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Abstract: Most of the curricula, at an international level, encourage an 
interdisciplinary approach for the teaching of both mathematics and sciences. In this 
context, interdisciplinarity is often promoted as a fruitful way of making students 
aware of the links existing between mathematics and the sciences. History of science 
can be considered as an inspiring ground for the elaboration of teaching sequences 
where mathematical and scientific knowledge and skills are integrated. In this paper,
examples of such integration are presented through the use of two distinct historical 
episodes dealing with Greek and Chinese early cosmologies. From these cosmologies 
teaching sequences (involving historical elements mixed with non-historical ones) 
have been elaborated in order to provide students with elementary astronomical
knowledge dealing with scientific and mathematical knowledge and skills.

INTRODUCTION 
Most of the curricula, at an international level, encourage an interdisciplinary 
approach for the teaching of both mathematics and sciences (see for example AAAS 
1989, Rocard 2007). In this context, interdisciplinarity is often promoted as a fruitful 
way of making students aware of the links existing between mathematics and the 
sciences. As an example, the third pillar of the French common base of the knowledge 
and skills for primary and lower secondary school claims for “concrete and practical 
approaches to mathematics and sciences” that should allow students to acquire the 
“scientific culture needed to develop a coherent representation of the world and an 
understanding of their daily environment” and help them grasp that “complexity can 
be expressed in fundamental laws” (French MEN 2006 – my trans.). Here, 
mathematics and experimental sciences are considered altogether in a global 
enhancement project of scientific literacy.  
Nevertheless, nothing is easy about effectively integrating mathematics and science 
in the classroom since the disciplinary isolation of the two disciplines in the 
traditional teaching organizations has to be overcome (Czerniak et al. 1999). Indeed, 
in most cases, the separation between science and mathematics is rigorously 
maintained, even in primary school where both mathematics and science are taught 
by a unique teacher. Moreover, few teaching materials involving both mathematics 
and science have been developed (Davison & al. 1995). Nevertheless, research 
addressing interdisciplinarity issues show that even young students are able to acquire 
skills in the domains of mathematics, science, and scientific processes such as 
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measuring, modeling, etc. (Munier & Merle 2009). The lack of teaching resources of 
that kind may be puzzling if one considers the interrelations between science and 
mathematics in their historical developments. In this regard, history of science can be 
considered as an inspiring ground for the elaboration of teaching sequences where 
mathematical and scientific knowledge and skills are integrated.  
In this paper an example of such integration is presented through the use of three 
distinct historical episodes dealing with early Greek and Chinese cosmologies. From 
these cosmologies teaching sequences (involving historical elements mixed with non-
historical ones) are elaborated in order to provide students with elementary 
cosmological knowledge dealing with scientific and mathematical knowledge and 
skills (quasi-parallelism of Sunrays, shape and size of the Earth, Sun-Earth distance, 
measuring and computing, etc.).  
 

MATHEMATICS AND PHYSICS AS INTERRELATED AREAS OF 
KNOWLEDGE 
Claims for bridging mathematics and physics in science teaching often refer to 
Galileo Galilei who wrote:  

Philosophy is written in that great book which ever is before our eyes - I mean the 
universe - but we cannot understand it if we do not first learn the language and grasp the 
symbols in which it is written. The book is written in mathematical language, and the 
symbols are triangles, circles and other geometrical figures, without whose help it is 
impossible to comprehend a single word of it; without which one wanders in vain 
through a dark labyrinth (Galileo, Il Staggiere, 1623). 

Actually, physics embraces much more mathematics than Euclidian geometry and the 
intricate connection between mathematics and physics have been valued by lots of 
scientists before and after Galileo (see Siu, 2009). In a few words, physics can be 
defined as a domain of knowledge which explores “inanimate nature” (Wigner 1960, 
p. 3) from infinitely large to infinitely small. This exploration can concern structure, 
organization, movement of matter; it can involve elementary objects or interactions 
between objects, etc. The generic process of the discovery of laws of nature is to 
translate natural phenomena - observable or not, combining measurable quantities in 
order to establish laws expressed mathematically; these quantities refer to formal 
concepts (ie: concepts that don’t have empirical correspondences and which are 
defined by their attributes – such as Force, Energy, Field, etc.). All the laws of nature 
are conditional statements which permit a prediction of some future events on the 
basis of the knowledge of the present. As a consequence, the validation of knowledge 
in physics is absolutely based on both “reproducibility” and “predictability”:  
Historically, physics progressively passed from a construction activity interrelated to 
(Euclidian) geometry to an activity that describes the variation of matter and radiation 
in space and time. Consequently, most of phenomena the physicist is interested in are 
described by the second derivatives of positional or temporal coordinates.  
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To sum up, the language of the physics applies to systems extracted from the real-
world. It is structured by figures, graphs, mathematical symbols, or proposals formed 
by words. It allows predictions and relies on causal relationships established through 
measurements. In this context, problems under physics are diverse (explanation, 
creation of phenomena, of objects, predictions of behaviour, etc.) but globally, their 
solutions take the form of laws which are assumed to govern the reason for the in-
animate nature (why nature - matter, radiation - is as it is?), the how of its past (how 
did it get there?) and its future (what would happen if…).
Let’s consider an example: the bouncing of balls. Here one can focus on “why” balls 
bounce or on “how” they bounce. If one focuses on “how” balls bounce the physics 
enterprise consists in looking for a relationship between different quantities on the 
basis of conservation laws. We find that a constant quantity exists which connects the 
bounce height and is the drop height. And what is very interesting is that this quantity 
- the coefficient of restitution (k in fig. 1), allows predicting the total distance D
travelled by the ball according to the number n of bounces and the associate length of
time T.

Fig. 1: Mathematics modelling of the bouncing ball. D represents the total distance
covered by the ball and T the length of time of the movement of the ball.  

Looking at the formula (fig. 1) one can mathematically admit an infinite number of 
bounces and find a finite distance D, but this infinite limit does not make sense from 
a physics viewpoint, since the ball stops its movement after a while. This aspect can 
be puzzling for students. 

MATHEMATICS IN PHYSICS LEARNING 
Several researches in physics education have been carried out where interplays 
between mathematics and physics have been questioned (Artigue & al. 1990, Gill, 
1999, Albe & al. 2001, Melzer, 2002, Hestenes, 2003). Some researchers have 
focused on the difficulties encountered by students when using/facing mathematics in 
physics (manipulation of vector quantities); others have shown that the process of 
conceptualizing in physics strongly takes advantage of a good mastery of 
mathematics: the meaning of the constant of integration allows to understand the 
importance of the initial conditions of velocity for example in mechanics, or, a single 
point in a space-time diagram allows to better grasp the deep signification of what an 
event is in the framework of Special Relativity: 
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There is a significant correlation between learning gain in physics and students’ pre-
instruction mathematics skill (Meltzer, 2002) 

As a conclusion, considering mathematics as a part of the teaching of physics is an 
epistemological reality and a cognitive opportunity since the mathematical 
abstraction favours the conceptualization process in physics (and vice versa ?). Thus, 
it appears as a real didactic necessityi. In the following the potential of history of 
science in the promotion of teaching sequences based on effective mathematics-
physics interplays is highlighted.  
 

HISTORY OF PHYSICS AND PHYSICS LEARNING 
Today researches involving science education and history of science follow two 
different orientations – which are not mutually exclusive. The first one aims to 
provide students with element associated with Nature of Science (science activity, 
elements of epistemology, etc. see Abd el Khalick & Lederman, 2000); the second 
one searches for elements that may favour a better appropriation of concepts and 
laws. In the way I work, the spontaneous reasoning of students plays a determining 
part. Actually, the common sense is very powerful in providing operational and 
coherent explanation while facing empirical phenomena. Today, the whole 
community of researchers in physics education agrees that learning physics is based 
on a negotiation process between the rationality of the common senseii and the 
rationality of physics. In this regard, using history of science for physics learning in a 
conceptual perspective should take into account the type of reasoning a student can 
hold concerning a phenomena to be studied. And a way of managing this is to search 
within history of science ideas that could, to some extent, echo with common 
students’ ideas or conceptions in order to create a problem directly inspired by an 
historical episode that could meet student’s interest and thus, be accepted by them.  
 

First example: Earth is spherical 
My first example leans on a teaching sequence for 10 year-old children elaborated by 
the French science education researcher Hélène Merle (2002).  
The context is Greek astronomy, also qualified by historians of science as 
“mathematical astronomy” (Neugebauer, 1957) or “geometrical astronomy” 
(Coveing, 1982). In Ancient Greece, the prevalent assumption is that the movements 
of celestial bodies are circular and uniform: 

Pythagorism turned geometry into the instrument for astronomy as a contemplative 
science of the natural being. (Coveing, 1982, p. 146).  

The historical text that inspired the teaching sequence is an excerpt of Aristotle’s 
Treaty of the Sky in chapter 14. In this text, Aristotle argues for a spherical Earth on 
the basis that: 

According to the way celestial bodies show themselves to us, it is proved that not only 
the Earth is round but what is more it is not very big; because we just have to make a 
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small travel either at the South or at the North, so that the circle of the horizon becomes 
obviously quite different. So the celestial bodies which are over our heads undergo a 
considerable change, and they do not seem to us any more the same, as we go to the 
South or to the North. There are certain celestial bodies that we see in Egypt and in 
Cyprus, and that we do not see any more in the northern parts of the country. On 
the contrary, some celestial bodies that we see constantly in the northern countries lie 
down when we consider them in the parts of the country which I have appointed. This 
proves not only that the shape of the Earth is spherical, but still that its sphere is not big 
(Aristotle, Treaty of the sky, chap. 14). 
 

The sequence addresses children’s ideas about “horizon” and takes into account the 
idea that vertical and horizontal notions are only considered by 10 year-old children 
locally. As an example, children represent the level of a given quantity of water 
contained in a bottle, as a straight line, and its direction is perpendicular to the 
boundaries of the bottle itself (Ackermann, 1991) – whatever the orientation of the 
bottle.  

 
Fig. 2: Drawings provided by children involved in Merle’s research (2002) who 
are asked to explain the reason why some stars disappear when travelling to the 
South. Translation of children comments: “stars seen by Greeks” / “stars Greeks 
cannot see”. 
 

First, the problem is transformed and adapted so that children are asked to explain the 
reason why some stars disappear when travelling to the South. They provide some 
relevant drawings, relevant in the sense that they fit with Aristotle observation (fig. 
2). But some drawings involve a flat Earth, while others involve a spherical Earth 
because the way children represent the “field of vision” (vertical or oblique lines) fit 
with both shapes (fig. 3). In other words, Associated with the way children represent 
the “field of vision”, Aristotle observation is not sufficient to discriminate a spherical 
Earth from a flat one.  
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Fig. 3a: Horizon seen as a tangent line to the terrestrial sphere allows Aristotle 
to explain why some stars disappear when travelling to the South on a curve 
ground. In figure 3b, two children are placed behind a cardboard where two 
windows have been opened so that they can see other children transporting 
coloured cones (red and yellow). Each child is responsible for a given coloured 
cone and is piloted by one of the children placed behind the cardboard. Children 
transporting a cone are asked to drop it when it cannot be seen through the 
window. In the pictures two geometries of Earth’s ground are modelled: a flat 
one and a curve one; to each geometrical model corresponds two lines of cones 
(ie: two horizon lines) differently arranged. 

In other words, for Aristotle, the differences, in visible stars from two different places 
is a hint of the spherical shape of the Earth, but not for children. 
The interesting thing here is that history of science provides a fruitful problem-to-be-
solved: the problem of the stars can be solved by children and make their conception 
of the field of vision (as a delimitation for the visible space) be expressed. Because 
children know that Earth is round, they can use this knowledge in order to initiate a 
conceptual change and pass from an inappropriate modelling of the visible space to a 
correct one. Note that there is no parallelism between a (supposed) historical path and 
children’s conceptual development, since horizon is a geometric tool that allows 
Aristotle to argue in favor of a spherical Earth, while children use a spherical Earth 
hypothesis to build the concept of horizon. In this regard, the way the sequence is 
conducted in order to make children conceptualize the horizon line is totally a-
historical (see fig. 3b).  

Second example: cosmological distances are measurable (see de Hosson & 
Décamp, 2014). 
The second example leans on two different cosmologies: the Chinese one and the 
Greek one seen in the light of various historical sources: the Zhou Bi in the Cullen
(1996) and Kalinowski (1990) translations, Ho Peng Yoke’s Astronomical chapters 
of the Chin shu (1966), and Clemoledes’ De Motu circulari corporum caelestium in 
the Weir translation (1931).
A current astronomical activity in primary school in France (carried out in both 
mathematics and science courses (see for example, di Folco and Jasmin 2003; Kuntz 
2006) consists in exploiting the procedure supposedly used by Eratosthenes in the 3rd
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century BC in order to measure the perimeter of the Earth. This procedure leans on 
two observations: (1) A gnomon located in Alexandria (northern Egypt) at noon the 
day of the summer solstice casts a shadow of a certain length, (2) At the same time a 
gnomon located in Syene (middle Egypt) casts no shadow since the Sun appears at 
the zenith. From the pedagogical use of Eratosthenes procedure, some researchers 
questioned children’s difficulties while modeling the Sunrays (Feigenberg et al. 2002, 
see fig. 4). Children are asked first to explain why during summer solstice at noon, a 
gnomon located in Alexandria (northern Egypt) casts a shadow while another
(identical to the previous one) located in Syene (middle Egypt) casts no shadow. 

Fig. 4: Drawing provided by students who are asked to model the reason why 
gnomon placed at Alexandria casts a shadow, whereas at the time the day of 
summer solstice (at noon) a gnomon placed at Syene casts no shadow. 

As an explanation (of what we will call the ‘shadows observations’), some children 
draw non-parallel rays coming from a sketched Sun down onto a curve (or a plane) 
surface of the Earth. This drawing is also typical of those proposed by most of the 
primary teachers (target of the following sequence) explaining the same observation 
(Merle 2000).  
The Chinese text presented hereafter (Doc. 1) is taken from the Chin Shu, a book 
written around 635 A.D.  

Doc. 1: The Chin Shu, Ho Peng Yoke (1966), p.65 - Units of length: 1chi = 10 
tsun = 35.8 cm; 1 tsun = 3.58 cm, 8chi = 2.86 m and 1li = 560 m. 
The astronomical part of this book has been written by Li Shun-fêng. The proposed 
excerpt refers to the astronomical knowledge under the Zhou dynasty that began 
about a thousand year B.C. Another historical text, the Zhou bi (namely, the gnomon 
of the Zhou) gives similar elements to those found in this Chin Shu. The proposed 
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excerpt presupposes children and teachers main type of explanation of the ‘shadows 
observations’ and based on it computes some measurements: the shadow of a vertical 
eight chi long gnomon (2.86 m) located in Yangchen is 15 tsun (53.7 cm) long, at 
noon, on the day of the summer solstice. The same day at the same time, an identical 
gnomon located 1000 li (560 km) south of Yangchen will cast a 14 tsun (50.1 cm) 
long shadow, and if it is located 1000 li (560 km) north of Yangchen, this gnomon 
cast a 16 tsun (57.3 cm) long shadow. The text presented in doc. 1 deduces from 
these measurements that the Earth-Sun distance is 80,000 li (44,800 km). Figure 5 
helps us to understand this result.  

 
Fig. 5: Distance d is computed knowing that each 1000 li, a h height gnomon 
casts a shadow whose length decreases of 1 tsun. Since b=15 tsun, d=15 000 li. 
Today, one can compute Distance D by using similar triangles property: (D-
b)/d=h/b; since h=8chi, D80 000 li.  
 

A similar observation supports a spherical geometry, which seems to be at the root of 
Eratosthenes measurement of the Earth’s perimeter. Unfortunately, the original 
writings of Eratosthenes (2 books) were lost. We have access to his work only 
through authors of antiquity such as Cleomedes, Pliny, Strabo. The most detailed 
among these writings is a short review by Cleomedes. We are told by Cleomedes (see 
the translation of On the circular motion of the celestial bodies, book 1, Chap. 7, by 
Weir 1931) that Eratosthenes made measurements with a gnomon that cast a shadow 
onto the graduated inner surface of a hemispherical sundial named scaphe. 
Eratosthenes knew that on a certain day (summer solstice) at noon in Syene, the 
gnomon of a scaphe cast no shadow, whereas the same day at the same time in 
Alexandria (located at 5000 stadia -800 km- at the north of Syene) the shadow cast by 
the gnomon of an identical scaphe reaches an arc equal to 1/50th of a circle from the 
base of the gnomon (Fig. 6). Assuming the parallelism of the sunrays that reach 
Syene and Alexandria and the fact that both cities are on the same meridian, it is easy 
to deduce that the distance between Syene and Alexandria is also equal to 1/50th of 
Earth’s circumference and then to compute this measurement. The method 
Eratosthenes used to compute the distance between Syene and Alexandria has been 
subject to debate. It seems to be based on maps of Egypt or on accurate distance 
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estimations made by bematists. These men were trained to make regular paces when 
marching from one place to another and to record their numbers (Dutka, 1993).  

 
Fig. 6: Illustration of Eratosthenes’ procedure as described by Cleomedes in On 
the circular motion of the celestial bodies (Weir 1931). The shadow AD cast by the 
gnomon in the hemispherical sundial reaches an arc equal to 1/50th of a circle of 
radius AE. The ratio of 1/50th of the circumference of the Earth corresponds to 
the distance AS between Alexandria and Syene (de Hosson & Décamp, 2014). 
 

There are many similarities between the Chinese and Greek chosen measures. In both 
cases, the astronomers have chosen noon of the summer solstice to make their 
measurements. This is probably not by accident: midday (solar time) of the summer 
solstice corresponds (in the Northern hemisphere) actually to the moment at which 
the shadow of the gnomon is the shortest during the year. In both cases, they also 
computed a terrestrial surface measurement and derived from it a vertical 
measurement using a strategy based on proportionality. Both used a sundial but an 
interesting difference is the fact that Chinese and Greek instruments are not exactly 
the same. The Greek scaphe and its gnomon are an hemispherical sundial. It gives 
direct access to the searched portion of the circle (we would say to the angle in 
modern terms) and this is the useful measurement in a spherical Earth cosmology. 
The Chinese bi is on the contrary a flat sundial which gives access to the angle 
tangent, a more adapted measure for a flat Earth cosmology. This is an interesting 
illustration of Bachelard’s thought:  

A measuring instrument always ends up as a theory: the microscope has to be understood 
as extending the mind rather than the eye. (Bachelard 2002, p. 240). 

The Chinese astronomical model promotes a hypothesis very close to prospective 
primary teachers’ ideas about the propagation of the Sunrays. This model (flat 
Earth/close Sun sending divergent Sunrays) was chosen as an anchoring situation that 
would echo students’ prior knowledge. Prospective teachers were then engaged in 
operating this model through an experimental activity. By confronting Chinese data 
(e.g. the Sun-Earth distance) with the current one, they were prepared to elaborate an 
alternative way of modeling the shadows situations, based on parallel Sunrays. 
Nevertheless, the majority of these future teachers did not understand how a single 
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point could send parallel rays as illustrated in the following piece of transcription 
between a prospective teacher T and the researcher R:

[T] I still don’t understand why the light sent by a single luminous point can be modeled
using parallel rays

[R] Actually, the Sunrays are not exactly parallel. But if I stretch out two long strings
from the same mooring, their extremities can be considered as parallel lines under certain
conditions? Which one?

[T] Hum… if it is nearly parallel it is very different!

[R] Why?

[T] Because in the case of nearly parallel lines from a single point it is obvious that they
can have the same origin, whereas if they are really parallel they will never cross each
other; they cannot come from the same point

[R] Ok. But what could allow considering these two lines having the same mooring as
parallel?

[T] If the extremities are very close

[R] Do you think Syene and Alexandria are close enough to consider the Sunrays
reaching them as parallel lines?

[T] Well… oh… ok… Yes, since the Sun-Earth distance is much larger than the distance
between the two towns! The distance between the extremities of the Sunrays should be
very very small

Actually, the Sun is not a point source of light but an extended one and its angular 
diameter is about 0.5°.  

Fig. 7: Illustration of two cones of light coming from the Sun and reaching Syene 
S and Alexandria A. Figure not drawn to scale: 𝑪𝑪𝒕𝒕𝑨𝑨𝑨𝑨𝒃𝒃̂ = 𝑪𝑪𝒕𝒕𝑺𝑺𝑺𝑺𝒃𝒃̂ ≈ 𝟎𝟎𝟎 𝟓𝟓𝟓𝟓°whereas
𝑨𝑨𝑨𝑨𝑨𝑨 ≈ 𝟏𝟏𝟏 𝟏𝟏′′, (Décamp & de Hosson, 2012).

Half of the Earth’s surface is struck by an infinite number of cones, each containing
an infinite number of rays sent out by each point of the Sun. In Fig. 4 we have 
illustrated two of these cones reaching the towns of Alexandria and Syene. One must 
consider that the angle 𝐶𝐶𝑡𝑡𝐴𝐴𝐶𝐶𝑏̂𝑏 = 𝐶𝐶𝑡𝑡𝑆𝑆𝐶𝐶𝑏̂𝑏 ≈ 0,52. This angle is small because the
diameter of the Sun [CtCb] is small with respect to the distance between Sun and
Earth. This is the reason why the Sun can roughly be considered as a point source. In
the same picture we see that the angle 𝐶𝐶𝑡𝑡𝐴𝐴𝐶𝐶𝑏̂𝑏 is even smaller. Therefore the sun’s rays
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can be considered parallel. This clarification illustrates the complexity of the process 
underlying the hypothesis of parallelism of sunrays, which at the scale of a portion of 
1/50th (or 1/48th) of the Earth’s circumference remains an approximation. Similarly 
the assimilation of the Sun to a single point stems from an identical complexity. Yet, 
the fact that the Sun is an extended source explains that the shadows cast by gnomons 
are surrounded with a partial shadow area.  
Only a rigorous geometrization of the astronomical construction legitimates the 
approximation usually presented to students. In that perspective mathematics gives 
sense to physics, not only for the understanding of concepts but also for the grasping 
of the deep meaning of what physics is: a construction of theory and models validated 
through the predictions they allow within certain domain of validity and taking into 
account measurement uncertainties.
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in 2011, the curriculum designers have make mathematics almost disappear and we can read in the K-12 curriculum that 

“using mathematical tools is not the first target of physics learning, even though it is sometimes necessary to carry a 

study out”. It seems that physics teaching in France is a paradigm where mathematics reduces physics attractiveness…
ii Common sense can be considered as a set of representations of the world shared by most of people and capable to 

generate operative and relevant explanation concerning natural phenoma but inappropriate according to scientific 

rationality (see Viennot, 2001, 7-11).
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