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ABSTRACT 

We want to introduce our students into some mathematical ‘culture’. This noble goal, however, has many 

competitors in the form of other important goals of mathematics education, and time is finite. We also want 

to (and have to) teach calculus methods and train the students’ algebraic skills. We want to show them that 

different methods can solve the same problem. We want to show the utility of mathematics in architecture 

and technology. We want to stimulate the students’ spatial insight and their ability to make sketches of 

spatial situations. We want to show them the relationships between different parts of mathematics. We 

would like to make them critical of manipulation by the media or the internet.  

The bicylinder is an object that allows combining all these goals. We will discuss how the bicylinder can 

play an interesting role in mathematics courses for students between the ages of 15 and 18, in order to 

combine various goals and to make the mathematics courses more cultural and versatile without spending 

much extra time. 

1 Describing the bicylinder 

1.1 Orthogonal projections and ‘edges’ 

Consider two solid circular cylinders of equal radii, the axes of which intersect 

perpendicularly. While figure 1.1 shows their union, we are interested in theirintersection.  

 
Figure 1.1: The two cylinders (Mathenjeans, 2006) 

We call that intersection a bicylinder, but it has been given many names throughout 

history: 牟合方蓋 [Móuhéfānggài, double box-lid] (ZǔChōngzhī, 5th century),Steinmetz’ 

solid (Charles Proteus Steinmetz, 19th and 20th century), birdcage (Stannard, 1979), 

equidomoid (Ferréol, 2013)… 

Showing the students only the union of the cylinders (figure 1.1), we ask them to 

imagine whatthe bicylinder looks like and to draw its perpendicular projections: a front 

view (FV), top view (TV) and a side view from the left (SV) (figure 1.2). If this causes 

them some difficulties, they can be comforted by this quote: "It takes an unusual gift of 

imagination to visualize this shape clearly" (Strogatz, 2010). 

 

FV 

TV 

SV 
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Figure 1.2: Orthogonal projections of the bicylinder 

We also ask them the shape of the (curved) ‘edges’. It is a bit unusual to talk about 

edges when the figure is not a polyhedron, hence the quotation marks. One could say that 

the bicylinder has two ‘vertices’(at the top and at the bottom), four curved ‘faces’ and four 

curved ‘edges’ connecting the two ‘vertices’. Some students want to determine the shape 

of the ‘edges’ analytically. Taking the axes of the cylinders as  - and  -axes and calling 

the radius  , they determine the ‘edges’ with a system of equations. They solve by 

replacing the second equation by the difference of both and then factorizing. 

 
        

        
   

        

       
   

                 
            

   
                         
             

  

The ‘edges’ are created by intersecting one of the cylinders with the two ‘vertical’ 

diagonal planes       and      . Instead of analytically, this could just as well 

be discovered on the basis of symmetry. So the four ‘edges’ are halvesof two ellipses. The 

small axis of these ellipses is the height    of the bicylinder; the large axis is       (as 

you can deduce from the top view in figure 1.2). 

Figure 1.3 shows a wooden model of the bicylinder. We deliberately don’t give it to the 

students from the beginning; we want to appeal to their imagination. 

 
Figure 1.3: Bicylinder (Modellsammlung) 

1.2 Making the bicylinder 

If students want to make a paper model of the bicylinder, they have to know the shape of 

its ‘faces’ when developed in the plane. We will prove here that the plane development of 

a cylinder cut by an oblique plane is bound by one period of a sine graph. It can be shown 

with a paint roll (figure 1.4). It is alsoused by knitters: the pattern of a sleeve, which is 

more or less a cylinder segment, is made using (approximately) a sinusoid (figure 1.5).  
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Figure 1.4: Paint roll experiment 

 

Figure 1.5: Sleeve pattern 

In order to prove that the plane development is delimited by a sinusoid, we use figure 6. 

By the symmetry it suffices to prove that the half ellipse (left part of figure 1.6) obtained 

by intersecting the volume with a plane, gives rise to half a period of a sine graph in the 

plane development. The solid consisting of the cylinder ‘under’ the half ellipse in figure 

1.6a is called a cylinder hoof. 

 

Figures 1.6a and 1.6b: Proof that we get a sinusoid, first part 
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Figure 1.7: Proof that we get a sinusoid, second part 

We prove that   is indeed a sine function of   (figure 1.7). 

                            

                     

     
 

 
     

     
 

 
                      

Knowing this, the students can make a bicylinder from its plane development. In the 

case of the bicylinder, the height   of the cylinder hoof equals the radius   of the 

cylinders, so the development of two of the ‘faces’ is delimited by one period of the 

graphs       
 

 
 (figure 1.8), and in the same way the development of the other two 

‘faces’ by        
 

 
 (not shown in figure 1.8). 

 
Figure 1.8: The bicylinder and the development of two of its ‘faces’ 

2 Calculating the volume of the bicylinder 

2.1 As did Archimedes? 

Archimedes announces in his preface to The Method that the volume of a bicylinder is 2/3 

of the volume of the circumscribed cube. His proof is lost but we have his proof of the 

volume of a cylinder hoof, which is in a non-lost part of The Method. With eight cylinder 

hoofs, we can construct a bicylinder (figure 2.2), so it is likely that Archimedes used this 

idea for determining the volume of the bicylinder. 
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Figure 2.1: Archimedes of Syracuse (3rd century BC) 

 

 
Figure 2.2: Eight cylinder hoofs form a bicylinder 

Before going into the details of his proof for the volume of a cylinder hoof, let’s say a 

few words about The Method.  

Archimedes sent his papyrus roll with The Method to Eratosthenes at the famous library 

of Alexandria (in present-day Egypt). Later, the work was copied on parchment sheets for 

better preservation. Together with some other works of Archimedes, the sheets were knit 

together into a booklet, a codex. This codex disappeared until it was found in 1906 in a 

monastery in Jerusalem. In the 13th century, the monks had scrapped Archimedes’original 

texts and drawings to replace them by prayers. Archimedes’ codex had become a 

palimpsest, a recycled piece of parchment. The codex was stolen in the course of the 

twentieth century and reappeared in 1998 in a sales hall, where it was sold by auction. A 

mysterious Mr. B bought it for $2,200,000. Nobody knows who Mr. B is, although there 

are some speculations. Fortunately, he allows scientists to study the codexusing UV- and 

X-rays. For more details about the story of this palimpsest, see Netz and Noel (2009). 

In The Method, Archimedes determines areas and volumes in a revolutionary way for 

Greek mathematics: he determines an area by considering an infinity of line segments and 

a volume by considering an infinity of flat slices. Much later, this idea will become 

Cavalieri’s principle (Bonaventura Cavalieri, 17
th

 century) and integral calculus. 

Sometimes he also uses the physical idea of a balance with which he ‘weights’ the slices, 

but this is not the case in the proof about the cylinder hoof. 

How did Archimedes determine the volume of a cylinder hoof (i.e. of one eighth of a 

bicylinder)? We follow the ideas of his proof, but in a very anachronistic way, using 

today’s algebraic notations. 
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Figure 2.3: The cylinder hoof as locus of triangular slices 

In a cube of edge 2, a cylinder of radius 1 and height 2 is inscribed (figure 2.3).The 

prism         is one eighth of the cube. The cylinder hoof obtained as the intersection 

of this prism with the cylinder is one eighth of the bicylinder.Archimedes considers this 

hoof as the ‘locus’ of the variable horizontal triangle     as   varies on the segment 

     (see figure 2.3). The students calculate the area of the triangle    , the variable area 

of the triangle     (as a function of       ) and the proportion of both areas. 

 
          

 

 

                          
 

 
      

   
         

         
      

The proportion of these areas is a quadratic function of  . The graph of a quadratic 

function is a parabola. This is not the way the Greeks of the time of Archimedes 

considered a parabola, but in a different, more geometric way Archimedes came to the 

same idea. Then he constructs a point   on the segment      such that  

    

    
 

         

          
       

 
Figure 2.4: The parabola added in figure 2.3 
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If   varies, the point   moves on a parabola and the variable segment     describes a 

parabola segment inscribed in the rectangle      (figure 2.4). 

Archimedes knows from one of his other works (The Quadrature of the Parabola, 

theorem 14) that the area of a parabola segment inscribed in a rectangle equals 2/3 of the 

area of the rectangle. Since each slice (line segment) of the parabola segment represents a 

slice (triangle) of the cylinder hoof and each slice (line segment) of the rectangle 

    represents a slice (triangle) of the prism       , he deduces, ‘integrating’ all 

these slices, that the volume of the cylinder hoof equals 2/3 of the volume of the prism. 

So the volume of the whole bicylinder is  

   
 

 
                

 

 
                   

 

 
              

    

 
 

Surprisingly, the formula for calculating the volume of bicylinder does not contain a 

factor  . Archimedes: “Unlike spheres, cones and cylinders, this object is equal [in 

volume] to asolid figure bound by plane figures.” (Introduction to The Method, cited in 

Hogendijk, 2002).  

2.2 As did (not) Liú Huī 

 
Figure 2.5: Liú Huī (3

rd
 century) 

Liú Huī wrote his famous Commentary on the Jiǔzhāng Suànshù [Nine Chapters on the 

Mathematics Art] (2
nd

 century BC), wherein he added explanations and proofs to the Nine 

Chapters. He considers a bicylinder and its inscribed sphere (figure 2.6). 

 
Figure 2.6: A bicylinder and its inscribed sphere (Cadav92, 2014) 

He uses ‘horizontal’ slices. Each slice of the bicylinder is a square. The slice of the 

sphere at the same height is a circle inscribed in that square. So the proportion of the slices 

at a same height is always 
 

 
. He deduces that the volume of the bicylinder is 

 

 
 times the 

volume of the sphere. This is an early use of what we now call Cavalieri’s principle 

(Bonaventura Cavalieri, 17
th

century). This principle says: if at any height the ‘horizontal’ 

cross-sections of two solidsare in a fixed proportion, then the volumes of these solidsare in 

the same proportion. 
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Our students can use this proportion to calculate the volume of the bicylinder from the 

volume of the sphere, getting the same result as in 2.1 (i.e. 2/3 of the volume of the 

circumscribed cube). But, unlike our students, LiúHuī did not dispose of the volume of a 

sphere. On the contrary, he considered this discovery of the proportion 
 

 
as a step towards 

finding the volume of the sphere, if he would be able to find the volume of the bicylinder 

first. 

2.3 As did ZǔChōngzhī 

 
Figure 2.7: Zǔ Chōngzhī (5th century) 

Zǔ Chōngzhī succeeded in finding the volume of the bicylinder, using a cube, a pyramid 

and the later principle of Cavalieri, already used by Liú Huī. 

In figure 2.8a, you see the upper half of a bicylinder cut by a horizontal plane. The part 

above this plane has been removed. In figure 2.8b, you see a half cube hollowed by an 

inscribed pyramid (top down). This is also cut by a horizontal plane. The part above this 

plane has also been removed. 

 
Figures 2.8a and 2.8b: Proof of the volume of a bicylinder by Zǔ Chōngzhī (De Temple, 

1994) 

Using a front view of figure 2.8a, the students can show that the side of the square slice 

at height   equals        . So, the area of this square is         . On the other hand, 

the side of the section of the pyramid at height   (figure 2.8b) equals   . Therefore, the 

area of the square ‘ring’, the slice at height   in figure 2.8b, equals        . Because 

the areas at height   are equal for each value of  , the students conclude by the principle of 

ZǔChōngzhī and Cavalieri that the volumes in figure 2.8a and 2.8b are equal. So, the 

volume of the half bicylinder is equal to 2/3 of the volume of the half cube. By symmetry, 

the volume of the whole bicylinder is also equal to 2/3 of the volume of the whole cube, as 

in 2.1. 

Here we worked in half a cube; the original proof of ZǔChōngzhī divides the cube in 

eight parts, but this does not change much. (See Papillon, 2012, Lam, 1985 or Antony, 

s.d.). 
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2.4 As we do 

The ‘normal way’ for our students to calculate the volume of a solid, is using an 

integral.Unlike the majority of the textbook exercises on volumes with integrals, the 

bicylinder is not a solid of revolution. The horizontal slices are squares, so the volume is 

the integral of the area of a square slice as a function of the height   (figure 2.9). 

 

Figure 2.9: Square slice at height   

Again, the side of the square slice at height   is        , so the volume is  

                              
 
  

 

  

 

             

 

  

 

       
  

 
 
  

 

 

      
  

 
    

  

 
   

 
    

 
 

3 Calculating the surface area of the bicylinder 

As we saw in paragraph 1.2, the flat development of the bicylinder of radius  is delimited 

by the sine graphs        
 

 
and        

 

 
 (figure 1.8 in 1.2). The surface area of 

the bicylinder is the area of its development: 

                               
 

 
  

  

 

 

         
 

 
 
 

  

 

             

       

Again it is striking that there is no π in the formula! The surface area is simply the area 

of a square with side   . The fact that the area of the bicylinder is equal to the area of a 

square of side   is culturally interesting. It means that the quadrature is possible here, the 

constructionof a square with the same area as the bicylinder by means of ruler and 

compass, starting from the given radius  . The quadrature of the circle is one of the 
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famous construction problems of Greek antiquity, which in the 19
th

century has been 

shown to be impossible to solve with ruler and compass. 

The area of the bicylinder is     of the surface area of the circumscribed cube    
           . For the bicylinder and its circumscribed cube the proportion of the 

volumes equals the proportion of the surface areas!  

Hogendijk (2002) explains how the surface area can be derived from the volume, 

without integrals. 

4 Applications of the bicylinder 

Cross vaults and the joining of cylindrical pipes are an obvious application of meeting 

cylinders, although it is more the union than the intersection of the cylinders (figures 4.1 

and 4.2).  

 

Figure 4.1: A cross-vault (Glaeser, 2007) 

 
Figure 4.2: Pipes meeting at a right angle (Glaeser, 2007) 

The roofs of the Château de Cheverny, one of the Châteaux of the Loire valley, have 

the form of half bicylinders (figure 4.3). 

 

 
Figure 4.3: Chateau de Cheverny (Papillon, 2012) 
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5 Generalizations of the bicylinder 

A first generalization consists of inventing analogue solids with a different number of 

curved ‘faces’ than four. It is easy to imagine making one with 6 (or         ) ‘faces’by 

intersecting 3 (or 4      ) cylinders, with equal radii and axes lying in one plane and 

intersecting in one point at equal angles of 60° (or        
    

 
). Is it also possible to 

obtain an odd number of ‘faces’? The number of cylinders is half of the number of ‘faces’ 

and one cannot use half cylinders... Why not actually? In figure 5.1a the familiar 

bicylinder is made in a different way and this way can be generalised to an odd number of 

‘faces’. 

 
Figures 5.1a and 5.1b: (Apostol & Mnatsakanian, 2004) 

On the website Mathcurve (Ferréol, 2013) these solids are called polygonal 

equidomoids. The bicylinder is a quadrangular equidomoid. On that site it is claimed that 

the dome of the Cathedral of Florence is a (half) pentagonal equidomoid (that has been 

vertically stretched a little). In order to convince us of this, they place the following two 

figures next to each other (figure 5.2). 

 
Figure 5.2: The dome in Florence and a pentagonal equidomoid (Ferréol, 2013) 

However, you can clearly see in the picture that the dome has more than five ‘faces’ 

since four of them are visible. By entering the cathedral and looking upwards you find out 

that the dome is octagonal (figure 5.3). 

 
Figure 5.3 
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Another generalisation is to take three cylinders with the same radius and with the axes 

that intersect in one point and are two to two perpendicular. The intersection of these 

cylinders is atricylinder. This is a very interesting object, a curved rhombic dodecahedron, 

but we will not discuss it here (figure 5.4). Moore (1974) mentions applications in 

crystallography of the tricylinder and intersections of more than three cylinders, when due 

to increased temperature or decreased pressure a polyhedral crystal gets curved ‘faces’. 

 
Figure 5.4: (Weisstein, 1999-2018) 

6 In the classroom 

In my classroom, I introduced the bicylinder as an exercise on the calculation of volume 

with an integral (2.4). In order to know what area they had to integrate, they had to 

imagine how the object is like (1.1). Only afterwards I confronted the students with other, 

historical, ways of finding the same result. In my esu8-workhop and in this article, I 

follow the chronologic order. You can find the worksheets of the workshop online: 

https://esu8.edc.uoc.gr/1112-2/. 

What I like about the bicylinder, is that it includes a ‘normal’ textbook-like exercise 

(calculate its volume (2.4) or its surface area (3) with an integral), but that it goes further. 

Other methods than integral calculus are possible and have been discovered through 

history (2.1, 2.2, 2.3). The bicylinder is an challenge for the students’ spatial insight (1.1, 

1.2) and it has applications in architecture and technology (4). It can even remind the 

students to be critical of manipulation by the media or internet (5). It is an object with a 

rich cultural history and it provides exemplary access to important mathematicians and 

important highlights in the history of mathematics. 
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