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ALGORITHMS: AN APPROACH BASED ON HISTORICAL 

TEXTS IN THE CLASSROOM
Anne Boyé,a Martine Bühlerb & Anne Michel-Pajusc

aIREM des Pays de Loire, bIREM Paris 7 Denis Diderot, cAPMEP

The new curriculum in French High schools, which is currently being implemented, 
highlights the importance of algorithms in mathematics, promoting a kind of 
algorithmic way of thinking. It explicitly requires that elementary but varied works on 
algorithms be carried out in the classroom. 
In this paper, we attempt to show that this work could be carried out on the basis of 
historical sources, and not only with a computer.

USING HISTORICAL TEXTS: WHY AND HOW?
We have been working on introducing a historical perspective into the mathematics 
classroom for some thirty years. The main reasons for that are that we think that:

• The history of mathematics allows us to motivate the introduction of a concept 
and to see the use of it. 

• It is an inexhaustible source of problems.

• It shows mathematics in the process of being done, in relation with its time and 
culture, and not as dogmatic objects. 

• It can raise interest in interdisciplinary projects. These enable students to become 
aware that mathematics contributes to the culture of an age.

Our way of implementing these ideas follows these principles:

• The history of mathematics is integrated into the mathematics curriculum. It is 
not treated chronologically, but in step with the concepts as they are taught.

• We have students read the original texts because these allow them to become 
aware of the evolution of the notion of rigour, the multiple attempts which lead to 
the notations that they use, and the long gestation of concepts. And also because 
a text written by a mathematician, since it is not written a priori for students, 
demands understanding in depth (in contrast to the automatic reactions when 
facing ritual and stereotyped exercises).

• The reading of the texts is often supplemented by a set of commentaries 
presenting the document (context, methods and vocabulary) and exercises 
restating the problems of the text in modern terms.
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A NEW CURRICULUM IN FRANCE
For this workshop, we have chosen the theme “algorithms” because a new curriculum 
(beginning in 2009) in French High schools highlights the importance of algorithms in 
mathematics, promoting a kind of algorithmic” way of thinking. It explicitly requires 
that elementary work on algorithms be carried out in the classroom more or less 
difficult, in a variety of situations.

“Algorithmics have a natural place in all fields of mathematics, and the associated
problems have connections to other parts of the curriculum (functions, geometry, statistics 
and probability, logic), as well as to other disciplines or to everyday life.”

“The algorithmic process has been, since the beginning of time, an essential part of 
mathematical activity. In the first years of secondary education, pupils encounter
algorithms (Algorithms of Elementary Arithmetic Operations, Euclid’s Algorithm, 
Algorithms in Geometrical Constructions). What is proposed in the curriculum is 
formalization in natural language”. (10th grade)

The first use of the word “algorithm” that we know comes from Carmen de 
algorismo, by Alexandre de Villedieu (circa 1220): “This new art is called the 
algorismus, in which we derive such benefit out of these twice five figures of the 
Indians: 0 9 8 7 6 5 4 3 2 1.” Here “algorismus” refers to the “art” of Algus (or Argus, 
or Aldus), the latinized name of Al-Kwhārizmī, whose "The Book of Addition and 
Subtraction According to the Hindu Calculation" survived only in its Latin 
translation. The first words of an untitled manuscript are Dixit algorizmi (so said al-
Khwārizmī). Beginning in the XIIth century, this positional system of numeration 
spread into the medieval Europe, in competition with the then-common use of “abacus 
(counting tables) and tokens.” Thus, in the beginning, the word “algorithm” only 
referred to arithmetical operations. During the course of time, its meaning was 
extended from routine arithmetic procedures “to mean, in general, the method and 
notation of all types of calculation. In this sense we say the algorithm of integral 
calculus, the algorithm of exponential calculus, the algorithm of sinus, etc.” as 
D’Alembert wrote in the article “Algorithme” of the Encyclopédie .

Now, here is the definition in our curriculum1:
“An algorithm is defined as an operational method allowing one to solve, with a number 
of clearly specified steps, all the instances of a given problem. This method can be carried 
out by a machine or a person”. 

This definition involves that the number of steps is finite and that the result is the right 
answer!

1 7 th year students  majoring  in «  Informatique et Sciences du Numérique »  



 Page 469

ALGORITHMS: AN APPROACH BASED ON HISTORICAL TEXTS IN THE CLASSROOM

AN EXAMPLE OF DIDACTICAL SITUATION: FERMAT ABOUT THE 
FACTORIZATION OF LARGE NUMBERS.
By 1631, Fermat was councillor at the parliament in Toulouse, and greatly interested 
in mathematics. He met the mathematician Carcavi, who was also a councilor; it was 
Carcavi who put Fermat into contact with Mersenne and his group. In the early
seventeenth century, there was no scientific journal. Exchanges between scientists 
were by letters. Mersenne helped to coordinate correspondence between all Europeans 
scientists; he had nearly 140 correspondents, including astronomers and philosophers 
as well as mathematicians. Most of Fermat's work in number theory is known by his 
correspondence with Mersenne.
We investigate with the students a method of factorization of large numbers developed
by Fermat. (Martine Bühler worked about this text with) These students are engaged 
in a scientific curriculum (17-18 years old). In France, such students have six weekly 
hours in mathematics, and some of them have two additional weekly hours (called 
“specialty mathematics”). For this “specialty mathematics”, the curriculum has two 
parts: number theory and matrices.

In 1643, Mersenne challenged Fermat to find “in less than a day” whether the number 
100,895,598,169 is prime or not; and, if not, to find the factorization of this number, 
and to give a general method of factorization. Fermat gave a reply stating “this number 
is the product of 898,423 by 112,303, which are both prime”. He later explained, in 
another letter, his method of factorization. It's this second letter that we studied in 
class (in January 2014). The letter is given in Appendix 1. We give below in modern 
language the method explained in the text.

We want to factorize a non-square odd natural number N. If N is even, it is easy to 
factorize, and if N is known as a square, N is already factorized. We use ordinary 
algebraic identities to explain the method.

If we can write N as a difference of two squares, then N = a2 – b2 = (a+b) (a-b).Then 
we have factorized N: N = p*q with p = a+b and q = a – b. Conversely, if N = p*q,
then p and q are odd numbers (because, if p or q is even, the product is even). But N is 

odd. So, we can write : with p+q and p – q even, so that 

and are natural numbers. The problem of writing N as a difference of two squares 
is therefore equivalent to the problem of factorizing N. 
We thus have a method for factorizing N. We want now to find natural numbers a and 
b so that N = a2 – b2, or to obtain an integer a so that there is a b such as a2 – N= b2; 
that is to say, an integer a so that a2 – N is a square. We must have a2 – N ≥ 0, so that 
a ≥ . There are well-known algorithms for the calculation of the square root of an 
integer N “by hand”. We can then calculate the greatest integer less than , namely 

. If N is a square, we stop there. If not, we start our searching with 
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a = + 1. If a2 – N is a square, we stop there. If not, we try a+1: is (a+1)2 – N a
square? And so on with a+ 2, a + 3, etc. until we reach a square.
This is clearly an algorithmic method and the algorithm returns a value of a such that

, with b = . We can formalize the algorithm as follows:

Input: N,  non-square odd integer
Procedure: a is set equal to + 1

While is not integer, do
a changes to a + 1
WhileEnd

Output: a and .

We now describe the project that was assigned to the students: “Large numbers 
factorization”

Part I: Difference between 2 squares and factorization: the Fermat’s method
In 1643, Fermat responded to Mersenne who challenged him – Fermat – to find "in 
less than a day" a factorization of 100,895,598,169. Fermat found this factorization
(898,423 by 112,303), and explained in a later letter a general method for factorizing 
large numbers. We’ll read this letter together.

Let N be an odd non- square natural number.
1) We suppose that N = a2 - b2 with a and b natural numbers. Determine, 
depending on a and b, two natural numbers p and q such as N = pq.
2) We suppose that N = pq with p and q natural numbers such as p > q.

a) Which is the parity of p et q?
b) Determine, depending on a and b, two natural numbers p and q such as
N = pq.
c) Give all the factorizations of 45 as products of natural numbers, and as 
differences of two squares of natural numbers.
d) Formulate into one logical equivalence everything that was demonstrated 
in 1) and 2) b.

3) Reading Fermat’s text.
Notice that Fermat uses the following definitions: the parts of a number are its 
divisors. And a number is composed (product) of its parts. For instance, if 45 = 9 * 5, 
9 and 5 are the parts of 45 and 45 is composed of 9 and 5.
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Fragments of a letter by Fermat, <1643>
Translation by Christian Aebi & John Steinig
Every non-square odd number is […] the difference of two squares as many times as 
it is composed of two numbers, […]
It is quite easy to find the adequate squares, when we are given the number and its 
parts, and to have its parts when we are given the squares.
Explain the link between these sentences and the questions 1) and 2).

Comments on Student Responses to Part I:
The second question posed difficulties for the students. Finding a and b in relation to p
and q is difficult: some students did not see that we have a system to solve (with 
unknown a and b). Others saw the system, but were not able to solve it.

Another difficulty: we are looking for two adequate integers (i.e. integers p and q
which are solutions for the problem) but not all adequate integers. Thus, it is sufficient 
to take and , but it is not necessary. This provides an opportunity to 

work on logic, which is also part of the curriculum.

None of the students (even the best) managed to write the logical equivalence in 2d. 
We discussed this in class and, finally, all the students actually saw that this is what 
Fermat asserts in his letter.

After correction of Part I, we worked on the questions in Part II. We answered
question 1 together without any difficulty, and students then worked in groups for the 
other questions.

Part II. The factorization algorithm:
In this Part II, N is a odd non- square natural number.

1) Explain why determining a factorization of N reduces to determining an 
integer a such that N-a2 is the square of a nonzero natural number b.

2) Write an algorithm that determines an integer a such that N-a2 is the square of 
an integer b, with N being an input from the user and a and b given as outputs.

3) Does the algorithm end for every odd non-square natural number N ?

4) What is the output of the algorithm if N is a prime number?

5) In his letter Fermat uses his method in order to factorize N = 2,027,651,281.

a) Do the same by running the algorithm “by hand”. You can use a table or 
your calculator if you wish.

b) How many steps are required?
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c) The algorithm requires the computation of a square at each step of the 
conditional loop. By using the expansion of (a + 1)2, modify the algorithm 
in order to that the test requires only a first grade computation.

6) When running the algorithm, you have to test whether some numbers are the 
squares of primes. Fermat asserts in his letter: “the remainder is 49619, which 
is not a square, because no square ends with 19”

a) Is it possible that a square ends with 7? Justify your answer.

b) How would you justify the assertion of Fermat?

Comments on Student Responses to Part II:
1) Writing the algorithm:

One group immediately wrote an appropriate algorithm, initializing the variable a
appropriately. Three groups started pretty quickly, after the teacher (Martine Bühler) 
told them to think how they would deal with 45 “by hand”. Two groups found it 
difficult to start.

Of the latter five groups: one group tried a conditional testing through an 
IF/THEN/ELSE structure to be sure that a2−N is greater than 0, but the group 
did not succeed in this way. It is easier to initialize a correctly. One group 
initialized a at 1, and did not see any problem. One group initialized a at 1, but 
became aware of the problem when they tried question 5a and then made the 
correction. One group had great difficulties to write the WHILE loop. One 
group used another variable b, equal to  a2−N, initialized b, but did not change 
the value of b in the WHILE loop.

2) Other observations
• Question 3: some groups immediately saw that the algorithm always 

stops, as N = 1 × N, hence N is always the difference of two squares with 
and . So, even if N is a prime number, the algorithm 

stops and then the output is and . The converse was 

studied at the following class session, but I gave the result. As we ran out 
of time, I asked the students to answer questions 5a and 5b at home and 
to go directly to questions 5c and 6.

• Question 5c: We can optimize the initial algorithm; to do so, we must 
calculate a square at each step. But, having calculated  a2−N, it is easier 
to calculate (a+1)2−N = a2−N + 2a + 1.Thus, it is sufficient to add 
2a + 1 to the previous number and it is not necessary to calculate (a+1)2.
We need an additional variable, but the calculation is simpler. Some 
groups had no problem in revising the algorithm after I told them that 
they need another variable, but others could not see where to put the loop 
and we went over this together.
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• Question 6: Students had no difficulty with this. It's a traditional question 
using congruences and “disjunctive cases”. Students are used to make 
congruences tables. To justify Fermat's assertion, you may work modulo 
100.

Optimized algorithm
Input: N odd integer, not a square
Procedure: a changes to 

c changes to a2- N
While is not an integer, do:

c changes to c + 2a + 1
a changes to a + 1

WhileEnd
Return: a and 

We remarked that, at each step, we add a term of an arithmetic sequence with 2 as 
common difference.
Thus, with this problem of factorization, we can deal with the problem of time 
complexity. The efficiency of an algorithm can be measured by time complexity and 
by space complexity. Run time analyses is a classification that estimates the increase 
in running time of an algorithm as its input increases. This is a topic of great interest 
in computer theory.
At the end of the session, I gave students Fermat's text (Appendix 1: we read it at the 
following session in class) and the second part of the problem (see below), as 
homework. The aim of the problem is the factorization of 250,507, using a sieving 
method, and the study of Carissan's device.

Part III. Factorization of large numbers and Carissan’s device.

The aim of this part is the factorization of N =250,507. This is done by determining an
integer  x such that x2 –N  is the square of an integer.

1°) Working modulo 7.
a) Complete the following table with the remainder of X2 modulo 7 depending on the 
values taken by X modulo 7.
X mod7 0 1 2 3 4 5 6
X2 mod7

Is it possible for the number 7 x 113 + 3 to be a square? Why? (It is imperative to use 
the previous table, but not the calculator; the numbers 0, 1, 2, 4 are called quadratic 
residues modulo 7).
b) Determine the remainder of the Euclidean division of 250,507 by 7.
c) We are looking for an integer x such as x2 –N is the square of an integer. Thus, if 
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the integer x is suitable, then the number x2 – 250,507 must be a square. Using the 
precedent table, determine the possible values of  x2 – 250,507 modulo 7. Deduce the 
possible values for x2 modulo 7.
d) But x2 must be a square; thus the same table allows us to restrict again the possible 

values of x2 modulo 7. Do this, then give the possible values for x modulo 7. Could the 
number 778 be a solution of the given problem?

2°) Do the same work modulo 9.
3°) Do the same work modulo 15.
4°) Determination of an integer x such that x2 – 250,507 is a square.
a) Justify the assertion: if x is a solution of the problem, then, x2 ≥ 250,507. What is 

the smallest possible value for x ?
b) Let x0 = 501. Calculate the remainders of x0 modulo 7, modulo 9 and modulo 15. 
Is the number x0 a solution of the problem?
c) Complete the following table until you find a value of  x which fits the conditions 

found in the questions 1°), 2°), 3°).

x 501 502 503 504 ...

Mod 7

Mod 9

Mod 15

Can we be sure that the value found with this method is a solution of the given 
problem?
Verify that this value is actually a solution and deduce a factorization of 250,507.

Comments on Student Responses to Part III: We started with the end of Fermat's 
text.
N = 2,027,651,281.

N = A2 + R with R = 40,440.

We have to calculate (A + 1)2 − N to see whether it is a square or not.
(A + 1)2 − N= 2A + 1 −R.
That is: We subtract the remainder R = 40,440 from the double plus 1 of the square 
root of N (the translation in the appendix 1 is not quite correct there).
(A + 1)2 – N = 49,619 (this number is not a square).
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We add 90,061= 90,059 + 2. Students understood this because they knew that, at 
each step, we add a term of an arithmetical sequence of common difference 2 (as had 
been seen in the part II of the exercise).

Another question that naturally arises about the algorithm concerns the number of 
steps (namely the question of time complexity).

Set N = pq = a2 − b2, with and . One starts with a = 

The number of steps is 

This number is even smaller than the difference of the divisors p and q. So the method
gives the divisors which are the closest to the square root of N.  
We can thus deduce that, if we obtain, ( that is, with p = N and q =

1), then we are sure that N is a prime number, because, if not, we would have obtained 
a divisor p of N closer to the square root of N.
This method can be used as a primality test, but it is a bad primality test. If N is prime, 
the number of steps is about N/2, far more than with the elementary method of trying 
of odd integers between 3 and N.

But, in the case studied by Fermat, the example is well selected, because we need only 
11 steps. It is easy to create such examples, by choosing two prime numbers close to 
one another and calculating their product.

Principle of Carissan's Device
The method is a sieving method.

X mod7 0 1 2 3 4 5 6
X2 mod7 0 1 4 2 2 4 1

If x2 − N is a square, then x2 − N is equivalent to 0 or 1 or 2 or 4 modulo 7. 
namely, 
These are the possible values modulo 7. We can do the same work modulo 9 and 15, 
and we will obtain the possible values mod 9 and mod 15.
It remains to complete the last table, and to stop when the three value are possible 
values for x.
This is useful because we can then mechanize the algorithm. 
The choice of the moduli is a pedagogical choice. I wanted three moduli, because it is 
necessary to understand the method to have at least 3 moduli (2 are not enough). I also 
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did not want the preparatory work to be too long. I thus choose numbers that are not 
too large.

In the last classroom session, I showed the beginning of a film explaining the 
historical context of the Carissan’s device. The film is an amateur's one, lasting about 
15 minutes. You can see the film on the IREM site:
http://www.irem.univ-paris-diderot.fr/videos/la_machine_des_freres_carissan/
We quickly corrected the problem, rather successfully completed by the students. I
showed them a Carissan's device with 3 disks using an overhead projector2. We then 
watched the last 10 minutes of the film, showing the Carissan's device at work.

SOME OTHER EXAMPLES OF HISTORICAL ALGORITHMS WHICH
CAN BE CARRIED OUT IN THE CLASSROOMS
Algorithms for geometrical constructions based on Euclid Elements
You will find some very basic geometrical constructions, in Euclid Elements which 
are clearly algorithms. Each of them is a step by step procedure, with a set of rules. 
The problem is enounced in natural language, then the data are named, and the 
procedure you apply. You have only to be sure that you know (or the machine knows) 
the elementary tools. If not, you have to insert a subprogramme. We have chosen some 
propositions from Euclid Elements as illustrations.

Proposition 1, Book 1
To construct an equilateral triangle on a given finite straight line.

Let AB be the given finite straight line. It is required to construct an equilateral 
triangle on the straight line AB.

Construction:
Describe the circle BCD with centre A and radius AB. (I post 3)
Again describe the circle ACE with centre B and radius BA (I post 3).
Join the straight lines CA and CB from the point C at which the circles cut one 
another to the points A and B. (I post 1)

Conclusion: Therefore the triangle ABC (I, Def 20) is equilateral, and it has been 
constructed on the given finite straight line AB. Q.E.F.
Then, you will find, of course a demonstration. But this is apart from the algorithmic 
construction. The tools you need are pointed as, for instance (I post 3) or (I, Def 20),
that means: Book 1 postulate 3 or definition 20.

2 See  the website of the irem Paris (groupe MATH).
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Proposition 11, Book 1
To draw a straight line at right angles to a given straight line from a given point on 
it.

Let AB be the given straight line, and C the given point on it. 
It is required to draw a straight line at right angles to the straight line AB from 
the point C.

Construction:
Take an arbitrary point D on AC. Make CE equal to CD. (I 3). Construct the 
equilateral triangle FDE on DE, and join CF (I 1). (I post 1)
I say that the straight line CF has been drawn at right angles to the given 
straight line AB from C the given point on it. 

Conclusion: Therefore the straight line CF has been drawn at right angles to the given 
straight line AB from the given point C on it. Q. E. F.

Proposition 9, Book 1
To bisect a given rectilinear angle.

Let the angle BAC be the given rectilinear angle. 
It is required to bisect it. 

Construction 
Take an arbitrary point D on AB. Cut off AE from AC equal to AD,(I 3) and 
join DE.(I post 1) Construct the equilateral triangle DEF on DE (I 1), and join 
AF.
I say that the angle BAC is bisected by the straight line AF.

Conclusion: Therefore the given rectilinear angle BAC is bisected by the straight line 
AF.
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You can find here the useful definitions and postulates for these three algorithmic 
constructions:

I def 20: Of trilateral figures, an equilateral triangle is that which has its three 
sides equal, an isosceles triangle that which has two of its sides alone equal, 
and a scalene triangle that which has its three sides unequal.
I post 1: To draw a straight line from any point to any point.
I post 3: To describe a circle with any centre and radius.
I prop 3: To cut off from the greater of two given unequal straight lines a 
straight line equal to the less.
I prop 8: If two triangles have the two sides equal to two sides respectively, and 
also have the base equal to the base, then they also have the angles equal which 
are contained by the equal straight lines.

HERON OF ALEXANDRIA: FORMULA VERSUS ALGORITHM
Heron of Alexandria was an important geometer and worker in mechanics. A major 
difficulty regarding Heron was to establish the date at which he lived. From Heron's 
writings it is reasonable to deduce that he taught at the Museum in Alexandria. His 
works look like lecture notes from courses he must have given there on mathematics, 
physics, pneumatics, and mechanics. Some are clearly textbooks while others are 
perhaps drafts of lecture notes not yet worked into final form for a student textbook. 
We propose here some excerpts from Metrica (ca 50 A. D.)

About area of triangles:
Book I of his treatise Metrica deals with areas of triangles, quadrilaterals, regular 
polygons of between 3 and 12 sides, surfaces of cones, cylinders, prisms, pyramids, 
spheres etc. Usually you will find Heron’s formula about the area A of a triangle 
whose sides of length are a, b, c, and the half-perimeter is given as 

follows:
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Actually in Heron’s Metrica you find the result formulated as an algorithm on a
generic example:

Heron’s Metrica Modern algebra
Let the sides of the triangle be of 7, 8, 9 
units.
Compose [add] the 7 and the 8 and the 9: 
the result is 24;
from this take the half: the result is 12;
subtract the 7: 5 remaining.
Again from the 12, substract the 8: 4 
remaining;
and again the 9: 3 remaining.
Make the 12 by the 5: the result is 60;
these by the 4: the result is 240;
these by the 3: the result is 720; 
from these take a side and it will be the 
area of the triangle.

a = 7 ,b = 8, c = 9

a+b+c = 24

(a+b+c)/2 =12 p = 12
(a+b+c)/2 – a =5 p - a = 5
(a+b+c)/2 – b =4 p – b = 4

(a+b+c)/2 – c =3 p – c = 3
p(p – a) = 60
p(p – a)(p – b) = 240
p(p – a)(p – b)( p – c) = 720

Then, Heron gives a method in natural language, on a generic example, to
approximate the square root
Heron gives this in the following form: 

Since 720 has not its side rational, we can obtain its side within a very small difference as 
follows. Since the next succeeding square number is 729, which has 27 for its side, divide 
720 by 27. This gives 26 2/3. Add 27 to this, making 53 2/3, and take half this or 26 5/6.
The side of 720 will therefore be very nearly 26 5/6. In fact, if we multiply 26 5/6 by itself, 
the product is 720 1/36, so the difference in the square is 1/36. If we desire to make the 
difference smaller still than 1/36, we shall take 720 1/36 instead of 729 (or rather we should 
take 26 5/6 instead of 27), and by proceeding in the same way we shall find the resulting 
difference much less than 1/36.

So you can notice:
The explanation on a generic example
The algorithm is iterative
The explanation is given in natural language
The quantities are expressed with fractions (epistemic context)
The basic idea for the process is the notion of arithmetical mean
The algorithm gives the same results as Newton’s method3

3 See an example on the website of the APMEP ( French Association of Teachers of Mathematics), by Martine Buhler



 Page 480

ANNE BOYÉ, MARTINE BÜHLER & ANNE MICHEL-PAJUS

ABOUT HORNER’S ALGORITHM
In mathematics, the algorithm known as Horner’s method is described in many 
textbooks. Horner's method is an economical way of evaluating a polynomial for a 
given value of the argument. It is efficient, too, for polynomial division, polynomial 
root finding, and very fast for derivatives evaluation. 
William George Horner (1786?-1837) was a school master who ran his own school at 
Bath, from 1809 until his death . In 1819, he published a paper on the numerical 
solution of equations: A new method of solving numerical equations of all orders, by 
continuous approximation.
In this paper (philosophical transactions, 1819), he gave a tabular scheme for 
computing a real root of a polynomial equation, but it was substantially different from 
the basic algorithm so called now Horner’s method. The paper was also written in a 
very obscure style. 
Anyway, Julian Coolidge (1949) wrote:

A great mathematician he certainly was not. He offers a fine example of what an amateur 
can accomplish by dogged industry, and his method is surely the best we have for solving 
numerical equations.

In fact, the basic algorithm conventionally called Horner’s method was first given in 
England by Theophilus Holdred (a londonian clock maker) in 1820, and was not 
described by Horner until 1830 (published in 1845, post mortem). The method had 
been anticipated by Paolo Ruffini(1765-1822) in Italy(1804), and François-Désiré 
Budan de Boislaurent (1761-1840) in France (1807). And long before, related 
techniques were known to chinese and arabic mathematicians.
Asking why this method is primarily known as Horner’s method, we note that the 
popularization of Horner’s process was due to Augustus de Morgan (1806-1871), a 
prominent figure in 19th century English mathematics. 

Description of the Algorithm
The so called basic method, of this algorithm, as explained by Thomas Stephen 
Davies, in The mathematician, 1845 is:
Given the polynomial:

We wish to evaluate it at a specific numeral value of x, say x0.
To accomplish this, we define a new sequence of constants as follows:

And B0 is the value searched.
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To see why this works, note that the polynomial can be written as follows:

Thus, by iteratively substituting, you obtain:

Examples

First: give the value of , for x = 3.
We use the so called synthetic division, as follows

The entries in the third row are the sum of those in the first two. Each entry in the 
second row is the product of the x-value (3 in this example) with the third-row entry 
immediately to the left. The entries in the first row are the coefficients of the 
polynomial to be evaluated. 
The value for 3 is 0.
And the remainder in the division by (x – 3) is 0.
3 is a root.
And you can write: =
Second example:
Divide by (x – 2)

The quotient is , and the remainder is , so that:
= ( )(x – 2) – 1

Horner's method is optimal, in the sense that any algorithm to evaluate an arbitrary 
polynomial must use at least as many operations. Alexander Ostrowski proved in 1954 
that the number of additions required is minimal. Victor Pan proved in 1966 that the 
number of multiplications is minimal. In fact this method is very efficient, so that it is 
used for computers and calculators.
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Use for Derivatives
In their first publications, Ruffini and Horner used the differential calculus in
expounding their methods. Later, both authors gave simplified explanations, using 
ordinary algebra, as it is shown above. 
But it can be used to evaluate derivatives.
Given a polynomial P(x), and a real number x0.
Using the preceding method, you write P(x) as: P(x) = (x-x0)Q(x) + P(x0), where Q(x)
is a new polynomial.
Now, you can repeat with Q(x), and obtain: Q(x) = (x-x0 )Q1(x) + Q(x0).
That gives: P(x) = P(x0) + (x-x0)Q(x0) + (x-x0)2 Q1(x).
Then you’ll obtain:
P(x) = P(x) = P(x0) + (x-x0)Q(x0) + (x-x0)2 Q1(x0) + (x – x0)3Q2(x).
And so on.
Actually the Taylor’s theorem, gives
P’(x0) = Q(x0) ; P”(x0) = 2! Q1(x0) ; … ;  P(k) = k! Qk-1(x0)

Example:
Given:
We wish to evaluate , then .

Appendix 1
Translation of Fragment d'une lettre de Fermat, Œuvres, éd. Tannery et Henry, tome II, 1894, 
pp.256-258. There are a few annotations between square brackets to help the reader. Translation by 
Christian Aebi and John Steinig. 

Site: http://gradelle.educanet2.ch/christian.aebi/.ws_gen/9/Fermat_english.pdf

Fragments of a letter by Fermat <1643>

Every non-square odd number is […] the difference of two squares as many times as it is 
composed [written as a product] of two numbers, and if the squares are prime to one another then 
the same may be said of the two composition numbers [factors]. But if the squares have a common 
divisor, the number in question will also be divisible by the same common divisor, and the 
composition numbers will be divisible by the side [square root] of the common divisor.
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For example: 45 is composed of 5 and of 9, of 3 and 15, of 1 and 45. So, it will be thrice the 
difference of two squares: according of 4 and 49, who are prime to one another, as are the
corresponding composers 5 and 9; plus of 36 and 81, which have 9 as common divisor, and the 
corresponding composers, 3 and 15, have the side of 9, meaning 3, as common divisor; finally 45 is 
the difference of 484 and of 529, which have 1 and 45 as corresponding composers.

It is quite easy to find the adequate squares, when we are given the number and its 
parts[divisors], and to have its parts when we are given the squares.

[…]

That settled, let a number be given to me, for example 2 027 651 281; we are asked if it is 
prime or composed, and in that case, of which composers.

I extract the square root to find the smallest of the preceding numbers, and find 45 029 with 
40 440 as remainder, from which I substract the double plus 1 from the preceding root, meaning 
90 059: the remainder is 49 619, which is not a square, because no square ends with 19, from there I 
add 90 061 to it, meaning 2 more than 90 059 which is the double plus 1 of the root 45 029. And 
since the sum 139 680 is still not a square, as can be seen by the ending [final digits], I add to it 
once again the same number increased by 2, meaning 90 063, and I continue to add in that manner 
until the sum is a square, as can be seen here. This happens only at 1 040 400, which is the square 
of 1 020, and thus the given number is composed; because it is easy, by the examination of the 
preceding sums, to see that there is no other that is square except the last, because squares cannot 
bear the ending they have, except for 499 944 which nevertheless is not a square.

Now, to find out the numbers that compose 2 027 651 281, I remove the number that I had first 
added, meaning 90 061, from the last added 90 081. There remains 20, from which half plus 2, 
meaning from 12, I add the root previously found, 45 029. The sum is 45 041, to which number by 
adding and removing 1020(the root of the last sum 1 040 400), we have 46 061 and 44 021, which 
are the two nearest [side-by-side] numbers that compose 2 027 651 281. These are also the only 
ones [factors], for they are, one as well the other, prime.
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