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ABSTRACT 

Mathematics and logic are subjects of a special kind, which stems from their formal character. Basically, 

mathematics and logic are often viewed as empty formal manipulation of symbols. However, this opinion 

hides the constructive character of the topics. The constructive steps in mathematical and logical reasoning 

bring new information into the reasoning process which allows us to see mathematical and logical reasoning 

as dialog. Connecting this dialogic character to Platonic approach we can understand the dialog as 

foundation of education of mathematics. The approach of the paper is basically philosophical. However, we 

connect philosophical discussion to present-day pedagogical discussion in which dialog is taken seriously. 

We will show that there are interesting interconnection between (formal) mathematical reasoning and proper 

dialog.   

 

1 Introduction  

According to Popper (1979, p. 133), we may be interested in mathematics either by being 

interested in theorems or being interested in proofs. The first viewpoint emphasizes the 

truth or falsity of mathematical statement, and the latter emphasize the existence of proofs. 

Mathematical statements, as with all statements, are either true or false, and this in 

principle, can be listed.
1
 The listing of mathematical truths, or given truths, makes 

mathematics static and, as such, does not teach mathematical reasoning. Reasoning is a 

factual process in time and space. Proofs express the reasoning process, and the search for 

proofs exemplifies mathematical reasoning. Hence, there might be some truth in a 

common opinion that says that we learn mathematical reasoning while learning 

mathematics.  

In logic, mathematical proofs are defined as sequences of statements in which each 

statement is an axiom (or a premise) or is achieved from earlier statements by the 

application of an inference rule.
2
 This kind of “statement view” of mathematical proofs, 

therefore, entails an opinion that mathematics is about manipulation of symbols. This 

opinion is supported by textbooks of mathematics in high school and in elementary 

school. At the same, this opinion hides that mathematical argumentation can be not only 

linguistic, but also visual (or pictorial). Therefore, there is a need to study mathematical 

reasoning more closely.  

Mathematical reasoning is a more general kind of human reasoning, which is a kind of 

human mental process that takes place in someone’s mind or brain. Unfortunately (or 

fortunately), we do not have access to what happens inside someone’s mind or in 

someone’s brain.
3
 Haack (1978, pp. 240–241) specifies the focus of logic as follows: 

                                                           
1
 In principle, a computer can list all the mathematical truths. However, it would take an infinite amount of 

time to do so. Mathematical truth has a complexity of Δ
1
1, which is the logical complexity of the 

mathematical truth that cannot be avoided. For details, see, for example, Mutanen 2004. 
2
 See any textbook of logic to confirm this. 

3
 Of course, present-day study of brain processes has access, but we will not consider this question here. 
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Thoughts that are in someone’s mind are something subjective, and we have no access to 

them. The second possibility is that logic would be concerned with propositions that are 

objective but, as the philosophy of logic shows, they are not accessible and hence cannot 

be the topic of logic. Therefore, the only possibility in logic is to focus on sentences, i.e., 

syntactical expressions that are both objective and accessible. This separates logic from 

psychologism, in which logic was understood as a theory of how human reasoning works. 

The discussion of how logic is related to human reasoning is still reasonable, even if 

psychologism is not a serious possibility. In the philosophy of logic, the relationship 

between logic and reasoning (or thinking) is basically understood in three different ways: 

(i) logic describes mental processes (strong psychologism); (ii) logic prescribes mental 

processes (weak psychologism); or (iii) logic has nothing to do with mental processes 

(anti-psychologism) (Haack 1978, p.238). According to Haack, Kant represents opinion 

(i), Peirce represents (ii), and Frege represents (iii). In fact, in the late nineteenth century, 

especially in Germany, there was strong debate concerning whether logic is descriptive, 

i.e., whether strong psychologism was true. Echoes of the debate can still be recognized in 

our understanding of mathematics and logic. Anti-psychologism can be understood as a 

reaction against strong psychologism. The idea was to develop logic as a formal science. 

For example, Frege understood logic as lingua characteristica and, hence, not formal 

science in a present-day sense. However, this Fregean understanding is a version of anti-

psychologism (Haaparanta 1985). The distinction between strong psychologism and anti-

psychologism is not very fruitful, since it seems to be obvious that strong psychologism is 

not true. However, all the same, it seems evident that logic has something to do with 

human mental processes (reasoning), and hence anti-psychologism also seems to be wrong 

(Haack 1978). The discussion of the nature of logic and mathematics has not been 

restricted to discussion of psychologism and its alternatives; it also includes the 

relationship between logic (and mathematics) and the sciences. For example, Russell 

(1903) said that mathematics is a science like other (experimental) sciences, such as 

zoology; of course, mathematics is more abstract than the other sciences. 

Mathematics is very special kind of science, and hence, mathematical reasoning is not 

easy to characterize. To start, let us take a look at, for example, axioms of Peano 

arithmetic, which contains four sentences and one sentence schema. According to the 

basic idea of axiomatization, they say everything about the topic: Let Ω be a set of axioms 

of Peano arithmetic. Then, the Peano arithmetic (PA) is the set of theorems of the set Ω of 

axioms that can be expressed PA = {φ: Ω ˫ φ}. However, this does not tell us anything 

substantial about mathematical reasoning. Mathematical reasoning is coded into the 

formula “Ω ˫ φ” which means that for a given φ, there is a finite sequence φ1, …, φn such 

that φn = φ and for all i < n, φi ε Ω or is achieved from φ1, …, φi-1 by application of an 

inference rule. This shows the formal character of logical and mathematical inference. 

When Hermann Weyl (1956, p. 1832) says that “mathematicians are no Ku Klux Klan 

with a secret ritual of thinking,” he is intending to denote the fact that mathematical 

reasoning is something public and “objectively” recognizable that can be achieved if 

attention is focused on linguistic expressions. According to Haack (1978, p. 239) “logic is 

primarily concerned with arguments.” Arguments are linguistically expressed formal 

structures whose strength is of logical interest. Arguments have a dual structure: a set of 

premises and conclusions inferred, according to inference rules, from the premises as 
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expressed above. In logic, argumentation is analyzed and evaluated; the strongest 

argument is one in which the relationship between premises and conclusion is deductive. 

Arguments in mathematics and in logic are formal and well-structured, which makes 

them explicit and transparent; from the argument, anyone can see all the information used 

in the argument. However, as formal structures or deductions do not constitute reasoning, 

the explicitness and transparency of argument does not make mathematical reasoning 

similarly explicit and transparent. As Herman Weyl (1956, p. 1832) says, nobody should 

expect him “to describe the mathematical way of thinking much more clearly than one can 

describe, say, the democratic way of life.” We may not mystify mathematical reasoning – 

or the mathematical way of thinking.  

Mathematics and logic must not be confused with empirical research into human 

reasoning, even if there is some (external) connection between the two. Rather, in 

mathematics and logic, the question “What is mathematical reasoning?” seeks a normative 

answer. In the study of mathematics education, the focus is on learning mathematics: 

Questions like “How can one learn mathematics?”, “What kind of learning strategies do 

students have?”, and “How can we teach mathematics effectively?” are important. Hence, 

central problems in mathematics education consider the relationship, for example, 

between mathematical concepts and psychology (Ben-Hur, 2006), or between reasoning 

and communication (Berinderjeet & Toh, 2012). We are here, basically interested in 

mathematical reasoning as part of mathematics and logic itself which has interesting 

consequences to the education of mathematics. 

2 About Logic and Mathematics 

To understand mathematical reasoning better, we will consider more closely some aspects 

of logic. Basically, logic (and mathematics) can be seen from two different points of view: 

Logic and mathematics consist in some factual inferences and calculations, which are the 

everyday practice of mathematicians and logicians. Often, exercises in school mathematics 

are focused on this area. Let us call this “micrologic.” On the other hand, the focus might 

be on the consideration of mathematical and logical reasoning from an “external” 

perspective. Questions like whether mathematics or logic are decidable, i.e., whether 

mathematics or logic have a decision method. It is well known that mathematics (any 

system that contains elementary arithmetic) is not decidable, and it is well known that, for 

example, sentence calculus and elementary geometry are decidable. Another example of 

such an “external” perspective is to consider the kinds of model that theories (i.e., sets of 

sentences) have. The well-known Löwenheim–Skolem theorem says that each theory that 

has an infinite model also has a denumerable model. So, the theory of the reals, which is 

known to be uncountable, has a denumerable model. These are metatheorems that 

characterize mathematics and logic from the “macro level.”   

The internal point of view of logical and mathematical reasoning shows how to do 

mathematics and logic, that is, how to prove mathematical and logical results, which is 

emphasized by Weyl (1956). In school mathematics and logic, this aspect is emphasized. 

For example, Usiskin (2015) shows that this kind of logic has several interesting aspects 

that are essential in understanding mathematics, and in teaching and learning mathematics. 

Unfortunately, formal theorems do not show how to find proofs or how to construct 

proofs. Maybe this is a reason why mathematics remains such a remote and difficult topic 

in schools. 
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Besides mastery of formulating proofs and calculations, we need some general 

understanding of what mathematics as a whole is, which is the subject of 

metamathematics and metalogic. Therefore, it is not enough that one can answer 

mathematical questions, but one has to understand what kinds of questions are 

mathematical. Unfortunately, as Gödel’s incompleteness theorem (1931) shows
4
, not all 

mathematical questions are answerable within mathematics.  

Why it is not enough that one can just answer mathematical questions? It is obvious – 

based on school mathematics – that mathematics means answering given mathematical 

questions, and that all the questions have a correct and true answer. In the case of 

applications of mathematics, like physics in schools, the problem is not to understand 

mathematics but to understand physics; so, in applications, mathematics is just a tool that 

is used. There is no need to understand mathematics or mathematical reasoning. 

The need for metatheoretical logic become evident when we speak about the character 

of mathematical reasoning. Of course, the practice of mathematical reasoning lies in 

proving theorems and single computations, but all this does not characterize the 

foundational character of mathematical reasoning. The metalogic is, by definition, a key to 

understanding the foundations of mathematics, as the famous metalogical results (like the 

theorems of Löwenheim and Skolem, of Gödel, or of Tarski) demonstrate. These 

metalogical results give information about mathematical reasoning, and about 

mathematics more generally.  

Metalogical results, at the same, give important information about the methodology of 

science. In fact, this allows us to see the connection between logic and metalogic 

(Hendricks, 2007; Shapiro, 2002), which deepens our understanding of mathematics and 

mathematical reasoning (Usiskin, 2015). Metalogical knowledge also deepens our 

pedagogical understanding; it helps us to develop the teaching methods of mathematics, 

but also of the natural sciences (Sieg, 2002; Koponen & Kokkonen, 2014). Metalogic is an 

important branch of mathematical study that has great theoretical importance in 

understanding mathematics and methodology of science. For example, the metalogic 

allows us to analyze the reasonability of structuralism in the philosophy of science: in 

structuralism, the intention is to generate a metalogical framework without using explicit 

logic.  

3 Mathematical Reasoning 

Neither the “micrologic” nor “macrologic” characterized above give us a good 

understanding how to reason logically or mathematically. This can be seen if we consider 

more closely how to construct mathematical and logical arguments. Geometry is an 

excellent example in which mathematical reasoning becomes actual, as the presentation by 

“Capone, Del Sorbo, Ninni, Fiore & Adesso” at ESU-8 clearly demonstrated. The very 

idea of geometrical proof is its constructive character, which becomes evident via the 

pictorial nature of the proofs. In geometry, there is a long tradition of using pictures in the 

proofs. The pictures and the auxiliary constructions are essential parts of geometrical 

proofs. The proofs are demonstrative in the sense that the fact to be proved can be seen 

from the picture constructed by the proof. As the presentation referred to showed, there are 

                                                           
4
 Any consistent formal system F within which a certain amount of elementary arithmetic can be carried out 

is incomplete; i.e., there are statements of the language of F that can neither be proved nor disproved in F 
(Raatikainen, 2018). 
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several different constructions that can be created to prove even a very simple geometrical 

statement, like the Pythagorean theorem. 

Geometrical constructions bring new information into the reasoning process. The 

information is formulated in pictorial form. In logic the proofs are constructed 

symbolically (or linguistically). However, the similar increase of information as new 

geometrical constructions do in geometry can be achieved by instantiation of new 

individuals. As Hintikka (1973, pp.188-190) shows there is precise measure for the 

information which can be used to characterize the depth of the given proof. This is 

connected to aesthetic value of the mathematics (Sinclair 2011). Mathematics uses both 

pictorial and symbolic argumentation (De Toffioli, 2017; Hintikka & Remes, 1974), but 

also even bodily argumentation as Sinclair (2011) refers. This shows the importance of 

understanding of the character of mathematical reasoning. To develop education of 

mathematics one need to understand the multiplicity of mathematical reasoning. 

Unfortunately, there are some restrictions in generating the proofs. For example, there 

is no effective procedure to find out the best construction for a given proof. However, as 

Michie (1961) shows, there can also be syntactical proofs for geometrical theorems. 

Michie refers to the fact that a computer discovered a new proof for a simple geometrical 

statement.
5
 Now we know that geometry can be expressed as an axiomatic syntactical 

theory that does not need pictorial arguments (Tarski 1968). 

Frege explicitly separated axioms from rules of inferences, which is one of the first 

explicit formulations of the present-day understanding of logic. The formal way to 

explicate logic (and mathematics) is further developed, for example, by Hilbert. “Hilbert’s 

program” is an overall metalogical approach in which Hilbert tried to explicate the very 

character of mathematical and logical reasoning. The use of formal methods made it 

possible to generate explicit metalogic that studies logic within logic itself, as Gödel’s 

proof (1931) demonstrates. However. metalogic is not only a specific area in mathematics 

and logic; several very common results are, in fact, metalogical. (See Quine, 1981; Kneale 

& Kneale, 1962; Mancosu, 2010.) 

Hilbert distinguishes the following three levels of mathematics: (i) ordinary 

mathematics; (ii) proper mathematics (mathematics in strict sense); and (iii) 

metamathematics. The intention was not to generate different kinds of reasoning, but these 

are, as Hilbert says, “the familiar modes of logical inferences” (Mancosu, 2010). This may 

be a reason why in school mathematics, there is only one kind of reasoning. However, 

metamathematical results tell us about mathematics – what can be done and what cannot 

be done. For example, Gödel’s incompleteness theorem tells us that there cannot be a 

general method to check computer programs (if the programming language is as complex 

as elementary arithmetic). 

4 Argumentation as Computation 

Arguments are basically sequences of sentences. The end point of an argument is called its 

conclusion, and the foundational sentences are called premises. The evaluation is to 

consider the logical relationship between the conclusion and premises. If the conclusion 

logically follows, or if the conclusion can be deduced, from the premises, then the 

                                                           
5
 Michie (1961) said that even if the proof was a new one for them, it had already been generated by a 

human mathematician. 
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argument is valid. Deduction is a syntactical process, and validity, instead, is a semantical 

notion. According to Gödel’s completeness theorem (1930), a given sentence is deducible 

if and only if it is valid. 

To say an argument is valid means that if the premises are true, then the conclusion 

must be true. Therefore, logic preserves truth. The sequence of sentences does not 

presuppose any agent who argues or infers them. Hence, logic is non-personal or 

objective. Therefore, it is interesting that Hodges (1977, p36) gives the following personal 

characterization: 

An argument, in the sense that concerns us here, is what a person produces when he 

or she makes a statement and gives reasons for believing the statement. The 

statement itself is called the conclusion of the argument (through it can perfectly 

well come at the beginning); the stated reasons for believing the conclusion are 

called premises. A person who presents or accepts an argument is said to deduce or 

infer its conclusion from its premises. 

According to Hodges, argument is related to argumentation. However, in logic, the study 

of argument is a study of the logical relationship between premises and conclusion. 

Syntactically, a central problem is to make a deduction from the premises of the 

conclusion. If one can find a deduction, then the deductive relationship is demonstrated, 

but if one does not find a deduction, this does not show that there is no such deduction. In 

fact, Gödel’s (and Turing’s, among others) achievement was to formalize logical inference 

such that it is possible to prove that it is not possible to find a deduction (incompleteness 

theorem). A foundational question behind Turing’s, Gödel’s, and Church’s work was 

“What is an effectively calculable function?” The history of mathematics provides 

excellent examples of algorithms that show how to compute certain functions. Moreover, 

there was a certain consensus about what computability means – the consensus gave an 

“intuitive” notion of computability, which was not well-specified. However, the need for a 

formal definition becomes evident, at least partly because of the search for an answer to 

the famous open problems in mathematics formulated by Hilbert. 

The computational approach and logical approach have different roots. In logic, the 

historic roots are connected to the tradition of a universal language, which had historical 

advocates like Raymond Lull, Leibniz, and Frege (Kneale & Kneale, 1962). The 

computational tradition is connected to the algorithmic tradition, which also has its roots 

in the history of mathematics, Rogers (1967, p. 29) gives examples of well-specified 

algorithms from Ancient Greece.
6
 A specific mathematical study of algorithms was started 

in the ninth century by the Persian mathematician al-Khowrazmi (Russell & Norvig, 1995, 

p. 8). Rogers (1967, p. 1) gives a good intuitive characterization of an algorithm by saying 

that it is “a clerical (i.e., deterministic, book-keeping) procedure”. 

The idea of formalizing the notion of computation was to formalize deduction such that 

it becomes a mechanical process that does not presuppose intellect. Turing, in particular, 

used very attractive language. For example, he suggested to “compare a man in the 

process of computing a real number to a machine.” Turing’s intention was to formulate a 

mechanical computing machine that computes essentially the same way as a human using 

a paper and pen. The resulting notion of computation was of epistemic character. Being 

mechanical, it was also independent of the formalism chosen. This was recognized by 

                                                           
6
 Rogers’s examples are Eratosthenes’s method and the Euclidean algorithm. 
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Gödel (1946) when he said that the importance of the explication of the notion was that it 

had “for the first time succeeded in giving an absolute definition of an interesting 

epistemological notion” (Davis 1965, p. 84). 

The identification of the notion of computability with Turing machine computability is 

known as the Church–Turing thesis (Copeland, 2017). There are several formulations of 

the notion of computation, but they have all been proved to capture the same class of 

functions. Of course, there are formulations of the notion of computation that extend the 

computing power of Turing machines, which are both logically and philosophically 

interesting (Hintikka & Mutanen, 1998; Syropoulos, 2018). 

The theory of computation is very abstract and extremely complex field. Still it has 

deep pedagogical significance. Computational approach emphasizes both agenthood of a 

learner and process of learning (Hendricks, 2007; Hendricks & Symmons, 2015; Mutanen, 

2004). So, there are interesting connections between the computational approach and 

different kinds of constructive approaches. 

In logical reasoning, the intention is to explicate and to make transparent the reasoning. 

The syntactical formulations, as Frege says, bring “to light every axiom, assumption, 

hypothesis or whatever else you want to call it on which a proof rests; in this way we 

obtain a basis for judging the epistemological nature of the theorem” (as quoted in Sieg, 

2002, p. 228). The computational approach emphasizes more explicitly the methodical and 

epistemological aspects of mathematical and logical reasoning that were emphasized by 

Gödel, as the quotation above shows. 

5 Mathematical and Logical Reasoning  

Formal arguments are static; hence they do not give an adequate characterization of 

reasoning. A computational approach brings dynamics into the picture. However, the 

agent is still missing. Computations are nonpersonal, formal algorithmic processes, even 

if, as Turing’s example shows, computations allow us to consider agenthood. We have 

seen that geometrical reasoning is a paradigmatic example of mathematical and logical 

reasoning. First, its strict logical structure is clear. Second, its pictorial character makes 

the reasoning process informative. 

The logical, or arithmetic, approach has a more formal character. It appears as formal 

manipulation of symbols and formulas. However, this is not the whole truth. As we have 

seen, geometry can be seen as a formal syntactical theory, just like any other formal 

logical theory. On the other hand, logical and arithmetical reasoning can be interpreted 

similarly to geometrical reasoning. Kant speaks of intuition in mathematics, referring to 

the use of individuals. According to him, in arithmetical reasoning, the intuitive step is to 

use singular numbers, which is usual in arithmetic (Hintikka, 1973). 

This can be generalized such that the use of the existential instantiation rule is a 

Kantian intuitive step in reasoning. We can further analyses this as separating instantiation 

of the “dummy name” and real name, in which the first is a formal stem and the second is 

a substantial step in the reasoning process that brings ne substantial information into the 

reasoning process (Hintikka, 2007). A similar thing can be seen in mathematics, where we 

have ε-γ-argumentation, which is usually read as “for a given ε > 0, a γ > 0 can be found 

such that …” There, the constructive or substantial step is “can be found,” which shows 

how mathematical reasoning brings new information into the reasoning process by using 

Kantian intuition. 
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This shows that pictures and substantial intuition are part and parcel of mathematical 

and logical reasoning (De Toffoli, 2017; Bråting, 2012). This is an important observation. 

Pictures and other intuitive steps are substantial steps in mathematical reasoning that 

convey the information needed to make the inferences needed to complete the intended 

proof. This is an important observation both because of logic (Hintikka & Remes, 1974) 

and because of pedagogy (Hintikka, 1982; Plato). This shows how important it is to 

analyze logical and mathematical reasoning. 

In Meno, Plato shows how to have a logico-pedagogical dialog. In Meno, the dialog is 

logically strict and pedagogically motivated. The dialog shows the power of logico-

pedagogical dialog. Hintikka has generated this approach in such a way that it can be 

applied to scientific reasoning (Hintikka, 2007), to pedagogy (Hintikka, 1982), and to 

general human reasoning (Hintikka, Halonen, & Mutanen, 2002). The approach has a firm 

logical basis (Hintikka & Remes, 1974; De Toffoli, 2017).  

The logico-pedagogical dialog belongs to a more general dialogical tradition in science, 

which can be contrasted with the formal-scientific tradition in science. These two 

traditions have different roots: the first is connected to the Platonic tradition, and the 

second is connected to the Parmenidean tradition (Mutanen, 2018). The present-day 

science and pedagogy are basically seen as separate approaches, which is connected to the 

Parmenidean tradition. In the Platonic tradition, science and pedagogy are essentially 

connected, which entails that scientific research, as such, is a dialogical process, which is 

exemplified in Meno. The Parmenidean tradition emphasizes that truth, as such, is the goal 

of scientific research. The pedagogical understanding is something external to the 

scientific research.   

Dialog has been used more generally in pedagogical literature, which enriches 

pedagogical and scientific understanding. Dialog may be connected to science and 

pedagogy in different ways. On one hand, dialog has been connected to the methodology 

of science and mathematics, as in the works of Hintikka and De Toffioli referred to above. 

On the other hand, dialog has been understood more generally and the dialog has been 

connected to dialog within a classroom (Bråting, 2012) or to more general dialog 

(Radford, 2011). Both enrich our understanding of science and the pedagogy of science. 

We have considered dialog from two different points of views. First, we looked at the 

language and recognized that in mathematics argumentation is based on different kinds of 

notions (symbolic (or linguistic), pictorial, and bodily). Dialog is based on these different 

kinds of notions. Proofs are formal expressions of the dialog in this sense which De 

Toffoli (2017) shows. Second, dialog can be understood as part of general narration as, for 

example, Burton (2012) and Radford (2011) show. However, to develop education of 

mathematics these two must be unified which can be done using different kinds of 

approaches. The notions of information and especially, understanding play central role. 

The most clear-cut example of the unification is Plato’s Meno. However, this can be done 

also within context of modern (formal) logic (Hintikka, 1982).   

6 Closing Words 

We have seen that mathematics and logic can be, and usually have been, understood as 

formal sciences, which is well justified: mathematics and logic are formal sciences. 

Metaresults give some formal restrictions that must be recognized. However, the formal 

character of mathematics and logic does not entail that there is nothing to be understood in 
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mathematics and logic. The formal character entails that the content is “thin.” However, 

mathematics and logic are constructive sciences in a proper sense, which entails that the 

proofs, as such, provide the keys to understanding. However, we must emphasize the 

pedagogical role of the construction of proofs. This can be done by dialogical methods, 

which has been increasing in the present-day study of pedagogy of mathematics and logic. 

This pedagogical approach opens new ways to understand mathematics and logic, and 

their pedagogy.  
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