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ABSTRACT

In an attempt to develop a new way of teaching mathematics, we can use the history to find the important ideas
that articulated the now classical mathematical theories. My goal is to illustrate through an example, the Partial
Differential Equations of the first order, how the different disciplines interact within a theory. This contribution
aims indeed to show how the PDEs of first order constitute a point of convergence between geometry, algebra and
analysis in the 19th century. Differential calculus of several variables has its origin in the study of the geometric
properties of curves and some mechanical problems. Resolutions of PDEs use first analytical methods until La-
grange and Monge who provide a geometrical interpretation. The research about generalization of PDEs of first
order in n variables oblige the mathematicians to use uniquely analytical methods in the first half of 19th century
(Pfaff, Cauchy, Jacobi). The development of projective geometry, the birth of theory of groups, the geometrical
vision of algebraic theory of invariants give the conditions for reinterpreting the general PDEs with geometrical
methods (Lie, Klein). A few observations upon the teaching of Lie’s Theory will follow by way of conclusion.

1 Introduction

In history many of mathematicians (including Descartes and Leibniz) stressed the difference
between the Ars inveniendi and the Ars expoendi in mathematics. Concern for rigor and formal-
ization inherited from Bourbaki has reinforced this trend to the point that the exhibition of the
mathematical theories of the curriculum of graduation became dogmatic, separating the disci-
plines (algebra, analysis, linear geometry algebra, etc.) and deleting connections and ideas that
were at the origin of their development. In an attempt to develop a new way of teaching, we can
use history to find the important ideas that articulated the now classical mathematical theories.
My goal is to illustrate through an example, the Partial Differential Equations (PDEs) of the first
order, how the different disciplines interact within a theory.

In view of the very short time available, I will limit my talk to the development of PDEs
of the first order in the 18th and 19th centuries. I pretend to show that the development of
these theory is a great testimony of the close relations between geometry, algebra and analysis.
For that purpose I will describe the historical conditions this theory has crossed and follow the
different stages of its development which are: 1) The birth of this theory; 2) The first methods
of resolution of such equations; 3) The geometric interpretation of Monge; 4) The development
of analytical methods in the first half of 19th century; 5) And the great synthesis (geometric,
algebraic and analytic) realized by Lie in the decade of 1870’s.
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2 The birth of PDEs

In accordance with (Engelsman, 1982; Grimberg, 2009), partial differentiation arose in the
decades 1680-1720 from the problems enunciated by Leibniz and John Bernoulli. In this time
the concept of function does not exist. Curves are described through their equation, what we
would call today implicit functions. And differential calculus operates on every variable in-
volved in the equation. Partial differentiation is then already included in the leibnizian differ-
ential algorithm and appears naturally from the problems Leibniz and Bernoulli began to treat
analytically in this period, such as the envelop of parametrized curves, orthogonal trajectories,
brachistochrone curves, and isoperimetrical problems. In these problems the solution involves
the parameter of a family of curves and differentiation according to the parameter which was
called “differentiation from curve to curve”. These problems bring out also the concept of func-
tion and Euler in the 1730’s reorganizes the differential calculus around the basic concept of
function of one or several variables. He defines implicit functions and discusses the problem
of conditions for a differential form to be complete. Independently Fontaine and Clairaut arrive
to the same results (Grimberg, 2009). In this time what we call now partial differentials appear
only as coefficients of a differential form. For instance, A and B in Adx + Bdy. The first appli-
cation in mechanics appears in 1743 when Clairaut (1743) shows that a necessary equilibrium
condition of a Fluid submitted to force field of components (P,Q,R) is that the force field is
conservative.

In the same time the first PDE appears in the D’Alembert’s 1743 Traité de dynamique
through the study of compound pendulum. Other PDEs appear in D’ Alembert’s memoirs (1747,
1749a, 1749b, 1749c). The D’ Alembert’s methods of resolution consists in linear change of vari-
ables or what we call today Lagrange multipliers, and in the case of vibrating cords, the method
of separation of variables.

The second stage is the various contributions of Euler in the same problems of mechanics,
other methods of resolution, and Euler’s Fluid equations. In this time the PDEs appear from the
study of geometrical infinitesimal properties of the problems led by the geometric diagram. The
complete analytical formulation of this type of problem will be so obtained with the Mécanique
analytique of Lagrange where Lagrange affirms bravely in his preface that

in this treaty you will not find diagrams, the methods I expose require neither construc-
tions, nor geometric, nor mechanics reasoning, but only algebraic operations submitted to
a regular and uniform running.

2.1 A first stage in analytical resolution of PDEs of first order.

The methods of resolution of PDEs follow the process of algebraization of the problems of
mechanics. The first important stage in this process is realized by Euler in his treaty of integral
calculus were he considers the partial differential equations of first order as implicit functions
of 5 variables, the three variables of space were the third z is function of = and y and the two
other variables are the partial differentials of z.

Lagrange elaborates a new conception of the nature of solutions. Considering an implicit
function V' (z,y, z,a,b) = 0 of three variables x, y and z, and two parameters, a and b, z being
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function of = and y, Lagrange shows that we can interpret such a function as what he calls a

“complete integral” of a PDE of first order. The PDE Z = 0, originated from V' (x,y, z, a,b) =

0 )

0, is indeed obtained resolving the system V' = 0, a—z =p, B_Z
x Y

(Lagrange, 1774, p. 239). From this fact, he deduces

= ¢, where a and b are eliminated

that all complete integral of all first order PDEs in three variables have to contain two
arbitrary constants.

In this memoir, the relation between equation V' = 0 and Z = 0 is based on a geometrical vision
ofthe problem. The equation V' = ( representing a parametrized family of surfaces verifying the
PDE, the envelop of this family verifies also the equation, but this time the particular equation
Z = 0 without the parameters a and b. But this geometric insight established by Lagrange do
not lead to the analytical method of resolution, even if we can see here the geometrical way of
thinking of Lagrange.

2.2 The geometrical interpretation of Monge

The geometrical interpretation of first order PDE had to wait the works of Monge elaborated
in the decade 1780 and gathered in his 1807 treaty Application de I’Analyse a la Géométrie.
In this treaty, Monge realized a general study of surfaces and curves by analytical means and
characterized developable surfaces and surfaces of revolution with PDEs, he defines the tangent
plane and the normal of a surface, and characterizes the surface by the radius of curvature and
as envelop of osculating circles. Monge introduces the concept of characteristic curves in the
resolution of first order PDE’s. In his book, the geometrical interpretation of PDEs of Lagrange,
by simple analogy, turns out to be a crucial point of the theory (Monge, 1807, p. 369).

3 The analytical methods of resolution in the first half of the 19th century

The deep reason why the first further developments of the methods of resolution of PDE were
analytical consists in the fact that the geometry for four and more dimensions was yet to be
done while a few problems of mechanics which appeared from the works of Lagrange, Poisson,
Jacobi involved more than three variables and consequently PDEs with many variables. Then a
geometrical interpretation was not in this time possible. It explains the analytical way of Pfaff,
Cauchy and Jacobi. A huge development of geometry, algebra and analysis will be necessary
to join the conditions of the great synthesis realized by Lie.

Pfaff was then the first in a memoir dated of 1814 to begin an elaboration of methods of
resolutions of PDEs involving n variables. He shows how to eliminate one by one the variables
(Pfaff, 1814). And then he considers the equation f(x1, xo, ..., T, 2, D1, ..., Pn) = 0, the p; being

the n partial differentials of z, sets down p,, = @(z1,...,Zn, 2,P1, - - -, Pn_1), and integrates the
equation:
dz — prdzy — padry — ... — py1drp, 1 — (X1, 2 — 2.0, — Ny 2, P1, P2y oery Pn1dxy,) = 0.

The demonstration was not complete and it will be achieved by Cauchy and Jacobi. Demidov
observes that this equation leads to the resolution of n systems, one of which is (Demidov, 1982,
p. 334):
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dz; dz dp;
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Cauchy comes back to the general resolution of PDEs of three variables (Cauchy, 1819), and
show how initial conditions lead to a solution. Cauchy constructs also solutions by means of
characteristic curves even if he does not use this term. Considering an equation involving three
variables x, ¥, z, he uses a change of variables, initial conditions, and builds solutions consisting
of characteristics passing trough the curve (x = g, z = ¢(y)).

Finally Jacobi had elaborated two methods to solve a system of equations, the first in an
article (Jacobi, 1837), but the second is more interesting even if it was edited after his death
(Jacobi, 1862) by Clebch. This is the second method we want to describe.

Jacobi considers a system of n equations f;(xy, za, ..., Tn, P1, P2, ..., Pn) = h; were the pa-
rameters h; are arbitrary constants. The p; are functions of variables z; with the initial equation
fo(z1, 9, ..., Tp, p1, D2, .., pn) = 0. The p; are functions of the x; and are partial differentials
which verify the condition that pydx, + padzs + ... + pydx, is a total differential. For this, the
necessary and sufficient condition is:

Zn Ofi0fx  0fi0fx .
(fsz) - axl apl apl 81.1 07 Zak OJ y ey TV

Jacobi uses indeed the Poisson Brackets which turn possible an expression of the system
which he can solve beginning from the known function f, and successively determining the
functions fi, fs, etc. (Demidov, 1982, p. 337-339).

In this method Jacoby is dealing with what we call today differential operators as A(f) =

- 0 .. . . :
Z Ai(x1, 9, ..., Ty) 8_f = 0, the condition determining solutions of the system of equation, as
L
i=1
A(B(f)) — B(A(f)) = 0 which leads to the so-called Jacobi’s identity, Jacobi being the first
relating this property to the Poisson Brackett (Hawkins, 2000, p. 48): f, g, h, being function of

2n variables, z;, pj,

((fvg>7h) + ((g7h)7f) + ((h7 f)>g) = 0.

4 Sophus Lie

The following stage of the theory represents a great revolution which is also related to the re-
organization of mathematics, especially the new vision of geometry realized by Klein in the
same time of elaboration of Lie’s theory. But before explaining the importance of Lie’s works
we have to explain the context and what was the background of Lie and Klein. In the second
half of 19th century, the works of Pliicker were edited in Europe offering an analytical view
of projective geometry. The idea of homogeneous coordinates allows the generalization of the
concept of projective space. And especially to pass from the real projective space to the complex
projective space and then work in space of higher dimension than 3. In the same time the works
of Grassmann, Hamilton, Cayley developed new connections between geometry, algebra and
analysis. They realized the condition for a geometric investigation of n-dimensional geometry.

398



For instance Cayley elaborates the theory of invariants using the homogeneous coordinates de-
fined by Pliicker and uses this geometrical view to relate projective and euclidean geometry,
especially in his famous 1859 Sixth Memory which became the most important source of inspi-
ration for Klein in his deduction of non-euclidean geometry from the projective geometry and
further elaboration of Erlangen’s Program.

4.1 Sophus Lie and Felix Klein in Paris

The theory of groups with Silow and Jordan became also a basis of the reflexion of Klein and
Lie by 1870. Lie indeed met Klein in Berlin in 1869, and visited France with him in 1870,
he traveled to England and came back in Gottingen in 1872 were he was also with Klein. It’s
very difficult to really separate the reflexion of the two mathematicians in this period (Hawkins,
2000, p. 10-30). It was just after this period that Lie elaborated his theory of n-variable partial
differential equations.

Berlin was the center of analytical research with Weierstrass, Kummer and Kronecker but
the source of inspiration was more in Gottingen, with Pliicker (Clebsh and Klein edited the
posthumous work). Staying in Paris, Klein and Lie studied the works of Jordan and had long
discussions with French mathematicians such as Darboux (Klein, 1892).

The first works of Lie were about sets of lines in three dimensional projective complex
space. The approach of the tetrahedron in this space is really in the spirit of the last works of
Pliicker. Lie’s investigation, following (Hawkins, 2000, p. 2-6) consists in the consideration of
a tetrahedron A of the complex projective space. A tetrahedron line complex A is determined
by 4 planes. Each line meets A in four points. Each line intercepts in four points. Then he
considers the set of lines 7" for which the cross ratio is the same. Lie considers then the set ©
of all projective transformations which let the vertices of the tetrahedron A invariant. Then for
any given line he studies the orbit of this line under the projective group ©. Another object of
common research with Klein was the discovery and the study of what they called W -curves.

Two other crucial concepts in the investigation of Lie were the concept of infinitesimal
transformation and contact transformation. An infinitesimal transformation is a function x
x + dx which is defined by a system of linear differential equation in R*. These transformations
form a commutative group and Lie and Klein used this tool in the study of W -curves. The
concept of contact transformation is really close to Lie’s method of resolution of PDEs as we
will see now.

4.2 Lie’s method of resolution

Lie (1872, 1873b, 1873a) interprets the equation f(z,y, z, p, ¢) = 0 as a four dimensional man-
ifold of R5. The integration of equation means the determination of all manifolds M}, k < 2
whose points satisfy

1. the equation;
2. the condition dz — pdx — qdy = 0.

With this interpretation, Lie can give a geometrical vision of solutions in terms of manifolds
(Demidov, 1982, p. 343). In this theory the contact transformations play an important role.
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Defining a contact transformation as a transformation which preserves the tangent, Lie shows
that there exists a contact transformation which transforms a PDE equation in any given PDE.
As Demidov observed, the demonstration of Lie was not completely rigorous. But this vision
of PDEs was entirely new, and Lie’s geometrical insight was crucial in this conception. The Lie
conception also leads by mean of infinitesimal transformation to the identity of Jacobi, which
represents indeed the beginnings of Lie’ s Algebra.

In the following years, Lie will try to apply his method to second degree PDEs, and this
theory will be developed by other mathematicians especially by Elie Cartan, but this is another
story.

The history of PDEs of first order is a good example how a problem suffers many transfor-
mations in the time, both in the theories they required and the terms in which the problem is
posed. I would wish to use the beautiful metaphor that Berger (2013) use in his book, Geometry
revealed, that of Jacob’s Ladder. To arrive to his theory, Lie had to go up in the ladder posing
the problem in the new terms of differential geometry in 5-dimensional space, developing theory
of contact and infinitesimal transformations. But perhaps this growth in the ladder did not turn
him nearer God, because as a great mathematician of 20th century said: “we don’t know if God
exists, but the Book certainly does”, and Lie, certainly too, wrote a few pages of the Book.

5 Conclusion

What can we deduce from this story for the elaboration of a new program of undergraduate
mathematics ? A first idea is the connection between all disciplines, algebraic, analytical and
geometrical methods are going together in solving problems and the exposition of graduate
mathematics have to deal with this fact.

A second observation is related to the geometrical vision the student have to cultivate, even
in more abstract algebra or analysis, a way Sobczyk (2013), for instance, had worked out in
mathematics, and before Giaquinto (2007) tried to give an epistemological response. We have
to break with the walls which separate disciplines in graduate mathematics if we want to train
mathematicians and not scholastic students.

We have to emphasize finally that this path was already indicated in (Howe, 1983). In this
article, as Howe enhances that Lie’s Theory was taught only at graduate level, he insists too on
the possibility to teach this topic in the undergraduate level (loc. cit. p. 601):

While a complete discussion of Lie’s Theory does require fairly elaborate preparation, a
large portion of its essence is largely accessible on a much simpler level, appropriate to
advanced undergraduate instruction.

More recently, Dresner (1999) wrote a text book which expounds the basics of Lie’s theory of
ordinary and partial differential equations. This book shows that it is possible to teach these
ideas without waiting until the graduate level.
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