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ABSTRACT 

In this paper, we argue for the use of digital technologies in making original sources more accessible to 

students. We present a teaching scenario outlining a use of GeoGebra to ‘unpack’ a selected proposition 

from Euclid’s Elements. We discuss potential benefits of applying digital technologies through Duval’s 

(2006) framework of semiotic registers, through Trouche’s (2005) framework of instrumental genesis, and a 

use of Barnett and colleagues’ (2014) approach of guided reading. The combination of original sources and 

use of digital technologies appears to be a somewhat overlooked area in the HPM research, not least in terms 

of empirical investigations. Yet, in this paper we lay down the theoretical bricks for such further 

investigations. 
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1 Introduction 

As often pointed out in the HPM literature,
1
 use of original sources is one of the most 

rewarding but also one of the most challenging endeavours in the teaching and learning of 

mathematics (e.g. Jahnke et al., 2000). One challenging aspect for the students of course 

concerns situating the source in a historical context often rather different from that of the 

present. Another challenging aspect concerns the fact that original sources often are quite 

inaccessible to the students, e.g. because the language of the source is different from that 

in their usual textbooks, the mathematical notation is different, mathematical concepts are 

defined differently or even called something different. Hence, in the HPM literature it is 

often debated how to make the original sources more accessible to the students (e.g. see 

Jankvist, 2014). Several approaches have been suggested, developed and refined over the 

years, e.g. the hermeneutic approach (Jahnke et al., 2000; Glaubitz, 2010), guided reading 

(Barnett, Lodder & Pengelley, 2014), comparative readings (e.g. Siu, 2011). (For further 

discussion of these and other approaches, see Jankvist, 2014). 

In this paper, we argue for, if not an actual approach, then yet a different way of 

making original sources more accessible to students, namely by having students use digital 

technologies, e.g. Dynamic Geometry Software (DGS) or Computer Algebra Systems 

(CAS) or other digital technologies, to ‘open up’ the original source material. The free 

dynamic geometry tool GeoGebra (www.geogebra.org) combines geometry and algebra as 

well as spreadsheets on one interface and can offer dynamic visualisations of 

mathematical concepts, facts, statements, axioms, etc., and potentially motivate students in 

accessing original sources and learning mathematics. We are not the first to suggest a 

combined use of historical sources and digital technologies. Oftentimes students are quite 

                                                           
1 HPM is the ICMI affiliated International Study Group on the Relations Between History and Pedagogy of 

Mathematics. 
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familiar with one or several such digital technologies – e.g. in Danish upper secondary 

school CAS is mandatory in the mathematics program – and may thus be able to use their 

competencies within these as a way of ‘unpacking’ an original source. In the terminology 

of Jahnke (2019), we could consider the digital technologies as making up another 

hermeneutic circle for the students’ work. If relying on Sfard’s (2008) notion of discourses 

in relation to mathematics, we might argue that the digital technologies makes up a 

familiar discourse for the students, and that this familiarity can be profited from in relation 

to using original sources. Or if applying Duval’s (2006) notion of register, we may argue 

that the digital technologies offer a more familiar ‘register’ to the students. But whether 

choosing one or the other theoretical basis, the fact remains that there seems to be an 

unresolved potential in relation to using digital technologies when teaching with original 

sources in mathematics – a potential which the HPM literature largely seems to have 

missed out on – with a few exceptions
2
 – and this despite the fact that attention was 

already drawn to such potentials in the ICMI Study (Fauvel & van Maanen, 2000).  

Through a number of examples, Isoda (2000a) argued how digital technologies – e.g. 

DGS, CAS, spreadsheets – could contribute to students’ mathematical inquiry and 

reflective thinking by providing multiple representations. For example, in relation to a use 

of DGS in the reading of Descartes’ Geométrie: “One of the major pedagogical concerns 

for many years has been that students have lost the opportunity to experience classical 

geometrical intuitions, which are not replaced by a haze of algebraic symbols; DGS begins 

to offer a chance to re-experience some age-old intuitions.” (Isoda, 2000a, p. 354). Further 

argumentation and illustration are to be found in the HPM proceedings (Isoda, 2000b; 

2004), the ESU proceedings (Aguilar & Zavaleta, 2015; Bruneau, 2011; Chorlay, 2015; 

Hong & Wang, 2015; Jankvist, Misfeldt & Aguilar, 2019), and in miscellaneous other 

channels (Baki & Guven, 2009; Burke & Burroughs, 2009; Caglayan, 2016; Erbas, 2009; 

Kidron, 2004; Olsen & Thomsen, 2019; Papadopoulos, 2014; Zengin, 2018). Yet, only 

about a handful of these may be considered as actual empirical research studies.
3
 And 

equally important, only very few of these studies make use of the extensive mathematics 

education literature on digital technologies in the teaching and learning of mathematics. 

This paper aims to address the above claimed potentially fruitful interplay between the 

history of mathematics and the use of digital technologies. We do so by outlining 

mathematics education theoretical constructs, also related to digital technologies, which 

when combined may play a role in structuring such an interplay, and by providing an 

example of a teaching scenario on Euclid’s proposition 22 from the Elements Book I and 

the use of GeoGebra.  

                                                           
2 As part of a recent review in his master’s thesis at the Danish School of Education, Balsløv (2018) 

identified only some fifteen incidents in decades of HPM-related literature that specifically address the 

combination of using history of mathematics in combination with digital technologies. All of them are 

published from year 2000 and on. 
3 Jankvist, Clark and Mosvold (in review) provided an empirical example of how a Danish School of 

Education graduate student on her own initiative used DGS to further her understanding of Vieté’s 

geometrically-inspired method to solve two third degree equations. In addition, two master’s theses from the 

Danish School of Education provide empirical evidence concerning a use of Fermat’s method for evaluation 

of maxima and minima in relation to a use of CAS in upper secondary school (Balsløv, 2018), and a use of 

Euclid’s proposition on the construction of equilateral triangles and a use of DGS in primary school (Olsen 

& Thomsen, 2017). 
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2 Representations and semiotic registers 

As occasionally pointed out in the available HPM literature
4
, digital technologies hold a 

large potential in terms of multiple representations. To this end, Duval’s theory of 

semiotic registers seems suitable to articulate key aspects of this potential.  

The outset for Duval (2006) is that in mathematics one cannot directly access the 

mathematical objects, as one for instance can in physics through various measuring 

instruments, etc. In principle, one can only access mathematical objects through semiotic 

representations, which makes students’ work with semiotic representations all-important 

in their mathematical activities. In particular, it is the transformations between the 

different semiotic registers that are of importance rather than the representations in 

themselves.  Duval points out that the role played by signs in this regard is not to be 

placeholders for the mathematical objects, but for other signs. This is to say, from this 

perspective, signs and transformations between different semiotic representations are the 

kernel of mathematical activity – as opposed to what is going on in other scientific 

disciplines. From a mathematics education point of view, one question of course becomes: 

If one can use different forms of semiotic representations for every mathematical object, 

how can students then recognize the same represented object through different semiotic 

representations, which are produced within different systems of representations? 

The possibilities of substituting one semiotic representation with another depends on 

the semiotic system, and every system offers specific possibilities. The capacity of a given 

representation does not depend on the individual symbol (or sign), but on the semiotic 

system of which is a part. Natural distinctions are for example language (natural and 

symbolic) versus images (figures, graphs, etc.). But according to Duval such distinctions 

are too general and causes us to overlook an important point; namely that some semiotic 

systems may only be used to perform mathematical processes, while others possess a 

larger variety of functions. Duval (2006) suggests distinguishing between monofunctional 

and multifunctional semiotic registers: “Some semiotic systems can be used for only one 

cognitive function: mathematical processing… within a monofunctional semiotic system 

most processes take the form of algorithms” (p. 109). A multifunctional semiotic system 

“can fulfil a large range of cognitive functions: communication, information processing, 

awareness, imagination, etc.” and “within a multifunctional semiotic system the processes 

can never be converted into algorithms” (p. 109).  

Next, Duval distinguishes between a treatment, which takes place within one semiotic 

register, and conversions which happen between registers. An example of a conversion 

might be the mathematization of the equation story ‘Aya is 3 years older than her brother 

Ali. Together they are 23 years old. How old are they?’ into the equation x+(x+3) = 23, 

which takes place between a multifunctional (natural language) register and a 

monofunctional (symbolic system) register. Solving the resulting equation step by step, 

however, to reveal that x=10, is a treatment, since this takes place within the same register, 

i.e. the symbolic system. So, for conversions, source register and target register are 

different, whereas for treatments they are the same. Duval also notes that there are two 

different types of conversions. A congruent conversion is a straightforward translation – 

or coding – e.g. as the mathematization of the equation story into a symbolic expression 

                                                           
4 HPM is the ICMI affiliated International Study Group on the Relations Between History and Pedagogy of 

Mathematics. 
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above. A non-congruent conversion is, however, much more complicated. For example, 

this could be doing the opposite translation in our example, i.e. going from the symbolic 

expression, 2x+3 = 23, to an equation story, since there are infinitely many stories to be 

told based on this equation. 

Duval also distinguishes between discursive representations resulting from one of the 

three kinds of discursive operations: 

1. Denotation of objects (names, marks...) 

2. Statement of relations of properties 

3. Inference (deduction, computation...) 

and non-discursive representation which consist of 

1. Shape configurations (1D/2D, 2D/2D, 3D/2D) 

Discourse here refers to something like ‘articulation’. It is difficult to articulate 

geometrical representations and transformations through words, hence these are non-

discursive. Together with the distinction between monofunctional and multifunctional, this 

results in four types of semiotic system representation registers. 

 

 Discursive registers Non-discursive registers 

Multifunctional registers 

(non-algorithms) 

Basically the use of natural 

language, spoken or written 

Typically depicting 

drawings, sketches, figures, 

patterns 

Monofunctional registers 

(algorithms) 

Refers to symbol containing 

and symbol using systems 

Diagrams, graphs, etc. 

subject to rules of 

construction 

Figure 2.1: Duval’s classification of registers mobilized through mathematical 

processes. 

In relation to the students’ difficulties with mathematical proof and proving, Duval 

offers the following insights: 

Now we can only mention the important case of language in geometry. We 

can observe a big gap between a valid deductive reasoning using theorems and 

the common use of arguments. The two are quite opposite treatments, even 

though at a surface level the linguistic formulations seem very similar. A valid 

deductive reasoning runs like a verbal computation of propositions while the 

use of arguments in order to convince other people runs like the progressive 

description of a set of beliefs, facts and contradictions. Students can only 

understand what is a proof when they begin to differentiate these two kinds of 

reasoning in natural language. In order to make them get to this level, the use 

of transitional representation activity, such as construction of propositional 

graphs, is needed. (Duval, 2006, p. 120) 

It appears obvious that digital technologies, in the sense of DGS, has a role to play in this 

respect as well. 
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3 Instrumental genesis, instrumental orchestration and instrumental 

distance 

Instrumental genesis involves the process of transforming artefacts, such as digital tools, 

into mathematical instruments (Guin and Trouche, 1999). These instruments then become 

part of a student’s cognitive scheme (Vergnaud, 2009) and can be used epistemically to 

support their learning of mathematical concepts (Guin & Trouche, 1999; Artigue, 2002). 

In more detail, a student can internalise an artefact’s constraints, resources and procedures 

in the process of instrumental genesis (Guin & Trouche 1999). There are two processes 

involved. The process of instrumentation, which is how a digital tool shapes and affects 

the user’s thinking, and the process of instrumentalisation. During the instrumentalisation 

process, students may acquire knowledge that may lead to a different use of the artefact, 

and once achieved, then the student is able to critically reflect upon the activity they are 

engaged in, potentially reinterpret it but also creatively use these artefacts. We do 

recognise of course that this process of transforming digital tools into mathematical 

instruments is lengthy and that instrumental genesis develops over time (Artigue, 2002). 

Moreover, the interrelation between technical knowledge about the artefact, i.e. knowing 

how to use and using the artefact, and knowledge of mathematical concepts can prove 

crucial in succeeding instrumental genesis (Drijvers et al., 2010).  Drijvers and 

Gravemeijer (2005), for example, argued that the apparent technical difficulties students 

had were maybe due to cognitive difficulties with mathematical concepts. It is quite 

crucial therefore to consider how best and why to support students during their 

interactions with a digital tool and achieve the initial step of instrumental genesis 

(instrumentation). Once this step is achieved, we could say that the digital tool has served 

its epistemic purpose, i.e. being used to support students’ understanding and learning 

within their cognitive system (Artigue, 2002; Lagrange, 2005; Trouche, 2005). The 

instrumentalisation process, involving how a student discovers the various functionalities 

of artefacts and transforms them in their own personal way, can then follow and allow a 

digital tool to serve its pragmatic purpose too, i.e. being used to create a difference in the 

world external to the student (ibid.).  

Considering though the instrumental approach and how digital tools can be integrated 

in the mathematics classroom, we should discuss Trouche’s (2004) notion of instrumental 

orchestration. It provides a framework for expressing teachers’ work before and during 

their lessons and interactions with their students. As Drijvers and colleagues (2010) 

described it with reference to Trouche: “An instrumental orchestration is defined as the 

teacher’s intentional and systematic organisation and use of the various artefacts available 

in a – in this case computerised – learning environment in a given mathematical task 

situation, in order to guide students’ instrumental genesis” (pp. 214-215). Trouche (2004) 

distinguishes three elements of the instrumental orchestration framework, namely a 

didactical configuration, an exploitation mode and a didactical performance. A didactical 

configuration describes the arrangement of artefacts in a certain environment and the 

configuration of the teaching setting. For example, in a mathematics classroom, such an 

arrangement would involve a certain orchestration of mathematical discourse. An 

exploitation mode regards the strategies the teacher uses to exploit a didactical 

configuration in order to achieve their teaching objectives. For example, a mathematics 

teacher would need to make decisions on how to introduce and model a mathematical task 

using an artefact, on the possible roles an artefact they use for their own teaching, but also 
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for students to interact with, can have, and on the schemes and techniques students should 

develop and establish. Finally, a didactical performance involves the decisions a teacher 

should take during a lesson and how best to perform in their chosen didactic configuration 

and exploitation mode. For example, a mathematics teacher would consider what the best 

probing questions to use to develop students’ mathematical thinking or understanding of a 

concept are, how to respond to certain students’ comments, shared solutions and answers 

and their justifications, how to improvise and identify the best approach when an 

unexpected aspect of the mathematical task or the technological tool surfaces, or any other 

emerging goals appear in a lesson. 

For digital tools to be integrated in the mathematics classroom, besides looking at 

teachers’ instrumental orchestrations, we need to consider a number of factors. Some of 

these were described by Haspekian’s (2005; 2014) research work and the introduction of 

the notion of instrumental distance. Haspekian explains: 

For a given tool, if the distance to the ‘current school habits’ is too great, 

this acts as a constraint on its integration [...]. On the other hand, the didactical 

potential of technology relies on the distance it introduces with regards to 

paper-pencil mathematics as, for instance, by providing new representations, 

new problems, increasing calculation possibilities, etc. This is the case for the 

dynamic figures in geometry softwares, with respect to the static figures in 

paper-pencil geometry. The didactic potentialities of these dynamic objects and 

their benefits for students’ learning have been evidenced by many research 

studies [...] (Haspekian, 2014, p.246). 

The notion of distance in Haspekian’s work refers to the distance between the 

praxeologies involved in two different environments. There is a distance between praxes 

involved when interacting with a digital environment and the praxes involved when 

interacting with a paper and pencil activity for example. There is also a distance between 

the scope of a digital environment and how it was designed to be used and the culture of a 

mathematics classroom and the school’s policies.  

4 An illustrative case based on the ‘guided reading’ approach 

In this section, we offer a potential teaching scenario for introducing Euclid’s Proposition 

22 with GeoGebra based on the approach of guided reading. The GeoGebra digital tool 

can be used to present this proposition, but also allow students to explore the idea Euclid 

shared with the ultimate goal of proving the proposition. We rely on the approach of 

guided readings of original sources developed by Barnett, Lodder and Pengelley (2014), 

and also used by Jankvist (2013). This approach offers a sensible way of dealing with the 

occasional inaccessibility of primary original sources. The main idea is to supply or 

interrupt the reading of an original source by explanatory comments and illustrative tasks 

along the way as orchestrated by the teacher. One feature of guided reading is, as claimed 

by Barnett, Lodder and Pengelley (2014) that “the primary source is now being used not 

just to introduce the mathematics in an authentically motivated context, but also as a text 

which the student is explicitly challenged to actively “interpret” as part of their personal 

process of making modern mathematics their own. In alignment with this shift, the tasks 

we now write for students increasingly adopt a more active “read, reflect, respond” 

approach to these sources” (p.10).  
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In our teaching scenario below, we will showcase how we also made use of Barnett and 

colleagues’ so-called read-reflect-respond type of tasks. Barnett and colleagues (2014) 

aimed at students achieving “a deep understanding of both the similarities and differences 

between past and present mathematics, not merely the past as a convenient or most natural 

avenue to the present” (p. 23). In our proposed teaching scenario, we focus on two 

resources (or media for acquiring mathematical knowledge), paper and digital 

technologies. “Radical engagement with the disparate discourses of original sources 

selected from various mathematical communities appears to also support student learning 

by providing the scaffolding necessary to become a participant in a new (e.g., modern) 

mathematical discourse” (ibid., p. 24). We focus on how to connect and “unpack” past 

resources using a modern medium, such as the GeoGebra digital tool designed for 

mathematical learning, a tool that is familiar to the student, as already mentioned in the 

introduction. Another goal of Barnett and colleagues was to promote students’ 

mathematical reasoning skills and further develop their ability to create valid 

mathematical arguments, a goal that we did adopt too. 

Euclid’s Proposition 22 states that “To construct a triangle out of three straight lines 

which equal three given straight lines: thus it is necessary that the sum of any two of the 

straight lines should be greater than the remaining one” (source: 

https://mathcs.clarku.edu/~djoyce/elements/bookI/propI22.html). This is the English 

translation from the original source in Ancient Greek, which is presented in Figure 4.1.  In 

Figure 4.2, the same proposition is presented in Latin from the 1482 version of Euclid’s 

Book of Elements. Both sources offer a diagrammatic representation for describing 

Proposition 22. Can you make a comment/argument here about Duval’s registers here? 

 

Figure 4.1: The Euclid proposition 22 in its original presentation in ancient Greek (source: 

http://www.physics.ntua.gr/mourmouras/euclid/book1/postulate22.html) 
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Figure 4.2: The Euclid proposition 22 in its original presentation in Latin from 1482. 

There are attempts at recreating this proposition in GeoGebra. For example, such a 

resource is: https://www.geogebra.org/m/bp2mpZVz. In this construction, the lengths of 

the three sides of the constructed triangle are variable and can be dragged, i.e. dynamically 

moved, while the construction reflects that movement and change of the lengths of the 

three sides. In Figures 4.3 and 4.4, we present how dragging one line segment, CD, 

impacts the construction. 

 

Figure 4.3: GeoGebra construction of Proposition 22 

(source: https://www.geogebra.org/m/bp2mpZVz). 
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Figure 4.4: GeoGebra construction of Proposition 22, after dragging line segment CD 

from its original position presented in Figure 4.3 and making its length shorter than the 

original (source: https://www.geogebra.org/m/bp2mpZVz).  

Considering these resources and with the aim of using GeoGebra as a tool for 

‘unpacking’ Proposition 22 and making it more accessible to students, we have designed 

the following teaching scenario using the guided reading approach, as mentioned earlier. 

Besides taking into account aspects of Duval’s semiotic registers, we considered both the 

instrumentation and instrumentalisation processes a student is expected to go through in 

achieving instrumental genesis, but focused mostly on the teacher’s potential perspective 

and in fact a teacher’s instrumental orchestration processes in achieving their students’ 

instrumental genesis. We also added the analytical lens of instrumental distance. This 

considers the distance between the praxeologies of Euclid’s Proposition 22 original 

resource and potentially how it was intended to be used for the teaching and learning of 

Geometry and the praxes involved when students interact with GeoGebra to interpret 

Proposition 22 and paper and pencil to record their reflective comments and arguments. 

We neither intend to discuss the culture of a mathematics classroom nor any school’s 

policies or how this teaching scenario could be carried out considering such factors, as 

these differ from school to school. 

Students are presented with the following Learning Objectives (LOs). 
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The above LOs should set the scene for the activity sequence that supports in bridging 

the instrumental distance between the paper and pencil medium and GeoGebra. The 

teacher presents Proposition 22 on the board and printed for students, but without any 

diagrams. This strategy is used to exploit the didactical configuration of reading the 

proposition and using a familiar and easy to use medium, that of paper and pencil, as 

preparation for using the digital medium later on (exploitation mode). 

 

Students are expected to read carefully this sentence and interpret its meaning using 

any means available to them (e.g., either mentally or by drawing a diagram on paper), 

before moving on to a paired task, Task 2, (exploitation mode). At this stage, GeoGebra is 

not used as we envisage students need to consider what the proposition states in its paper 

presentation before interacting with the GeoGebra tool to explore its meaning by carrying 

out constructions of triangles. This process could be viewed as the first stage of students’ 

instrumentalisation, as it is planned with the aim of students’ acquiring knowledge that 

may lead to a different use of the GeoGebra tool, e.g. not just as a tool to construct and 

explore, but as an analytical tool for reflecting upon their construction through a dynamic 

exploration (exploitation mode).  
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Students are expected to come up with any diagramatic or symbolic representations on 

paper in their efforts to make sense of the proposition. They are also expected to work as a 

pair and agree upon a statement for what Proposition 22 states using their own words. 

Such a preparatory work is aimed at giving meaning to students’ interactions with 

GeoGebra that follow in Task 3. They should have reached a certain level of 

understanding of what Proposition 22 states and may use GeoGebra as a tool for 

validating their conjectures by constructing a triangle and dynamically manipulating it 

(instrumentalisation process), as opposed to carrying out meaningless actions. 

Students are then presented with the GeoGebra tool. In this scenario, students are 

expected to be familiar with GeoGebra and its main functionalities.  

 

Students could potentially use GeoGebra as a drawing tool and create triangles by 

constructing three line segments of 3cm, 4cm and 5cm respectively, and place them in 

such a way so that each two segments are connected at a corner. Such an approach cannot 

be criticised when considering the instrumental distance between the paper medium, 

which they are used to and are familiar with and their tendency to follow a similar strategy 

in GeoGebra. It could though be considered as students’ initial steps of instrumentation 

since students ‘drawing’ with GeoGebra differs from that of drawing on paper and 

students are ‘forced’ to use GeoGebra’s tools for constructing line segments of given 

lengths as opposed to a ruler and measuring a line segment in order to draw it. The 

rationale for this task 3 is to give students the opportunity to consider how to construct a 

triangle with sides of three different fixed lengths. After a 10-15 minutes exploration of 

how to construct a triangle in GeoGebra when being given the lengths for its three sides, 

the teacher runs a class discussion focusing on the strategies students followed to construct 

their triangles. Such strategies may involve: (a) using the GeoGebra ‘polygon’ feature, 

with which students may form a polygon of 3 sides, or (b) using the GeoGebra ‘segments 

with given length’ feature, with which students could construct three line segments of 

3cm, 4cm and 5cm respectively and join them in such a way so that a triangle is formed. 

These two didactical configurations of course are not general enough and the students 

restrict themselves from using a dynamic tool such as GeoGebra to its full potential; (c) 

Students could construct a ‘segment with given length’, e.g. AB = 5cm, and then construct 

two circles. One circle of centre ‘A’ and radius 3cm and one circle of centre ‘B’ and radius 

4cm. Either of the two points where the circles intersect can be chosen as the third vertex, 

‘C’, of the triangle. This second construction path will be referred to as the ‘triangle 
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construction’ for the rest of the paper. It is also worth considering that students may have 

been taught already how to construct a triangle of given lengths (or not) by using a ruler 

and compass. Such prior knowledge would certainly influence their instrumentalisation 

process as they would potentially use similar strategies of constructing line segments and 

circles to recreate such a construction of a triangle on GeoGebra. On the other hand 

though, such prior knowledge may act as a bridge for the instrumental distance between 

the paper and pencil medium and GeoGebra. Students would look for ways to construct 

line segments and circles in GeoGebra mapping their prior experiences on paper. 

Hovering over the various GeoGebra features, but also the iconic representation of these 

features can support, shape, as well as affect their thinking processes (instrumentation). 

The teacher then refers to the Proposition 22 and asks students to compare their actions 

in Task 3 to what the Proposition states.  

 

The rationale for this discussion is for students to recognise the condition for being able 

“To construct a triangle out of three straight lines which equal three given straight lines”, 

or in other words to construct a triangle when being given three line segments of certain 

lengths. Interacting with and exploring their constructed triangle of fixed side lengths in 

GeoGebra, while bearing in mind the two sentences of Proposition 22 and stating these in 

their own words, should prompt students’ critical reflection on the validity of Proposition 

22. Recognising that their triangle is ‘fixed’ in GeoGebra and none of its corners can be 

dragged in such a way that their triangle changes size and a different triangle is formed, 

should reinforce the idea that any constructed triangle of given lengths for its three sides is 

unique. They should start thinking then about the generalisability of the Proposition. 

Should this proposition be true for any triangle of given lengths for each side? Are there 

any conditions for the proposition to hold true? Such probing questions may be used by 

the teacher to support students’ reflections and their efforts in writing down arguments 

regarding the Proposition. In their written arguments, students are expected to reveal their 

instrumentalisations, as they may exploit GeoGebra’s features and their interactions to 

form arguments and support their claims. Moreover, students are expected to start thinking 

about the value of the second sentence in the Proposition, “thus it is necessary that the sum 

of any two of the straight lines should be greater than the remaining one”. Why is this a 

“necessary” condition to construct a triangle? Students’ written arguments will be valuable 

information as they will reveal the current state of their instrumentation and 

instrumentalisation processes as well as their mathematical reasoning skills. 

Considering Duval’s theory, in Task 1, the representation of the translated to English 

Proposition 22 on paper serves multiple purposes (multifunctional semiotic register). It 

communicates to students Euclid’s original presentation of the proposition and makes 

students aware of the condition for a triangle of given lengths for its three sides to exist. 
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Students are expected to process the shared information and using for example, their 

imagination, creativity and/or visualisation skills to ‘translate’ or convert this proposition 

using different registers, such as a diagram and/or mathematical notation and symbols. 

Such a process can lead to the creation and use of a non-discursive representation and it is 

expected to happen in Task 2. In pairs, students have to argue about their interpretations 

and could potentially ‘move’ between different registers. After articulating their thinking 

using natural language (multifunctional discursive register), they could decide to draw a 

triangle on paper (multifunctional non-discursive register) combined with the use of 

mathematical notation to describe the condition for their triangle to exist (monofunctional 

discursive register). In Task 3, students make shifts between various registers, but these 

occur between the paper medium and GeoGebra and within GeoGebra. They create a 

geometrical figure, i.e. a triangle with sides 3cm, 4cm and 5cm, and interpret the icons 

representing GeoGebra features, which also involve natural language (hovering over them 

shows what they do) and symbolic language (algebraic notation to represent angles, 

points, lengths, etc.). Then, in Task 4, students reflect on what the Proposition states once 

again and are asked to articulate arguments for supporting their claims and convince their 

peers. In this case, we could argue that students should be ready to share their beliefs, facts 

and contradictions, but they are not maybe ready to produce a valid deductive reasoning, 

as per Duval’s (2000) distinction. 

 

 

Figure 4.5(a), (b), (c): Students are expected to drag corner A of the triangle in GeoGebra 

and explore what happens. In (a) the triangle is formed with the longer side as the base. In 

(b) the corner A is dragged towards the left and the base gets longer, while corner B gets 

closer to the base. In (c) the corner A is dragged further to the left and corner B ‘lands’ on 

side AB of the triangle and as a result the triangle ABC ceases to exist and instead a 

longer line segment AC is created. 

The rationale for Task 5 is for students to explore a triangle constructed in GeoGebra 

with non-fixed lengths for its three sides. This didactical configuration should trigger 

students’ instrumentalisation of using GeoGebra as a tool for critically reflecting upon the 

second statement in Proposition 22. Students are expected to recognise that if the corner A 

gets dragged further to the left in such a way that the length AC gets longer than the sum 

of AB and BC, then the triangle ceases to exist. This realisation is key in understanding the 

importance of the condition stated in Proposition 22. We could argue for the benefits of 

using GeoGebra and in fact a triangle of varied lengths for its sides to ‘unpack’ and 

validate Proposition 22.  
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Considering a triangle of no given lengths for their three sides in GeoGebra as a 

didactical configuration can certainly trigger students’ critical reflection of Proposition 22, 

but at the same time some students may still have difficulties thinking in such an abstract 

way and require working with triangles of specific lengths. The teacher could present 

students with a number of sets of 3 lengths for constructing a number of triangles. Such a 

strategy will prompt students to reflect upon sets of lengths that can produce a triangle and 

others that won’t and with some further ‘guided reading’ and the teacher’s intervention, 

students should recognise the condition of having the sum of two lengths being greater 

than the remaining length for a triangle to be created, as stated in Proposition 22, and gain 

a deeper understanding.  

 

In this process, students are expected to recognise that only for (a), (b) and (d), a 

triangle can be constructed. The teacher asks for any instances the students couldn’t make 

a triangle, encouraging them to share their reflections and arguments. What does 

Proposition 22 state in relation to constructing a triangle? Were you all able to construct 

all triangles? Why? Why not? Anything ‘special’ about these lengths?  

The teacher runs a class discussion aiming at supporting students in reaching a 

conclusion about the condition for being able to construct a triangle from three given 

straight lines. Why can’t we have a triangle of lengths [2, 2, 5] and [2, 3, 5]? Why can we 

have a triangle of lengths [2, 2, 2], [2, 3, 4] and [2, 4, 5]? What’s the same and what’s 

different between these sets of lengths? 

All the above probing questions are aimed at supporting students’ development of 

critical thinking regarding Proposition 22. GeoGebra can support them in constructing 

quickly and accurately the different triangles and comparing their constructions to reach 

their conclusions and potentially articulating valid arguments relying upon the specific 

examples.  
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In Task 5, students were presented with the teacher’s constructed triangle of varied 

lengths for its sides, whereas in this Task 7 students are expected to use GeoGebra to test 

the second condition in Proposition 22 by choosing different lengths for a triangle they 

construct. GeoGebra then becomes a validation tool for their own constructions, but also a 

tool that helps them critically reflect upon an original source (instrumentalisation).  

Considering Duval’s (2000) work on registers, working with specific examples could 

also help them in articulating their arguments regarding Proposition 22 and why and when 

a triangle can be created when being given a set of lengths for its three sides. The 

coherency of those arguments though would reveal the type of reasoning students would 

have achieved at this stage in the learning sequence. Students are prompted to use 

multifunctional semiotic registers and discursive representations, such as their verbal 

communications, their strategies for constructing the requested triangles in GeoGebra, and 

non-discursive representations, such as their constructed triangles in GeoGebra. By the 

end of Task 7, students should feel confident about what the Proposition 22 states and 

have a better understanding of the condition. Their arguments may still be based on 

specific examples and certain cases of lengths for the three sides of a triangle and may not 

be general enough. Depending on their confidence with mathematical notation, some 

students may bring algebraic notation into their written statements. In their collaborations, 

some students may go through a valid deductive reasoning process at this stage, where 

they argue about the correctness, truthfulness, or in other words, the proof of Proposition 

22, using their constructions as specific examples. Students’ explorations and arguments 

most likely based on specific examples, though, on paper and in GeoGebra, cannot be 

considered as formal proofs. The next step is for students to be exposed to the proof as 

presented in one of the original sources, but translated into English. 

 

Students are presented with this image taken from 

https://mathcs.clarku.edu/~djoyce/elements/bookI/propI22.html and are asked to use 
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GeoGebra to create the presented construction as described in those steps. Students are 

expected to choose three lengths for their triangle and then recreate the above construction 

in GeoGebra following the given steps. Depending on students’ attainment and other 

factors, such as time or students’ engagement and their characters, these steps could be 

given as individual separate tasks (presented below) as opposed to being presented in one 

figure as a lengthy sequence of steps where students are trusted to follow the steps 

accurately. Such didactical configurations should be decided by the teacher. 

 

By the end of this task, all students should have their triangles constructed provided 

that they chose lengths for the three sides that comply with the triangle inequality 

condition (the sum of the lengths of any two sides is bigger than the length of the 

remaining side). Their construction should be similar to the one they were presented with 

on paper (see Figure within Task 8a above). Students could potentially have difficulties 

with understanding what “Set out a straight-line DE, terminated at D, but of infinite length 

in the direction of E” means. The given diagram can support them with this statement, but 

also the “Ray” feature within the ‘Lines’ GeoGebra tools can help them in ‘unpacking’ 

this statement and constructing such a line (instrumentation).  

 

In this step, we should comment on how a length is represented by a capital letter, A, 

whereas usually students are presented with line segments of given lengths, e.g. AB = 

3cm. Students are expected to interpret and potentially use mathematical notation, which 

is a requirement a teacher can share with their students: 

FD = FK 

FD = A, so FK = A 

Their arguments should involve the fact that FD and FK represent the radius of the 

circle DKL and since the radius of this circle was constructed to be equal to the given 

length of side A of the triangle, then all three lengths are equal, FD = FK = A. 

Using GeoGebra for this step in the proof, students should validate the equalities as 

described in the written statement above by potentially dragging certain points in their 

construction and comparing the lengths of line segments in question. Students could argue 
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about the validity of the statements based on their constructions and in essence argue 

about the validity of the statements by using ‘proof by construction’.  

 

Similarly to Task 8b, students could follow a similar process to derive that: 

GH = GK 

GH = C, so KG = C  

Their arguments should involve the lengths of GH, GK and C, all being equal to the 

radius of the circle LKH and therefore GH = GK = C. Some students may notice in this 

statement the change in the order of the letters for representing the line segment GK. 

As mentioned above regarding Task 8b, GeoGebra can support students’ thinking 

processes and argumentation in interpreting a mathematical statement presented in an 

original source. We believe though that using a combination of representations (i.e. the 

construction in GeoGebra and mathematical notation on paper) is crucial in understanding 

the statement, but also recognising the presentation of a formal proof. Writing down the 

actual equalities (GH = GK, GH + C and GH = GK = C) could be re-enforced by the 

teacher as a valid strategy in developing students’ mathematical thinking. And even 

though GeoGebra is designed to bring together different forms of representations, students 

may not necessarily recognise this feature during their interactions as they are focusing on 

constructing triangles following the steps in the given proof. 

 

Students are expected to justify why: 

KF = A 

FG = B 

GK = C. 

GeoGebra can certainly help them visualise and test why these 3 sides are equal to the 

given length. Students could argue that the above mathematical statements are true by 

construction. But would that be enough? GeoGebra’s power lies in enabling students to 

vary the lengths of the three sides, and if these sides are linked to the constructed triangle, 

then students can see the impact of their dragging and changing the given lengths of the 

triangle. Students could be asked to choose a different set of lengths and go through the 

same process of constructing a triangle in GeoGebra to reflect upon the condition for a 

triangle to be formed.  
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Depending on their constructions and provided that their chosen lengths meet the 

required condition, students should argue about their beliefs on the validity of this proof. 

They are prompted to use GeoGebra to argue about the constructions and instantly see the 

outcome of any action they take, e.g. choosing different lengths for the sides and 

investigating when a triangle ceases to exist. If they were to choose the three lengths and 

place them in a straight line (see Figure 4.6 below), then they would receive instant and 

accurate feedback from GeoGebra showing that the circle with centre G and radius GH is 

not big enough to intersect the circle with centre F and radius DF.  

 

 

Figure 4.6: An attempt to construct a triangle using GeoGebra, when the sum of the 2 

lengths FG and GH is less than the length of DF, i.e. |FG| + |GH| < |DF|.  

Considering students’ possible GeoGebra construction described earlier, students may 

find it easier to ‘see’ why the triangle ceases to exist when the sum of the lengths of the 

two sides is less than the length of the third side. For example, if they were to construct a 

triangle ABC (see Figure 4.7), where |AB| + |B’C| is less than |AC| by constructing the line 

segment AC and then two circles C(A, AB) and C(C, B’C), they could see that the two 

circles never intersect and the third vertex of the triangle cannot be constructed. 

Comparing these two constructions (the proof construction and the triangle construction) 

and how they could be presented and explored in GeoGebra by students, we could argue 

about the different level of difficulty with each one of them and how GeoGebra can make 

them more accessible to students and support students’ valid deductive reasoning, as per 

Duval’s (2000) theory. Considering the triangle construction in GeoGebra, students, for 

example, may keep the length of the sides AC and B’C constant and increase or decrease 

the radius AB. This exploratory process can help students recognise the importance of the 

triangle inequality as a condition for forming a triangle. Even though it cannot be 
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considered as a formal proof, GeoGebra certainly supports students in getting a better 

understanding of Proposition 22 by allowing the creation of interactive diagrams 

(multifunctional registers and discursive and non-discursive representations) and 

promoting students to analyse, evaluate and confirm (or falsify) the derived results by 

carrying out various conversions (discursive representations and multifunctional and 

monofunctional registers) (Duval, 2000). Considering the proof construction in GeoGebra, 

students can compare the lengths while following carefully each step of the proof and 

convincing themselves of the equalities suggested by the formal proof.  

 

 

Figure 4.7: When |AB| + |BC| < |AC|, then no triangle could be formed. 

Going back to the proof presented in the translation of Proposition 22 (see the 

presentations of Task 8 and Task 8e), it is worth referring to the three letters on the bottom 

right, “Q.E.F.”. These represent the Latin phrase “quod erat faciendum”, which means 

“that which was to be done”. In Euclid’s original source, as presented in Figure 4.1, this is 

written as “ὅπερ ἔδει ποιεῖσαι”, and which is commonly presented in other original 

sources as “ὅπερ ἔδει δεῖξαι” and which means “that which was to be shown” and which 

in essence means “that which was to be proved”. This was used at the end of a proof to 

indicate that the proof has been completed.  

5 Concluding discussion 

Through our outlined teaching scenario above, we believe to have shown how a use of 

digital technologies can assist in ‘unpacking’ an original source, and hence make this 

more accessible to potential students. Surely, our example of Euclid’s proposition 22 is 

not a long and comprehensive source, as those described by Barnett and colleagues 

(2014). Yet, the manageability of this limited excerpt from the Elements seems to serve 

well as an illustrative case for our line of argument in this particular paper. While our 

example seconds the claims of the previous studies considering the use of digital 

technologies in relation to history, as first laid out by Isoda (2000a), e.g. the benefits of 

multiple representations, support of students’ reflective thinking and mathematical 

inquiry, or those closer related to students’ concept formation (e.g. Chorlay, 2015), it does 

so by attempting to ground these arguments in the mathematics education literature. More 

precisely, we have attempted to articulate the aspects concerning multiple representations, 

and underlying concept formation, by using Duval’s framework of semiotic 

representations.  
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The aspects concerning proofs and proving in relation to students’ reflective thinking is 

also attempted and articulated through a use of Duval, while that of students’ 

mathematical inquiry is addressed through the rich literature on digital technologies in 

mathematics education. More precisely, we used the theory of instrumental genesis to 

consider and discuss students’ potential instrumentation processes, i.e. how GeoGebra 

shaped and affected their thinking, and instrumentalisation processes, i.e. how their 

acquired knowledge through their preparatory work on paper and then their reflective 

tasks in GeoGebra may lead to a potentially different use of the GeoGebra tool that may 

allow them to critically reflect upon their own interpretations and understanding of 

Proposition 22. We used the theory of instrumental orchestration to analyse the teacher’s 

potential intentions and aims for using GeoGebra for ‘unpacking’ Proposition 22. We 

discussed mainly the chosen didactical configurations and the rationale for those 

decisions, but also a teacher’s strategies for exploiting the chosen didactical configurations 

(exploitation mode). Since this work is preparatory in its nature, we did not discuss the 

‘didactical performance’, as this concerns the various decisions a teacher takes throughout 

a lesson aiming at using the digital tool in question as best and as effectively as possible. 

Finally, we touched upon the notion of instrumental distance (Haspekian, 2005; 2014) that 

allowed us to consider how a teacher through carefully designing a task sequence can take 

into consideration strategies to bridge the gap between students’ learning, classroom and 

culture norms, and the norms involved when interacting with a digital tool, such as 

GeoGebra. 

In terms of the claimed ‘unpacking’ of the original sources through digital technologies 

– or making it more accessible – GeoGebra can enable students to (a) explore statements, 

such as the two sentences in Proposition 22, but also statements shared by their peers 

and/or their teacher; (b) translate or convert the written statements in geometrical figures 

using the various GeoGebra features; (c) validate such statements by creating accurate 

constructions, comparing those constructions and using them as objects to think and test 

conjectures; (d) critically reflect upon mathematical statements through dynamic 

interactions with accurate constructions; (e) consider and prove Proposition 22 by 

construction. 

Duval’s framework of semiotic representations allowed us to take into account in the 

design of the above teaching scenario how students reach a good understanding of 

mathematical ideas, concepts and statements, such as that presented in Proposition 22. 

Students can be presented with and interact with two media, ‘paper and pencil’ and 

GeoGebra, and may be prompted through a task sequence to shift within and between 

registers. For example, for Task 8, students would have to recreate the static diagram 

presented in the original source in GeoGebra and therefore create a ‘dynamic’ construction 

involving line segments, circles, intersection points and of course a triangle (provided that 

the condition was met). They need to consider the mathematical statements presented by 

the original source in combination with the use of some symbolic language (mainly the 

use of letters to refer to certain parts of the diagram) and the static diagram and convert 

these to a dynamic geometrical figure constructed in GeoGebra, also annotated by letters. 

They could also convert from the semi-natural and semi-symbolic language to a series of 

mathematical statements presented in symbolic language, e.g. FD = FK and FD = A, so 

FK = A. Critically reflecting upon these registers and shifting between them could 

certainly enhance students’ understanding of Proposition 22, and support our argument for 
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the value of combining paper and pencil resource with a digital tool to access, explore and 

even prove mathematical statements presented in an original source. 

Although the use of GeoGebra throughout the duration of the teaching scenario serves a 

number of minor pragmatic purposes, the overall purposes are epistemic ones. In 

particular, GeoGebra serves the role of letting the students grasp the nature of the 

construction by dragging the GeoGebra construction (Task 5, Figure 4.5) and by relying 

on GeoGebra in the proof of the proposition (Task 8, Figures 4.6 and 4.7). The digital 

technology is used to more than just solve a mathematical task. It is used to deepen the 

understanding of the mathematical content of the original source. The combination of the 

original source and the digital tool seem to draw the use of the digital tool in an epistemic 

direction. 

So, while digital technologies assist in making the original source more accessible to 

the students, the original source seems to ‘enforce’ upon the students an epistemic use of 

the digital technologies. This indeed appears to be a promising and positive synergy. 

6. Future perspectives and questions to answer 

As for the use of digital technologies in relation to the work with original sources, there 

are still many stones that are left unturned. If we agree to the seemingly large potential in 

this relationship, then several new questions arise: questions which need addressing in 

order to exploit the fruitful interplay between original sources and digital technologies 

further. We shall end this paper with outlining such questions or issues that appear central 

to us. 

Firstly, it should be considered which original sources may benefit from which digital 

technologies. The ‘unpacking potential’ may certainly differ from technology to 

technology in relation to a given source. In our illustrative case a DGS was of course the 

obvious choice, since the source concerns plane geometry, whereas, say, a CAS tool 

would not have provided us with much assistance. 

Secondly, we should ask ourselves which mathematics education frameworks may be 

applicable in our pursuit to describe the interplay between a use of original sources and 

digital technologies. In our illustrative case, we made use of Duval’s framework of 

semiotic registers to articulate potential benefits of register shifts, in particular conversions 

between mono- or multifunctional discursive registers and multifunctional non-discursive 

representations in the form of geometrical figures. But surely there are other mathematics 

education theoretical frameworks that would apply better to a different combination of 

sources and technologies. Say, for instance, we are working with a source where we only 

operate in the monofunctional discursive register, i.e. symbolic systems – this could be 

some symbolic proof in algebra, etc. Then Duval’s framework appears not to be the most 

suitable, since no conversions would take place. Similarly, in relation to the first question 

above, a DGS tool might not be so suitable with such a source, whereas a CAS tool might 

be. 

Thirdly, as argued above, and as claimed in some of the available studies (Balsløv, 

2018; Olsen & Thomsen, 2017), it appears that the combination of original sources not 

only seems to assist the students in their reading of the source, but that the presence of the 

source appears to draw the use of the technology in a more epistemic direction. 

While the two first questions above require a priori theoretical analyses, in line with 

what has been presented in this paper, the third question or hypothesis calls for empirical 
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investigations. Yet, if the hypothesis holds, i.e. if the study of original sources ‘enforces’ 

upon the students an epistemic use of the digital technology, then both knowing that this is 

so and exactly how this is, is not only a result that is of interest to the HPM community. 

While it appears common knowledge that the use of digital technologies in schools most 

often serves pragmatic purposes, it is well known (e.g. Artigue, 2010) that any use which 

is only, or mainly, pragmatic is of little – or even negative – educational value. Hence, if 

indeed a use of original sources fosters a positive educational effect on the use of digital 

technologies, then this would not only be a significant contribution to the field of HPM, 

but to the mathematics education research field at large. 
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