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Abstract
Intuition was long held in high regard by mathematicians, who considered it all but synonymous 
with clarity and illumination. But in the 20th century there was a strong tendency to vilify intuition 
and cast it as the opposite of  rigorous reasoning. Calculus in particular became a battleground for 
these opposing views. By systematically surveying references to intuition in historical and modern 
calculus textbooks, I look at how its status has changed across the centuries. In particular, I argue 
against the veracity of  the self-fashioned origin story of  the modern anti-intuition movement, which 
relies heavily on a particular historical narrative to portray the demise of  intuition as an inexorable 
triumph of  logic and reason.
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The standing of  intuition in mathematics has suffered fluctuating fortunes. One 
school of  thought takes it to be the antithesis of  proof  and careful reasoning. Hans 
Hahn epitomises this view. In his famous 1933 lecture “The crisis in intuition,” 
Hahn argued that “the failure of  intuition” is a historical fact, which had the inevi-
table consequence that “intuition gradually fell into disrepute and at last was com-
pletely banished” from mathematics (Hahn, 1933, pp. 84, 76). Mathematicians thus 
came to realise that we must 

confess our faith … in careful logical inference … as opposed to bold flights 
of  ideas, mystical intuition, and emotive comprehension (Hahn, 1930, p. 30).

This account has become canonised mathematical folklore (e.g. Bell, 1945, 278, 
292, 294, 387; Boyer, 1959, 5, 13, 25, 59; Gray, 2008, 60, 62, 75, 118, 217, 275). It 
is nowadays a veritable party line in modern textbooks. Calculus students in par-
ticular are nowadays inculcated with a narrative that paints intuition as a corrupting 
temptation that must be resisted. Insofar as intuitive arguments are presented at 
all, textbooks make sure to undermine them at once by hastening to emphasise 
that they don’t count as real mathematics. “These intuitive arguments do not con-
stitute proofs” (Thomas, 2004, p. 85), we are always warned — a message that can 
also be efficiently conveyed by denigrating scare quotes: “Intuitive ‘Proof ’ of  the 
Chain Rule” (Thomas, 2004), p. 192). The dichotomy between intuition and proof  
is an admonition almost all modern calculus textbooks feel obligated to empha-
sise at every opportunity (Stewart, 2012, pp. 63, 87, 142, 199, 304, 312, 722, 982, 
1008; Lang, 1986, pp. 162-163, 176, 218, 306). Likewise, intuitive conceptions of  the 
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fundamental notions of  calculus must also be purged: “the intuitive definition of  a 
limit” is “inadequate” and “vague” (Stewart, 2012, p. 72), and in the same way all 
other intuitive conceptualisations must be replaced by formal ones (Stewart, 2012, 
pp. 76, 142, 284, 352, 353). An emblematic formulation in one prominent calculus 
textbook even makes intuition the direct antonym of  mathematics itself: “Intuitively, 
… Mathematically, …” (Strang, 1991, p. 62). In sum, although some modern cal-
culus books occasionally pay lip service to intuition, their persistent phraseology 
pitting it against proof  and rigour ensures that their most conspicuous message is 
that intuition is not real mathematics.

The anti-intuition movement has been very successful in portraying itself  as 
the inevitable outcome of  rational progress. I challenge this triumphalist narrative. 
The wave of  anti-intuition sentiments that dominated much of  the 20th century is 
not the end of  history and the definite “right” view of  mathematics; rather, it is an 
ideology that happened to fit the needs of  a particular era. The circumstances that 
gave rise to it are complex and include internal mathematical developments as well 
as a broader philosophical context (see e.g. Volkert (1986), Jahnke (1993), and Gray 
(2008)). Rather than admit this, however, the movement fashioned for itself  a more 
flattering origin story.

According to this standard account, the history of  the calculus is a key battle-
ground on which the anti-intuition attitude proved its superiority. An especially de-
cisive proof  of  the folly of  intuition, the story goes, is the existence of  continuous, 
nowhere differentiable functions: 

A curve does not have to have a tangent at every point. It used to be thought, 
however, that intuition forced us to acknowledge that such a deficiency could 
occur only at isolated and exceptional points of  a curve, never at all points. 
It was believed that a curve must possess an exact slope, or tangent, if  not 
at every point, at least at an overwhelming majority of  them. … Ampère … 
attempted to prove this conclusion. … It was therefore a great surprise when 
Weierstrass announced [in 1872] the existence of  a curve that lacked a precise 
slope or tangent at any point. (Hahn, 1933, p. 82)

There are several major problems with this potted history. First of  all, Hahn’s di-
agnosis of  Ampère’s error is driven by his ideological commitment to discredit in-
tuition rather than by a serious analysis of  the case. For what grounds are there for 
taking intuition to be the culprit in his failed proof? Ampère himself  doesn’t say a 
word about intuition. Rather he claims that his proof  is based on “the most rigorous 
possible” methods (Ampère, 1806, p. 156). Why not conclude, therefore, that rigor-
ous mathematics is fallible, as opposed to it being intuition’s fault? Of  course, if  one 
simply defines, as Hahn and others sometimes seem to do, rigorous mathematics 
to be exact and true mathematics, and “intuition” to be non-rigorous mathematics, 
then sure enough it follows that “intuition” is to blame for all errors in mathematics. 
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But this is a terminological sleight of  hand, not a historical conclusion as Hahn 
would have it.

It is simplistic to claim that, according to intuition, any continuous function 
must be differentiable almost everywhere. The notion of  function or curve involved 
in Weierstrass’s proof  is a highly formal one. A more balanced and reasonable reac-
tion to Weierstrass’s function would be to conclude that the kinds of  curves we 
have geometric intuitions about does not correspond exactly to the particular formal 
definition of  function assumed in this proof. And if  the error lies in assuming these 
two classes to be equal, then this is hardly an error of  intuition, but rather the error 
of  making naive and unwarranted assumptions about formal objects.

This was in fact exactly the reaction of  many people at the time. Köpcke, for 
instance, raised the question: To what kind of  curve do our intuition apply? Curves 
generated by the motion of  a point, or boundaries between two regions of  the 
plane? Arguably, only the former are ‘intuitable,’ yet something like the latter is the 
notion of  continuous function required for Weierstrass’s proof  (Köpcke, 1887, p. 
136). Others made very similar points (Klein, 1894, p. 42; Perron, 1911, p. 204).

This more nuanced and less dogmatic view of  the role of  intuition helps explain 
why Hahn’s ideology did not triumph until a full sixty years after Weierstrass had 
supposedly provided the clinching argument for it. To be sure, Hahn’s view was not 
without precursors, even quite numerous ones. Nevertheless, given how supposedly 
compelling the historical evidence allegedly is, it is remarkable how many leading 
mathematicians of  the late 19th century did not follow the script. This includes 
many of  the major figures famous for their work in formalising mathematics and in 
particular the calculus.

Weierstrass himself, for one, does not seem to have drawn any anti-intuition 
conclusions from his own work. In his collected works, I count three mentions of  
the word intuition and its cognates: one in a general discussion of  teaching, where he 
argues that the best teacher not only announces and justifies results but also makes 
them intuitive (Weierstrass, 1894, vol. III, p. 321), and two other occurrences where 
providing an intuitive interpretation of  particular results is presented as a positive 
(Weierstrass, 1894, vol. II, p. 237, vol. IV, p. 346).

Set theory quickly became the language for formal, as opposed to intuitive, 
definitions and proofs in calculus and beyond. But Cantor, when he introduced the 
notion, had no intention of  banning intuition. On the contrary, he explicitly bases 
the notion of  set upon it: “By a set we understand any collection M of  definite and 
separate objects m of  our intuition” (Cantor, 1895, p. 481). Earlier in the century, 
Dirichlet (1837) had done much the same: when giving his celebrated formal defini-
tion of  the integral, he explicitly takes area as an intuitively given notion.
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Pro-intuition sentiments like these are also the norm in calculus textbooks from 
the time. Authors state with pride that their treatment is “based on geometrical 
intuition” (Serret, 1899, pp. iii), and invoke it repeatedly in guiding their exposition 
(Serret, 1899, pp. 5, 6, 7, 10, 278; Worpitzky, 1880, pp. 752, 754). Gaining “a clear 
intuition” of  the material is explicitly stated as a goal (Bergbohm, 1892–93, pp. I.4, 
II.97). Giving intuitive meaning to results, beyond their formal content, is highly 
valued (Lipschitz, 1880, pp. 572, 633; Kiepert & Stegemann, 1897, p. 577; Kiepert 
& Stegemann, 1894, pp. 12, 320); one example is how the geometrical concept of  
curvature gives meaning to the quadratic term of  a Taylor expansion (Worpitzky, 
1880, p. 693). We also regularly find phrases like “as geometrical intuition allows us 
to recognise easily …” (Harnack, 1881, p. 64), “by means of  this intuition, one easily 
convinces oneself  that …” (Lipschitz, 1880, p. 664), and so on. In sum, Courant 
speaks for a long tradition when he says in his famous calculus book that “it is my 
aim … to give due credit to intuition as the source of  mathematical truth” (Courant, 
1927, p. v).

The formal theory of  the calculus is of  course also acknowledged, but phrases 
like “this theorem follows already intuitively …, but can also be proved as follows 
…” (Lübsen, 1855, §158), “intuition teaches us the same thing directly” (Worpitzky, 
1880, p. 714), or “this corresponds precisely to our intuition” (Kiepert & Stegemann, 
1897, p. 578) suggest that intuition and formalism coexist and are both valid. Rather 
than one being real mathematics and the other only half-baked pseudo-understand-
ing, they are both useful perspectives. For any given situation or purpose, one or 
both may be suitable for the task at hand. Nobody is saying that intuition can do 
everything, or that it must be banished from mathematics. It is notable that explicit 
support for intuition along such lines comes even from some of  the pioneers of  
rigorous real analysis. Dedekind, for example, envisions such a balance:  

Resort to geometric intuition in a first presentation of  the differential calcu-
lus, I regard as exceedingly useful, from the didactic standpoint, and indeed 
indispensable if  one does not wish to lose too much time. But that this form 
of  introduction into the differential calculus can make no claim to being sci-
entific, no one will deny. (Dedekind, 1872, p. 1)

Lipschitz too is famous for his formal analysis work, but in his calculus textbook 
intuition is by no means shunned. He does temper the role of  intuition with the 
warning that 

the geometrical interpretation serves only to make the analytically defined 
concepts more graspable with the help of  intuition, not as foundation for the 
proofs. (Lipschitz, 1880, p. 502)

But he does not carry this insistence as far as modern textbooks. For instance, he is 
perfectly happy to consider the notion of  area to be intuitively given when defining 
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the integral (Lipschitz, 1880, p. 102), and in general he is keen to highlight that “the 
geometrical intuition and its analytic representation correspond to one another” 
(Lipschitz, 1880, p. 10).

Toeplitz was another leading analyst who saw a positive role for intuition:

The greater number of  students do not yet possess the same ability for ab-
stract thinking in their first hour of  university lectures, but have, rather, a 
hunger for intuitive and productive notions. The intuitive path aims to satisfy 
that hunger. Kiepert-Stegemann, in its earliest editions, is a perfect example 
of  this trend carried out in a pure way; this work must contain a spark of  real 
didactic genius from which it derives its success. (Toeplitz, 1926/2015, p. 298)

In his own semi-historical calculus textbook, Toeplitz does not repeat Hahn’s story 
of  the inevitable demise of  intuition. Instead we find phrases like “this is the compu-
tational equivalent of  the intuitively seen fact that …” (Toeplitz, 1949, p. 51) which 
treat intuition as a viable viewpoint that is respectable and indeed often equivalent 
to formal methods.

Altogether, Hahn’s quasi-historical narrative about the cleansing of  intuition is 
at odds with the historical record. Hahn uses a caricature of  history to justify his 
ideological stance. Time and time again, key mathematicians who by Hahn’s logic 
should have despised intuition instead give it a respectable place in mathematical 
thought.

I have used calculus textbooks in particular as indicators of  the mathematical 
community’s attitudes toward intuition. I have done this for two main reasons. Firstly, 
Hahn’s narrative is based primarily on examples drawn from calculus. Secondly, al-
though there is a vast philosophical literature on intuition—including authors with 
much affinity to mathematics such as Descartes, Kant, and Brouwer—my concern is 
not with philosophy but with the working mathematician’s everyday attitude toward 
intuition. Calculus textbooks, I would argue, is where the rubber hits the road and 
we see how philosophical commitments play out in actual, hands-on mathematics.

I tried to extend my investigations also to earlier time periods, but in this en-
deavour I met with limited success. I went through many textbooks and did full-text 
searches for intuition and cognate terms in various languages, but I found that older 
texts contain very few explicit mentions of  intuition. The vast majority of  books 
never mention intuition at all. This includes the following: Wallis (1656), Leibniz 
(1678-1714), Newton (1687), Bernoulli (1692), l’Hôpital (1696), Ditton (1706), 
Berkeley (1734), Reyneau (1736), Reyneau (1738), Deidier (1740), Maclaurin (1742), 
Simpson (1750), Kästner (1770), Tempelhoff  (1770), Lagrange (1797), Lacroix 
(1802), Neubig (1817), Cauchy (1821), Jephson (1826), Hall (1837), Raabe (1839), 
Snell (1846), Spencer (1847), Church (1850), Miller (1852), Woolhouse (1852), 
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Autenheimer (1856), Price (1857), Smyth (1859), Greene (1870), Williamson (1877), 
Dölp (1878), Todhunter (1881), Byerly (1882), Knox (1884), Bass (1887), Bayma 
(1889), Kleyer (1889), Jordan (1896), Perry (1897), Czuber (1898), Murray (1898), 
Lorentz (1900), Thompson (1910), Landau (1934).

Nevertheless one can say something about the earlier period as well. I believe it 
is safe to say that intuition was held in high regard in the early history of  the calculus. 
Like many other leading figures, Leibniz never mentioned intuition in his math-
ematical publications. But in his philosophical works he was very positive toward it. 
For example:

The most perfect knowledge is that which is both adequate and intuitive. 
(Leibniz, 1969, p. 291) When my mind grasps all the primitive ingredients of  
a concept at once and distinctly, it possesses an intuitive knowledge. This is 
very rare, since for the most part human knowledge is … confused. (Leibniz, 
1969, p. 319)

Leibniz surely considered mathematics no exception to these general pro-intuition 
convictions. Interestingly, I did find an old calculus textbook that expresses the same 
idea—of  intuition as the opposite of  confusion—specifically in the context of  the 
calculus: “… then our Knowledge will be … more intuitive: … Now we see through 
a Glass darkly, or in a Riddle; but then Face to Face.” (Stewart, 1745, p. 478, echoing 
Corinthians 13:12) I believe this passage can be taken as quite indicative of  attitudes 
toward intuition in the early calculus generally.

The 18th century, as is well known, saw the calculus turn away from geometry 
and become heavily focussed on analytic expressions. It is natural that this would 
be accompanied by a diminished estimation of  intuition. Indeed, in Euler’s calculus 
textbooks we do find two down-putting references to intuition: “… which we will 
be able to prove rigorously … In the meantime it is not so difficult to see intuitively 
that this is true.” (Euler, 1755, §170) “The truth of  these formulas is intuitively clear, 
but a rigorous proof  will be given …” (Euler, 1748, §166)

But, as Schubring (2005) has observed,

soon after 1800, however, the pendulum moved the other way … The de-
famed synthetic method was restored as dominant value, and the requirement 
that concepts be generalizable was replaced by that of  their being of  easy 
intuitive grasp. (p. 152)

A clear expression of  this revival of  intuition is found in Carnot (1813), who explic-
itly argues that intuition is favourable to algebraic analysis:

Far from using analysis to establish elementary truths, we must disengage 
them from all that prevents us from perceiving them as distinctly as possible. 
… Those who succeed in making us see almost intuitively the results to which 
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we had only arrived before them by the aid of  a complicated analysis, do they 
not always procure us as much pleasure as surprise …? (§161)

Thus the low tide of  intuition in the era of  Eulerian analysis soon gave way to “a 
new dominance of  geometry, in the name of  intuitiveness” (Schubring, 2005, p. 
295).

In conclusion, intuition was largely held in high regard by leading practitioners 
of  the calculus for nearly 200 years. It suffered a temporary dip in fortunes in the 
18th century, but this was due to no fault of  its own but rather to a focus on the 
programmatic algebraisation of  mathematics. Its stock again plummeted in the first 
half  of  the 20th century. Perhaps the reasons were much the same this time, namely 
a zeal for a tout-court programmatic reform of  mathematics along symbolic and 
analytic lines. The leaders of  this movement, however, succeeded in portraying the 
demise of  intuition not as their ideological doing but as an inevitable historical con-
clusion objectively forced upon us all by factual mathematical developments. It has 
been my primary goal in this essay to challenge this ingrained narrative. If  history is 
any indication, the time may well be ripe for intuition to bounce back once again like 
it did two hundred years ago.
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