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ABSTRACT

The transition from school to university is connected to a variety of some problems for many students. This
can be attributed to different beliefs about mathematics in school and university. While mathematics
teaching at school allows knowledge to be developed on the basis of real objects and empirical working
methods, mathematics at universities is characterized by a rigorous axiomatic structure. The successive
detachment of the connection to real objects has also occurred in the history of mathematics. From this
situation, conclusions can be derived for the teaching of mathematics at school and university. The transition
from school to university seems to be facilitated by the use of digital media in processes of concept
development and the systematic thematisation of different beliefs about mathematics.

1 A challenge in mathematics education

When mathematics teachers as students move from school to university and then again
when moving from university training back to school to teach mathematics they are often
confronted with various problems. Felix Klein describes this situation as “double
discontinuity”:

“The young university student found himself, at the outset, confronted with
problems, which did not suggest, in any particular, the things with which he had
been concerned at school. Naturally he forgot these things quickly and thoroughly.
When, after finishing his course of study, he became a teacher, he suddenly found
himself expected to teach the traditional elementary mathematics in the old pedantic
way; and, since he was scarcely able, unaided, to discern any connection between
this task and his university mathematics, he soon fell in with the time honoured way
of teaching, and his university studies remained only a more or less pleasant
memory which had no influence upon his teaching.” (Klein, 1908)

Witzke, Struve, Clark & Stoffels (2016) describe a seminar at university level that
focuses on the first discontinuity, the transition from school to university. In an empirical
study, they put the following question to the participants: What is the biggest difference or
similarity between school and university mathematics?

One male participant answered: “The fundamental difference develops as mathematics
in school is taught empirical-perceptual (ger.: anschaulich), whereas at university there is
a rigid modern-axiomatic structure characterizing mathematics. In general, there are more
differences than similarities, caused by differing aims”.

Many similar statements from other participants could be found. Thus, the problem of
the transition from retrospective student viewpoint is closely connected with the
“differentness” of mathematics. These differences concern the aspects clearness, level of
abstraction, evidence, formal rigor and axiomatic structure. The result is a clear distinction
between school and higher education mathematics regarding its character.
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2 Beliefs about mathematics — A theoretical framework

Looking at the challenges presented in the previous section, one question is particularly
obvious:

How do we develop mathematical knowledge (further)?

The answer to this question is crucially related to our conceptions of mathematics. The
notion about the beliefs of mathematics provides a good basis for this description.
According to Schoenfeld, the way someone works on a mathematical problem depends
strongly on his beliefs about mathematics:

“One’s beliefs about mathematics [...] determine how one chooses to approach a
problem, which techniques will be used or avoided, how long and how hard one will
work on it, and so on. The belief system establishes the context within which we
operate [...] ” (Schoenfeld, 1985, 2011)

Steiner emphasizes the influence of the conception of mathematics on concepts for
teaching and learning:

“Concepts for learning and teaching of mathematics [...] often implicitly are based
on certain aspects of a philosophy of mathematics” (Steiner, 1987)

Green describes teaching as the modification of the belief system of learners:

“The activity of teaching, at least in the sense of instructing, might therefore be
defined as the effort to reconstitute the structure of our belief systems so that the
number of core beliefs and belief clusters are minimized, the number of evidential
beliefs are maximized, and the quasi-logical order of our beliefs is made to
correspond as closely as possible to their objective logical order.”(Green, 1971)

How to build up mathematical knowledge, how to handle it and whether one is successful
seems to depend essentially on the individual conceptions of mathematics (mathematical
world view, attitudes, beliefs). The term beliefs of mathematics is frequently used in
literature:

“Psychologically held understandings, premises, or propositions about the world
that are thought to be true.” (Philipp, 2007)

“Belief System: One’s ‘mathematical world view", the set of (not necessarily
conscious) determinants of an individual’s behavior about self, about the
environment, about the topic, about mathematics.” (Schoenfeld, 1985)

“individual’s beliefs [...] as subjective, experienced-based often implicit knowledge
and emotions on some matter or state of the art” (Pehkonen & Pietild, 2003)

The different explanations show the diversity of the term belief (cf. Rezat, 2009).
Mathematics education is characterized by various beliefs about mathematics (cf.
Grigutsch, Raatz & Torner, 1998, Schoenfeld, 2011, Witzke & Spies, 2016):

— Scheme-Aspect: Mathematics is a system consisting of rules, formulas and

algorithms.

— Formalism-Aspect: Mathematics is characterized by logic, formal rigidity and

precise technical terminology. It is the formal-abstract science.

— Process-Aspect: Mathematics is seen as a creative and constructive process.
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— Application-Aspect: Mathematics is a tool for applications in the natural sciences
and everyday life.

— Empirism-aspect: Mathematics describes a universe of discourse in reality. It is a
natural science.

A formal-abstract view on mathematics is beside others represented at the university
level. According to the frequently used textbook for calculus courses at university Heuser
(2009), the central properties of mathematics are the brightness and sharpness of the concept
formation, the pedantic care in dealing with definitions, the rigor of proofs and the abstract
nature of mathematical objects that you cannot see, hear, taste or feel.

At least since Hilbert it is possible to see mathematics as an archetype of formal science
with an axiomatic structure that is detached from reality. He developed mathematics as a
science of uninterpreted abstract systems (focus on structures) with an absolute notion of
certainty (internal consitency) (e.g. Hilbert, 1899). Thus, “the umbilical cord between reality
and geometry has been cut” (Freudenthal, 1961). Geometry has become pure mathematics and
the question of whether and how it can be applied to reality is answered just as in any other
branch of mathematics.

The axioms are no longer self-evident truths; in fact, it does not even make sense to ask
for their truth. This does not mean that there are no real applications or interpretations of
the theories.
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0.3 Basic set theory

Note: 1-3 lecrures (some marerial can be skipped. covered lightly, or left ax reading )

Before we start talking about analysis, we need 1o fix some kinguage. Modem® analysis uses
the language of sets, and therefore that is where we start. We talk about sets in a rather informal
way, using the so-called “naive set theory.” Do not worry, that is what majority of mathematicians
use, and 11 13 hard to get into trouble, The reader has hopefully <een the very basics of set theory

and proaf writing before, and this saction should be a quick refresher

0.3.1 Sets

Definition 0.3.1. A set 1s a collection of objects called elements or members. A set with no objects

is called the empiy ser and is denoted by 0 (or sometimes by { })

the ¢ SAme re the same sct

f numbers. For example, the set
3 o= :(l 1.2}

is the set containing the three elements 0, |,

rather than just showing equalhity. We write

and 2. By ":="", we mean we are defining what §'is,

Definition 2.1.2, A sequence |1, ] 1s said to c¢
exists an M = M such that [x, — 1| < £ for all 1 > M. The number v ix said to be the Jimir of {x,}
We write

miverge to o number x € B, if for every £ > 0, there

M Ap

A sequence that converges is said to be comvergent. Otherwise, we say the sequence diverges or

that 1t is divergent

The Completeness Axiom

It is one thing to define an object and another to show that there really is an object that
satisfies the definition. (For example, does it make sense to define the smallest positive
real number?) This observation is particularly appropriate in connection with the definition
of the supremum of o set. For example, the empty set is bounded above by every real
number, o 1t has no supremum. (Think about this,) More importantly, we will se¢ in
Example 1.1.2 that properties (A)~(H) do not guarantee that every nonempty set that
is bounded above has & supremum. Since this property is indispensable to the rigorous
development of calculus, we take it as an axiom for the real numbers,
(X) 1f anonempty set of real numbers is bounded above, then it has a supremum
Property (I) is called complereness. and we say that the real number system is a complete
ordered field, [t can be shown that the real number system is essentially the only complete
ordered field: that is, if an alien from another planet were to construct o mathematical
system with properties (A)-(I), the alien’s system would differ from the real number
system only in that the alien might use different symbols tor the real numbers and +, -,

and

Figure 2.2: Formal-abstract representations in lecture notes for analysis at the university level

In contrast, this clear distinction between reality and mathematics does not take place
for school mathematics. Hefendehl-Hebeker (2016) states in this context:

“The concepts and contents of school mathematics have their phenomenological
sources predominantly in our surrounding reality. [...] All in all the ontological
bounding to reality is in place because of the educational and psychological
purposes and aims of school. School mathematics barely surpasses the conceptual
niveau and state of knowledge of the 19th century [...]. Mathematics as a scientific
discipline has today become a network of highly specialized abstract sub-areas.”

This considerations lead to the following research thesis:

Research thesis I: ,, Mathematical knowledge of pupils is generated in a constructive
process - through interaction and the work with the offered learning material.” (Cf.
Bauersfeld, 1983)

At school, mathematics appears as an empirical science of concrete objects, it is not an
abstract science of uninterpreted systems of terms as in modern mathematics. The
empirical character of school mathematics (argumentation, models, experiments, term,
etc.) is on epistemic grounds comparable to the character of natural sciences.
Argumentations are based on real objects. This results in the following thesis:

Research thesis Il: If mathematics is consequently taught with the support of visual
representations and illustrative material, students acquire an empirical belief system
about mathematics. It is a theory about these representations — a quasi - ‘natural science’.

This kind of mathematics describes a universe of discourse in physical reality. The
notion of truth relies in empirical facts gained through observation and experiments.
Nevertheless, empirical mathematics needs logical reasoning to avoid a pure empiricism
and pure phenomenology. The empirical characteristic is a fundamental difference to the
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above described university mathematics. The question arises, if this ‘non-abstract’ point of
view is a reasonable one for the developing of mathematical knowledge.

3 Epistemological beliefs about mathematics in the past

A first possible answer to the above mentioned question is provided by an insight into
beliefs in the history of mathematics. Substantial pieces of historical mathematics can be
reconstructed as empirical mathematics (e.g. Witzke, 2009) with the help of structuralism
(cf. Balzer, Moulines & Sneed, 1987).
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(18th/19th of Geometry
(300 BC) (19th/20th
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Mathematics leaving physical space

Figure 3.1: Development of geometry in the history of mathematics

1V. Eine Erginzung der ausmessenden Geometrie oder

allgemeine Ausfihrung aller Quadraturen durch Be-

wegung, sowie eine mehrfache Konstruktion einer Linie
aus einer gegebenen Tangentenbedingung.

Acta Eruditoram, 1695

Figure 3.2: The development of calculus based on curves as empirical objects,
constructed and drawn on paper
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The development of modern views of mathematics can be illustrated particularly well
using the example of geometry (cf. Witzke, Struve, Clark & Stoffels, 2016). The first
axiomatic structure of geometry can be found in Euclid's elements in 300 B.C. The
justification of the axioms occured by evidence (cf. Garbe, 2001). Thus they had a clear
relation to the objects of the real world, e.g. a line drawn on a sheet. The further
development of the Euclidean geometry took place in the 18th and 19th centuries. The
famous mathematician Moritz Pasch wrote in 1882: “The geometric terms [...] serve to
describe the world around us [...]. Geometry is nothing more than a part of the natural
sciences”. One goal of geometry is the description of the physical world, although there is
an increasing axiomatization. The relationship of geometry to the real world changed
dramatically with the development of non-Euclidean geometries in the 19th and 20th
centuries. These internal consistent theories are based on axioms that are initially
independent from the surrounding world. However, by striving to find the geometry that
describes the physical space, there is still a connection to reality. The underlying axiom
system and the physical world were then disconnected consciously by the development of
Hilbert’s foundations of geometry in 1899. The axioms no longer need any connection to
reality. It is a pure inner-mathematical theory.

The previous explications can be described simplified in a bipolar model of belief
systems. On the one hand there is the empirical-concrete mathematical belief system. It
can be found in the history of mathematics as well as in school mathematics and is based
on didactical (learning theory, e.g. Gopnik et al. , 2007; educational theory, e.g. Winter,
1969; empirical reasons, e.g. Schoenfeld, 2011, Struve, 1990) and epistemological reasons
(parallels with natural science, e.g. Einstein, 1921; historical reconstructions, Witzke,
2009; structuralistic reconstructions, Balzer, Moulines & Sneed, 1987). On the other hand,
there is a formal-abstract mathematical belief system that can be found in mathematics
courses at universities and in the history of mathematics since Hilbert.

4 Epistemological beliefs: Back to the future

The questions remain what we can learn from these perspectives and how history can
inform modern mathematical education. One possible answer can be provided by looking
at the use of digital media in mathematics classroom. The use of digital media is usually
connected with an emphasis on qualitative and empirical working methods. The potential
of digital media can be illustrated using the example of calculus. Textbooks at school
contain a large number of graphical representations. Often, they form the basis for
argumentations; questions of existence such as continuity or differentiability become less
relevant (cf. Witzke, 2014). Graphic calculators and function graphing software enable the
dynamic investigation of curves. In this way, concepts can be developed qualitatively in a
first step, so that the students can develop sustainable ideas (e.g. function microscope by
Elschenbroich, 2015). On epistemological grounds, these objects represented in an iconic
way constitute parallels to the construction of curves at the time of Leibniz.

Another example results from graphical differentiation and integration. This means the
qualitative drawing of the graph of a primitive integral or the derivative by graphical
determination of the integral or the derivative at single points which is somewhat
problematic because of the discreteness. The 3D printing technology offers the possibility
to develop a so-called integraph (cf. Witzke & Dilling, 2018). This is a device that
continuously draws the graph of a primitive integral of a graphically given function in a
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mechanical way. It enables the students to justify the first part of the fundamental theorem
of calculus visually. First concepts of an integraph reach back to Leibniz (1693).

Construction of curves Curves in Curves visualized with
(Leibniz) textbooks digital media

B (EXE]:Show coordinates

VI (3)-2x5-2 .1/
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X=0.6680868742] ¥=-2.208206206
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Figure 4.1: Curves in the history of mathematics, in the mathematics textbook and
visualized with digital media

Drawing of the primitive
integral (Leibniz)

Graphical differentiation 3D-printed
(textbook) integraph

1V. Eine Ergdnzung der ausmessenden Geometrie oder

allgemeine Ausfihrung aller Quadraturen durch Be-

wegung, sowie eine mehrfache Konstruktion einer Linie
aus einer gegebenen Tangentenbedingung

Figure 4.2: Graphical determination of the derivative or primitive integral in the history of
mathematics, in the mathematics textbook and by the use of an integraph
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The examples show that working with digital media promotes an empirical view of
mathematics that was established in the history as well. However, these empirical
approaches are not to be equated with pure empiricism, since concepts are consciously
emphasized and systematically developed. The aim of the authors is not the equalization
of school and university mathematics. Instead, the differences and the resulting obstacles
for the transition from school to university should be specifically addressed. This is
connected with the hope that in this way more students bridge the gap and develop an
adequate perspective regarding the nature of mathematics in different contexts.
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