inventor of the bastion remains 

unknown, if he ever existed, but this shape (see for example Figure 3.2) was widely 

accepted in Italy as a response to the power of cannons. Everywhere in Europe, new 

bastions would be built in the Italian manner of fortification, undertaken by Italian 

engineers themselves. Many local authorities had connections with Italy. All the Kings 

and Dukes, every City Council urged their recently engaged Italian counselors to secure 

their places with new enclosures à l’italienne
3
 (Rogers, 1995; Parker, 1988, ch. 1). 

Though universally acknowledged as taking its origins in Italy, modern fortification 

can’t be reduced to the presence of bastions at the corners of city walls. As an architectural 

artefact, the bastion, and more generally the fortified enclosure would know many 

enhancements, practical as well as theoretical. Before the end of the 17
th

 century, when the 

manner of Monsieur de Vauban becomes hegemonic, at least two major stages of 

successive improvement are notable as far as geometry is concerned: in France, initiated 

by Jean Errard with his Fortification reduicte en art et demonstrée (Errard, 1600) then in 

the Low Countries after the publication of Samuel Marolois’s Fortification (Marolois, 

1615). Let’s describe in short the national contexts. 

2.1 Italian authors, before 1600 

Architects-artists like Leonardo and Michelangelo didn’t publish their researches 

about the shapes of city walls. Before the mid-16
th

 century, only a few books were 

published (De la Croix, 1963), but we find in Book 6 of Tartaglia’s Quesiti et 

invention diverse (Tartaglia, 1546) a first attempt of reflection about the rules every 

architect should follow in fortifying a city. While admitting not to be a practitioner, 

                                                           
2 Some authors add a fourth one, the Spanish manner, which can somehow be seen as a variant of the Italian 

manner. 
3 For a critical point of view on the expression Italian trace, see Bragard, 2014. 
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Tartaglia approaches the problem of fortification with his intellectual tools, and he 

determines six principles about the shape, size and areas of the cities enclosures. 

Tartaglia’s followers won’t extend his reflection, but mostly publish their methods to 

draw the star shaped fortresses. The reasons for particular designs are kept secret, giving 

way to discussion on their concrete fulfillment on the field. Some of the treatises which 

are published will be translated into foreign languages, mainly in French (for example: 

Cataneo, 1574; Theti, 1589). In general, these books deal with architecture more than 

geometry. However at the very end of the century, an interesting controversy occurs 

between two architects in charge of building the Palmanova fortress, Giulio Savorgnano 

and Buonaiuto Lorini (La Penna, 1997). Having rather different conceptions about the 

final shape of Palmanova, both had had to advocate their own views before the Venitian 

Senators. Lorini published his rules as an appendix of his Delle fortificationi (Lorini, 

1597), while Savorgnan left his unpublished. But Savorgnan’s manuscript was found 

amongst Galileo’s papers, which indicates a certain consideration. 

In order to show the significant demand for knowledge on fortification, let’s mention 

the private courses given by the same Galileo in Padova around 1590 (Valleriani, 2015). 

The manuscript of the course, Trattato di fortificazione, begins with many usual 

techniques of practical geometry, such as the drawing of perpendiculars, parallels, regular 

polygons, and so on. No doubt that there was a need for a theorization of fortification 

practices. Finally Jean Errard arrived. 

2.2 Jean Errard and the French geometric School on fortification 

At the end of the Italian Wars, the conflicts moved from Italy to the North, 

concentrating on the frontiers of the Spanish Habsburg Empire. Following the same 

path, many unemployed Italian engineers were recruited here and there in Europe to 

build new ramparts for fragile cities.  

In France for example, when King Francis I ordered the construction of a fortified 

harbor at the mouth of the river Seine, this task was attributed to Girolamo Bellarmato, an 

Italian architect who worked in several other cities in France. Along with Castriotto and 

Marini, Bellarmato was one of the major military architects in France at the time. Till the 

end of the 16
th

 century, it seems that no French engineers had been able to supervise the 

creation of important fortresses, and even more so to write something substantial about 

fortification. But there was a need for an elite corps of French engineers. Little by little, 

the Italians were replaced by local military architects, and King Henry IV ordered his 

favorite engineer, Jean Errard de Bar-le-Duc, to write the first French book on 

Fortification. The title of this book is indicative of its project: La fortification reduicte en 

art et demonstrée (Errard, 1600) meaning that the whole process will be established on a 

detailed analysis of the needs, then fully described, and finally justified by mathematical 

demonstrations. In the preface, Errard himself justifies the title (Errard, 1600, p. 1): 

I dared undertake what every engineer so far hasn’t dared or wanted, at least 

nothing was written about that science. Because the discourses on mechanical 

things do not deserve this Title, not being here a matter of strokes which for 
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someone could succeed by accident, but a matter of Geometrical demonstrations 

that will give infallible certitude to anyone
4
. 

As one can read the specificity of Errard’s approach lies in his attempt to turn the 

practices of fortification into a true science. For that purpose, the book starts with a 

description of all the cannons in use in the French armies, and the conversion of their 

power into the men’s working days which would be necessary to reconstruct the collapsed 

walls. Four principles, called the Maxims of fortification, are then presented, the principal 

two dealing with the flanked angle, which must be right, and the line of defense, whose 

length must not exceed the reach of the defender’s weapons (see figure 3.6 for a glossary). 

The algorithms of constructions are given in detail and the different steps are well 

illustrated. Some places in the North of France were fortified according to Errard’s 

principles, especially the citadel in Amiens, still visible now, except for the two Eastern 

bastions, which were destroyed to leave space for an enlarged road. 

Errard’s manner was abandoned shortly after his death in 1610, but his Fortification 

demonstrée kept a reference book for many authors, especially teachers, till the end of the 

17
th

 century (Métin, 2016). His legacy was received and prospered by Dutch engineers 

related to the famous school of engineering at the University of Leiden. 

2.3 The Leiden School 

During the Eighty Years’ War, many cities were besieged, even alternately by one and 

the other side, namely the Spanish Empire and the Dutch Republic. The young Dutch 

Republic had to face an experienced enemy, but Maurice of Nassau lacked time, 

money and trained engineers to fortify towns and protect citizen from the Spanish 

furia. Following the advice of his closest counsellor Simon Stevin, he founded in 

1600 the Duytsche Mathematique, an engineering training course in theoretical and 

practical mathematics taught in Dutch (Dijksterhuis, 2017). Stevin had written a 

treatise on fortification (Stevin, 1594), but apparently no fortresses was built on the 

field according to the shapes he created. 

Of course, fortification practices already existed before the foundation of the Duytsche 

Matematique. Italian engineers such as Paciotto and Marchi worked for the sovereigns of 

the Spanish Low Countries. But we also find non-Italian mathematics practitioners at 

work in Antwerp, such as Michel Coignet, a mathematics teacher and an instrument maker 

(Meskens, 2013) who became the equivalent of Stevin in the court of the Archdukes 

Albert and Isabelle of Austria, governors of the Habsburg Netherland. Several subsisting 

manuscripts show that Coignet gave lessons in French, Italian and Spanish. His taught 

manners are revealing of the transition between Errard and the Dutch fortifiers. 

Michel Coignet’s explanations on the practices of his time and military side are 

exposed in a French manuscript course on trigonometry (Coignet, 1612). The author gives 

a first method of fortifying polygons, which deals with lengths and no angles at all, but he 

is not satisfied with it. Asserting that the flanked angle needs to get a unique value of 90°, 

he gives a second method starting based on angles, following Errard’s view. Meanwhile in 

the opposite camp, the disciples of Stevin free themselves from the constraint of the right 

                                                           
4 J’ai osé entreprendre ce que tous les Ingénieurs, jusqu’à présent, n’ont voulu ou osé, au moins n’en paraît-il 

rien par aucun écrit traitant de cette science. Car les discours des choses mécaniques ne méritent point ce 

Titre, n’étant ici question des traits, qui à quelqu’un pourraient réussir à l’aventure, mais de démonstrations 

Géométriques qui donnent à tous assurance infaillible {with modernized spelling}. 
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angle, thanks to trigonometry. Before 1650, publications will follow one another, more or 

less inspired by the first of them, Marolois’ Fortification (Marolois, 1615). 

Marolois’ book was published at the time he was unsuccessful in applying to the job of 

professor at Leiden school of engineers. It is the third and last part of a complete 

mathematical textbook for the use of engineers including geometry, the use of surveying 

instruments, gauging, trigonometry, perspective and fortification (Marolois, 1616). The 

Fortification is composed of two parts, the first of which consists in a case study of a 

variety of shapes, from the square to the dodecagon, each of them being divided into 

several sub-cases. In his attempts to find the perfect shape is, Marolois explores the 

different values he can assign to the proportion between face and curtain, or flank to 

gorge, or even flanked angle to flanking angle (see glossary on figure 3.6). After having 

studied fifty or so cases, he opts for simple proportions (3 to 2 or 4 to 3) and gives the 

eleven maxims which will define the first Dutch manner of fortification. His successors 

will more or less follow the same rules, leaving aside explorations to focus on now 

universally accepted shapes. 

We’ll show in concrete terms in §3.3 the importance of trigonometry in Marolois’ 

works and more generally in Dutch fortification. In Western countries, trigonometry had 

found his corner stone in Regiomontanus’s De Triangulis (Regiomontanus, 1533), 

including the Law of Sines and the resolution of triangles. But Regiomontanus’s main 

goal was to provide the astronomers with useful theorems (Maior, 1998, 41-46). Grattan-

Guinness also points out the prominent role of trigonometry during the period 1540-1660 

that he names “age of trigonometry’ (Grattan-Guinness, 1998, 174-233), but he mostly 

mentions astronomy, surveying and navigation. According to him, one of the most 

important books for this period is Pitiscus’s Trigonometria, (Pitiscus, 1600). A close 

examination of the different editions shows the growing range of applications of 

trigonometry: a first version in 1595 contained only two theoretical parts, but from 1600 

on, it would be completed with the tables of sines, tangents and secants, plus an appendix 

on applications of trigonometry to a variety of problems in surveying, geography, 

gnomonic and astronomy. In the 3
rd

 edition (Pitiscus, 1612), the appendix is extended to a 

new domain: architectonic, that is military architecture. The huge influence of this work 

amongst engineers and fortifiers can be measured by its numerous quotations and even 

reproductions of its contents in many books for decades in Europe. 

Now we examine the three different manners we introduced above. 

3 The Manners of fortification 

Our paper reports a workshop, the “working part” of which consisted of studying 

different manners of fortification with ruler and compass. The main goal was to 

question the role of geometry in these several manners, beyond the simple use of 

instruments to draw the required shapes. We essentially describe the participant’s 

procedures. 

We have chosen to focus on the three major steps in the researches on fortification: the 

Italian use of diagonals in polygons, Jean Errard’s hexagon “reduced into art and 

demonstrated”, and Samuel Marolois’s “trigonometricky” hexagon. Due to their minor 

role in history, we had to leave aside Michel Coignet’s propositions (Coignet, 1612), 

despite their interest as transition markers between Errard and his Dutch followers.  
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3.1 Two examples of Italian architects 

Despite Tartaglia‘s investigations on the fundamentals of fortification and his 

expression of what should be its principles, we find but few real justifications in the 

Italian books on military architecture of the 16
th

 century. Even if the fortresses were 

fully described, using many diagrams, they were more detailed as stone and earth real 

life fortresses than as ink and paper diagrams. 

In a majority of Italian books and manuscripts, the construction algorithms keep 

undisclosed and the reader has to make sense of the figure himself. This non-didactical 

aspect might be due to the identity of this targeted reader, who may have been an 

engineer, or at least a well-skilled person. To give a typical illustration of this specific 

manner, let’s examine first a manuscript we found in the Jagiellonian Library in Cracow 

(Anonymous, 16th century). Its anonymous author writes in Italian, but he favors the 

figures: the only comments describe lines and angles in terms of stone and earth fortresses, 

but don’t explain the generation of the shapes. For instance, below a diagram of a fortified 

hexagon we can only read: “All lines are drawn from and through the points and the 

intersections. Thus, measuring is not needed.”
5
 (Anonymous, 16th century, fol. 12v). 

Let’s try to apply this principle to reconstructing one of the numerous fortified shapes 

in the manuscript, for example the fortified square on fol. 24v (Fig. 3.1). Our intuitive 

view leads us to start with the largest square ABCD and its diagonals (AC) and (BD). The 

side of the square is twice the opening of the compass, that is to say the diameter of each 

arc drawn inside ABCD. These arcs, centered at A, B, C and D, give the midpoints of the 

sides, respectively E, F, G and H, so the medians (EG) and (HF) can be drawn. If we then 

draw the arcs centered at midpoints E, F, G and H, we obtain useful points, namely I, J 

and K, L, which allow us to draw further symmetrical straight lines, as do points M, N and 

O, P. Our initial square is now divided into sixteen smaller squares. 

  

Figure 3.1: Original drawing and attempted reconstruction (Anon., 16
th

 century, fol. 24v) 

 

 

                                                           
5 Tutte le line sono tirate per i punti et intersegationei regolari. Et peró non c’é di bisogna la misure (All 

translations into English were made by the author of this paper). 
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But the arcs centered at E and G intersect vertical lines (MN) and (OP) at Q and R 

respectively. Lines (HQ) and (HR) meet two opposite sides of the square at S and T 

respectively. It looks like (ST) bisects the formerly drawn squares. Indeed S and T could 

have been found as midpoints of segments, but no indication is clearly given on the 

original figure. To complete the construction, we just have to produce rays [TH) and [SH) 

to their intersection with the diagonals of the initial square, and repeat this operation three 

times to get the four vertices of the bastions. Finally, we pick the appropriate segment 

lines to obtain the desired shape, as shown on the top left of the reconstruction in Figure 

3.1. 

We take our second example from a very rare book (Scala, 1598) in which the 

constructions are based both on unmeasured lines and on lines measured by a scale. It has 

been written by Giovanni Scala, a Roman mathematician and engineer, otherwise known 

as the geometer who completed the edition of Pomodoro’s Geometria prattica (Pomodoro 

& Scala, 1599). It is likely that Scala gave lessons on fortification to several German and 

Polish officers in Roma before 1600. His book on fortification was first published as a 

portfolio of plates, and we can find copies of it with hand-written comments in Poland and 

in Paris. A frontispiece and a preface to Henry IV King of France were added in 1598 in 

order to make it a real book. It contains more than 50 various shapes of bastions, the 

constructions of which are more or less explained. As far as we know, none of them were 

actually built on the field. 

In Figure 3.2, we show the bastion on plate 6.  

 

Figure 3.2: Giovanni Scala’s bastion (reconstructed from Scala, 1596, plate 6) 

Here is our reconstruction of the figure: take segment [AB] of 180 steps
6
; on [AB] draw 

the half-circle Γ and the perpendicular bisector (IJ), which intersect at J. Join the midpoint 

C of [IJ] to A and B; from C as a center and with radius 25 steps, draw the circle Γ’, which 

cuts (CA) and (CB) at E and F respectively. Put point D on [JC] at 10 steps from C, and G 

on [IC] at 30 steps from C; join both points to A and B; segments [CA] and [CB] cut circle 

Γ’ at respectively; produce lines [IE] and [IF] to the circumference of Γ and draw 

segments [DA] and [DB]; from A and B, draw the tangents to circle Γ’, which meet at H; 
                                                           
6 The passo, or geometric footstep, was the thousandth part of the Roman mile, i.e. around 1.5 meters. For 

our reconstruction, we took the numerical values from the figure, using the scale engraved on it. Our starting 

point was the value of 180 footsteps, which is the explicit basis of several other Scala’s constructions. 
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from G, draw two segments parallel to (IE) and (IF) respectively, ending on [AD] and 

[BD] respectively; K is the midpoint of the segments cut on line [IE) by lines [AD] and 

[AI]; draw an arc with center K and radius 12.5 between these two lines, and do the same 

symmetrically with L. The bastion is obtained by selecting the appropriate arcs and line 

segments among the various ones that have been drawn (in bold red on Figure 3.2). 

Of course, we can’t be sure of our reconstruction, especially when they deal with 

tangents or measures, as the engravings in the portfolio are sometimes imprecise, or show 

hesitations. Nevertheless, we can assume that the engraver, and consequently the inventor 

of the shape (they may be the same person), were aware of construction programs. These 

programs may have had to keep illegible for non-specialists, which would explain the lack 

of instructions in the texts. Anyway, the shapes do not look like they had been created 

responding to scientific principles, but rather in an aesthetic aim. The way of generating 

them indicates a global idea of the bastion profile, but no mathematics is used, except the 

usual geometrical concepts and drawing procedure. This will be changed in 1600 by 

French engineer Jean Errard de Bar-le-Duc. 

3.2 Jean Errard, and the Euclidean proof 

Errard’s fundamental example is the regular hexagon, explained on one of the six 

equilateral triangles it is composed of (cf. Fig. 3.3). In fact, the author considers the 

triangle, the square and the pentagon as unfit for receiving right-angled bastions, what 

can be justified nowadays by the impossibility of applying Errard’s general algorithm 

of construction to these particular shapes.  

 

Figure 3.3: Errard’s hexagonal construction (after Errard, 1620, p. 40) 

Here is the text given in the posthumous edition made by Alexis Errard, Jean’s 

nephew and also an engineer, supposedly according to his uncle’s will. We give this 

version preferably to the very first one, as it clearly separates the construction and the 

proof (Errard, 1620, p. 40):  

Let be proposed to fortify a hexagon, as far as the hexagon can be divided into six 

equilateral triangles. On AB describe the equilateral triangle ABC, and angle CAD 

of 45 degrees. Draw line AE equal to line BD, then drawn line BE. Divide angle 

EAD into two equal parts by AG, & let DF be taken equal to EG. Draw the curtain 
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wall GF, as well as FH perpendicular to BE. Let AI be taken equal to BH, and GI be 

drawn perpendicularly as FH. So are described the two half-bastions AIG & FHB
7
. 

Since Errard based his construction algorithms on scientific principles, he had to prove 

that the results met his requirements, the most important being about the line of defense 

(i.e. AF on Fig. 3.3 or BF on Fig. 3.4), whose length must not exceed 100 toises
8
. Here 

follows a modernized version of Errard’s demonstration (after Errard, 1600, p. 24; Errard, 

1620, p. 41-42; see Fig. 3.4). 

 

Figure 3.4 : Errard’s demonstration (after Errard, 1600, p. 25 & Errard, 1620, p. 42) 

Remembering that F is on the bisector of angle OBG, let’s draw a circle centered at F 

and tangent to the sides [BO) and [BG) of angle OBG at H and G respectively. The circle 

cuts [FD] à Z. We first consider triangle DBB: since HBB = 60° and HBG = 45°, then 

DBB = 15°, same for DBB, by symmetry. Thus BDB = 150° and consequently 

FDG = 30°. Now let’s examine triangle FDG: right-angled at G, it has an angle of 30° at 

D, so DFG = 60°. But ZF = ZG, so FZG is equilateral and FZ = ZG = FG; moreover, 

FZG = FGZ, so ZGD = 30°, ∆ZGD is isosceles and ZG = ZD (= FH).  

Having linked these lengths together, Errard takes FG = FG = 16 toises as a common 

unit for all of them. Using the Pythagorean theorem in right triangle FGD, he obtains 

713.271632D 22 G  (he takes 27
4
3 ). in the isosceles right triangle OHF, 

63.22216 OF  (Errard gives 22
5
3 ), and finally, in the isosceles right triangle BGO, 

5
338 FOGFGOBG . The line of defense FB (or FB) can now be evaluated: 

2
1

5
3

4
3 98382732DDDFDF  GBGFGBGB , which is less than 100. 

Thanks to his choice of appropriate angles, Errard needed only basic Euclidean 

propositions to systematically find what was missing. No trigonometric lines there but 

essentially the Pythagorean Theorem. We would call this demonstration Euclidean, no 

doubt it would have pleased Jean Errard. But this pleasant aspect of the right angle has 

major drawbacks on the field: the defenders on the flanks are turned towards the walls 

instead of the counterscarp, and the faces of the bastions are too large to resist a long time 

                                                           
7 Soit proposé à fortifier un Hexagone, d'autant que l'Hexagone se divise en six triangles équilatéraux. Soit 

sur AB décrit le triangle équilatéral ABC, puis soit fait l'angle CAD de quarante-cinq degrés. Soit faite la 

ligne AE égale à la ligne BD, en après soit tirée BE. Soit divisé l'Angle EAD en deux également par la ligne 

AG, & soit prise DF égale à EG, & tirée la Courtine GF : comme aussi FH perpendiculaire sur la ligne BE. 

Soit prise AI égale à BH, & soit tirée la ligne GI perpendiculairement comme FH. Ainsi seront décrits les 

deux demi Bastions AIG, & FHB {modernized spelling}. 
8 An old unit, roughly corresponding to the human height (approximately 195 meters). 
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to the pounding of artillery. Errard’s heirs in Holland would use the newly invented 

methods of trigonometry to get rid of the right flanked angle and set the generation of 

bastions free of it. 

3.3 Samuel Marolois’s “trigonometricky” hexagon 

Unlike Errard, Marolois doesn’t establish his constructions on necessity and principles 

drawn from the field practices. The first few pages of his Fortification state the values 

of angles for any regular polygon from the square to the dodecagon. The flanked 

angle is not right; on the contrary its value depends on the angle at the center of the 

polygon. The different values given in a table (Marolois 1638, 5) correspond to a 

simple algorithm, which is guessable at first glance as in a modern spreadsheet, but 

not formally expressed. In our time, it would be: flanked angle = half-angle at the 

center + 15°. Knowing that the angle between the flank and the curtain is always right, 

all the other angles are determined. It is only after a variety of case studies according 

to diverse proportions of lengths that Marolois gives “the manner how to describe 

succinctly the designs or Plots of some regular Fortifications” (Idem, 27) and finally 

the Maxims of regular fortification (Ibid., 43). 

Here is a slightly modernized version of the English translation of the first example, the 

design of a hexagonal fortress (Ibid., 29-30, to be followed on figure 3.5, using the 

glossary on figure 3.6 for specific terms
9
): 

Let there be given a Hexagonal Fortress to be fortified, whereof the face AC makes 

24 rods
10

, and the flanked angle 80 degrees, according to which the interior flanking 

angle will make 20 degrees, and the exterior 140 degrees. Let the curtain be 30 [i.e. 

32] rods, which gives the reason of the face to the curtain as 3 to 4. To do this, we 

shall draw the infinite covered line AB, by the help of a graduated instrument, the 

other angle CAD of 20 degrees (of 20, because the interior flanking angle, which is 

always equal to it, makes here 20 degrees) by means of the indefinite line, upon 

which you make the length of the face 24 rods, as from A to C; from which point C, 

the perpendicular CD being drawn upon the line AB, shall be placed from D the 

length of the curtain, which is here 32 rods as from D to E. Finally the distance AD 

from E to B, and the perpendicular EF the distance of CD as from E to F. Drawing 

the line FB, you have the other face, so that all the part of the given reason are 

described; […] we make the angle HKA only of 35 degrees, according to which the 

gorge in the flank will be almost as 4 to 3, or somewhat more by reason of the line 

HK, cutting the diagonal line AG at H, from which point H the line HN being drawn 

parallel to AB, you shall have the interior Polygon, upon which the lines CL and FN 

being drawn in length, the lines DC to L and EF to M. In doing so, all the essential 

parts of the said fortress will be described. 

This excerpt needs some comments. The first four lines remind us of the previously 

calculated angles, of the chosen length of 24 rods for the face, and of the proportion of the 

face to the curtain, that is 3 to 4. This being established, the construction program is 

described step by step: on line AB as a basis, with an angle of 20 degrees and a length of 

24 rods, we draw the face AC of the left bastion; we put on line AB the following points: 

                                                           
9 According to Marolois’s notations, the figure shows lowercase letters, while the text in written in capitals. 

Moreover, the letters in figure 3.6 are not consistent with those in figure 3.5. 
10 The unit of measurement is the Rhineland rod (a 12-foot rod, approximately 3.8 meters), used during the 

reign of Maurice de Nassau. The contemporary English rod is equivalent to 5.5 yards (around 5 meters). 
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D, by orthogonal projection of C on AB, then E and B such as DE = 32 (length of the 

curtain wall), and EB = AD. Symmetry is at work, even if not mentioned; point K is 

determined on line AB by AKC = 35°, then point H as the intersection point of (KC) and 

the side AG of equilateral triangle AGB (G is not visible on figure 3.5); (HN) is drawn 

parallel to (AB), then C is orthogonally projected on (HN) to get L, and the complete 

shape ACLMFB is obtained by symmetry. 

 
Figure 3.5 : Marolois’s construction (after Marolois, 1615, plate 13, fig. 72) 

 

 

Figure 3.6: Glossary (after Marolois, 1615, plate 1, fig. 1) 

The profile being constructed, Marolois doesn’t give any calculation or demonstration, 

because all of them have been detailed before. His translator Henry Hexham is even terser, 

writing for example (Ibid., 20): 

Here is nothing but that which is ill calculated by the Author, or rather by his 

disciples, as from the beginning (without all doubt) seeking to help themselves with 

541



the figures put here under, which was needless, supposing that they are skilled in 

Trigonometrie. 

In fact, trigonometry is excessively used by Marolois to calculate every length and 

distances in every case study in the first part of his book. The hexagonal fortress we 

showed the construction above had already been the subject of calculations in the 44
th

 

example (Marolois, 1615, fol. Tv). For example, DL is take, as the sine of DAC, 

providing that the face AC (of 24 rods) corresponds to the sinus totus
11

 of 100 000 parts. 

Then AD is computed using the sine rule in triangle ACD. Unfortunately, the flanked 

angle (i.e. twice HAC), chosen of 80° according to the rectified table of angles of part 1, 

is in fact taken of 75° according to the unrectified table. The demonstration is thus entirely 

in conformity with another case, what turns the readers into confusion. This may be the 

reason why it doesn’t belong to the English version.  

4 Conclusion: towards an European military architecture 

From the Italians to the Dutch we have shown changes in the way of using geometry. 

In a certain way we could infer that Italian architects were driven by the images of 

what should be the final shapes, together with a bright idea of symmetry and even 

beauty. Following this supposition, Errard may be seen as a direct heir of their way of 

thinking. It is quite clear that the final shape of the bastion led his thinking throughout 

its establishment process. Indeed Errard’s bastions having three right angles are 

truncated squares. Demonstrations and calculations are based on the existence of these 

right angles, which allow the use of classical Euclidean theorems without need for 

trigonometric tables. But this makes the difference between Errard and his Italian 

predecessors: the rigorous approach of Errard promotes scientific discussion and 

anticipation for future adaptation to the improvements of attacking practices. The 

Dutch, thanks to their virtuoso practice of trigonometry, do not seem to be stopped by 

a closed vision of the final shapes, but create them with more liberty. The use of the 

sine rule and trigonometric methods allow them to master the distances, lengths and 

angles, whatever the proportions they choose. It was a necessity for them to keep their 

fortresses suitable for new material conditions of sieges, especially the use of 

explosives and the trench approaches. 

Even off the field, the question of adapting the shapes of fortresses was taken seriously. 

For instance mathematics teachers of that time had links to the milieu of military 

architects. The numerous courses on fortification of the 17th century, printed as well as 

manuscripts, that we found in France echo the discussion of engineers about the qualities 

of one or another angle. Teachers expose and compare the constructions, generally 

drawing their examples from Errard, Marolois and the next generation of French military 

engineers, especially Antoine de Ville and Blaise-François Pagan. The manners of 

fortification were not unified yet, but it would be the case at the end of the century, when 

everywhere in Europe engineers would fortify places according to the manière of 

Monsieur de Vauban (or Menno van Coehoorn, his counterpart in the Low Countries). 

Unfortunately for us, Vauban didn’t promote a mathematical approach of fortification. 

Quite the contrary, he claimed that geometry was useless for that purpose. 

                                                           
11 That is: the radius of the trigonometric circle. 
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For the reader to realize how simple and non-mathematical it was, here is a summary of 

Vauban’s manner of bastionning a line AB of 180 toises
12

 (Muller, 1746): AB being 

perpendicularly bisected at C, set point D on the perpendicular 30 toises off from C; then 

put E on [AD] 50 toises from A and H on [BD] 50 toises from B; G and F are the 

symmetrical points of H and E with respect to D. The profile of the two half-bastions is 

given by AEFGHB (readers are invited to drawn this profile themselves; as an easy 

exercise). As one can see, there are no angles to consider here, but only distances, which 

are to be taken with the compass on a scale of 180 toises. 

In fact, the former period is much more interesting for nowadays mathematic educators. 

The military revolution process is more attractive than his final results about fortification, 

especially when you consider the role played by geometry. At the beginning of the 17
th

 

century, things were not entirely determined and many controversies happened, on the 

field as well as in the offices, in the mansions or even at the Royal Courts. Nobles, 

whether officers or not, had to know the terms, concepts and practices of fortification 

perfectly. Many noble families needed mathematics skills to be taught to their teenagers, 

because geometry was the language of fortification. For our present math classes, studying 

fortification in the original texts can bring the students a good example of a concrete use 

of geometry and justify the learning of this vanishing discipline. 
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