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This paper investigates conceptions of mathematical investigation and proof in
upper-secondary students. The focus of the paper is an intervention that scaffolds the 
interaction between open explorative activities and the development of proof sketches 
through explorations of lattice polygons, aiming at proving Pick’s theorem. In the 
process we investigate whether and how the conceptions of proofs and explanations 
in mathematics change. We work with the hypothesis that the problem of supporting
the transition to deductive proofs in upper-secondary school students can at least 
partly be explained as a problem of bringing their empirical investigations into the
deductive proof process in relevant and productive ways. Through our analyses of the 
portfolios and deliberations of the students, we are able to assess their performance
of proofs and the conceptions of mathematical methodology before and after the 
intervention. 

EXPERIMENTS AND PROOFS IN MATHEMATICS AND MATHEMATICS
EDUCATION 
Empirical and deductive proof schemes
The tendency among upper secondary students to “prove” mathematical statements by 
examples rather than by universal deductive reasoning has been established as a robust 
research result in mathematics education research (Arzarello et al., 2011). This 
educational problem is described as students possessing “empirical proof schemes” 
opposed to “deductive proof schemes”. Phrased in these terms, a large amount of 
empirical studies have shown that students have difficulties performing and
internalizing the movement towards deductive proof schemes, and that empirical proof 
schemes, and more broadly work with examples gives rise to difficulties (such as 
misunderstanding, difficulties and confusions) with the acquisition and performance 
of deductive proofs. 
Such conflict results from “the concept of formal proof is completely outside
mainstream thinking” (Arzarello et al., 2011, p. 51) suggesting an irreducible gap
between everyday empirical thinking and formal mathematical thinking. The existence 
of such a gap is well supported by results from cognitive science (Kahneman, 2011),
but little is known about specific approaches to overcome this gap and especially: “the 
evidence about the transition from empirical to general proof schemes is based on 
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limited evidence collected in suitable environments” (Arzarello et al., 2011, p. 
53).However a few distinctions can already be made: (1) empirical proof-schemes can 
be seen either as a necessity or as a problem in the transition to deductive proofs, and
(2) the transition to deductive proofs can be seen either as a radical change in the 
mode of reasoning or as a natural continuation and refinement of empirical proof 
schemes.
In this project we suggest a continuous approach, activating rather than suppressing 
example work and the empirical proof schemes inherent in the students. These choices 
are informed by new “maverick” trends in the philosophy of mathematics, suggesting 
that investigations and heuristics are closely connected to more formal justificatory 
practices in mathematics.  

Exploratory experimentation as a maverick approach to mathematical 
justification – Lakatos on the mathematical proof 
Much traditional philosophy of mathematics has focused on providing accounts of the 
certainty of mathematical results. However, over the past decades, a new ‘maverick’ 
trend has been focusing on a broader and practice-informed philosophy of 
mathematics (Davis & Hersh, 1981; Lakatos, 1976; Mancosu, 2008). Among the 
insights thus produced is that the sharp context-distinction between a context of 
discovery and a context of justification does not square well with actual practice. 
In particular, Imre Lakatos’ (1922-1974) book Proofs and Refutations put great focus 
on the informal aspects of mathematical knowledge production and on the epistemic 
roles played by examples and counter examples (Lakatos, 1976). Lakatos argued 
by a rational reconstruction of the history of Euler’s polyhedral formula that 
counter examples and proof analysis play crucial roles in shaping mathematical 
concepts and developing increasingly refined proofs. 
On Lakatos’ account, the dialectic process of proofs and refutations (counter 
examples) can be used to develop mathematical knowledge about initially naively 
defined or partially understood concepts. Thus, if the classic context-distinction was to 
be imposed, Lakatos’ dialectic belongs partly to the realm of heuristics in gaining
insights about those concepts and partly to the realm of justification in providing and
shaping the proofs of the theorem as they develop.  
Thus, Lakatos implored us, mathematical statements are not static and do not 
epistemologically predate their warrants; and conversely a mathematical proof is not 
an analytical afterthought warranting a previously existing mathematical insight. 
Rather, proof-practices are active in creating the mathematical landscape of theorems 
and claims.  
Recently, new practice-oriented trends in the philosophy of mathematics have 
investigated how the present availability of desktop computers with flexible 
mathematical software systems increases the interplay between proving, investigating 
examples, and suggesting new theoretical concepts. Using computers not only to 
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verify proofs or generate data for heuristic conjecture formation, it is possible to 
undertake what has been described as  “exploratory experimentation” in mathematics 
in which concepts are formed through experimentation and in which experiments 
critically inform (if not warrant) proof (Sørensen, 2010 see also e.g. Borwein 2012).
In this paper we bring these two conceptions from the recent philosophy of 
mathematics – the continuous overlap between empirical and deductive proof schemes 
involved in exploratory approaches to mathematical research and the specific role of 
computer-assisted experimentation to bear on the didactical situation where the two 
proof schemes are often (misguidedly, we claim) separated. We do so by first detailing 
the discussion of different proof schemes and their potential overlap, before we 
discuss the role of computers in exploratory experimentation. We then describe the 
context and content of our intervention and the data produced, which is subsequently 
analyzed, bringing to the fore both some of the successes in integrating exploratory 
experimentation in mathematics education and some problems which students 
experienced in completing the transition to deductive proof schemes. 

DISCOVERY AND JUSTIFICATION: TWO DISTINCT CONTEXTS OR 
BLENDED DOMAINS?  
The transition from experimentation with specific examples to formal proof can be 
studied as a change from a heuristic context of discovery to a justificatory context of 
proof or as a matter of drawing upon both empirical and deductive proof schemes 
(Arzarello et al., 2011). Lakatos suggests that even though we can talk about a 
transition to proving, there is no such thing as a transition away from working with 
examples.
What Lakatos thus points out is that, in mathematics, the contexts of discovery and 
justification are not to be too sharply distinguished, neither temporally nor 
methodologically. Initially, Lakatos’ analyses were aimed at research-level 
mathematics and the production of new mathematical knowledge, but they also have 
important implications for mathematics education, such as have been pursued by 
contemporary mathematics educators (see e.g. Ernest, 1991).  
Therefore we suggest using the notion of contemporaneous empirical and deductive 
proof schemes to conceptualize not different contexts that students move in and out of 
in a binary fashion, but as relating to different domains influencing their experiences 
of working with mathematics. In our analysis we will discuss whether or not students 
frame their activities towards the domains of examples or towards the domain of 
formal proofs. This distinction is an analytical one inspired by (Hanghøj, Misfeldt,
Bundsgaard, Dohn, & Fougt, n.d.), and we expect to see that students express 
references to both domains in their work with constructing proofs.. 
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The domain of tasks and mathematical examples 
When students in Danish upper-secondary mathematics classes work with word 
problems and similar tasks, they work almost exclusively with examples. Hence, such 
examples represent tasks and situations where the student is expected to apply 
mathematical theory. Formulas are tools for working with examples and proofs are
hardly relevant when considering examples. The type of reasoning applied when 
working with word-problems is deductive, but specific: students need to use rules, 
theorems and formulas to calculate the solution to a certain problem.  
Moreover, in their textbooks examples are often used to show how a certain type of 
task is performed or how a mathematical result is activated. And finally, examples can 
be used in a theory-generating fashion – typically as motivational devices preceding a 
theoretical construct. Hence in the domain of examples the objects are specific rather 
than general, formulas are tools, and proofs are of little relevance. Such a view 
promotes a process going from problem situation to solution by using mathematical 
theory, as well as a tendency to describe the involved objects in specific rather than 
general terms.  
The generative uses of examples described above come close to the way examples will 
be used in our material: Focusing on the transition from examples to proofs, we will 
use examples (of lattice polygons) both in order to motivate, as specific stand-ins for 
general objects, and as objects unto which the general theory is to be applied Yet, our 
intervention is designed so as to facilitate a continuous transition in which knowledge 
acquired in the empirical investigation of examples is to feed constructively into the 
shaping of deductive proofs.

The domain of formal proof 
The domain of formal proof differs from the domain of examples in a number of 
ways. On the object-level proofs and theorems are at the center of the activity, and 
correspondingly, on the meta-level, the involved objects are described as generally as 
possible and the argumentative schema goes from theorem (stating a result) to proof
(warranting the result). When students in Danish upper-secondary schools work with 
formal proofs they are usually expected to read and understand these proofs and in 
some cases also memorize and perform them. In this context, formal proofs usually 
have to them the flavor of “divinely informed calculations” with little explanatory 
motivation given. Understanding the proof largely consists in remembering a few 
main ideas, typically developed over generations of mathematicians to a very elegant 
and condensed form. It is much rarer for these students to develop their own 
mathematical proofs. Hence in the domain of formal proof, the official mathematical 
text is at the center; whereas in the domain of examples the student’s own voice is 
acknowledged.
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EXPLORATORY EXPERIMENTATION IN A LAKATOSIAN 
FRAMEWORK 
As mentioned, Lakatos’ original description of the proof process saw it as a perpetual 
dialectic between what we call domains of examples and domains of formal proof. 
Building on this, we suggest to add a process of presenting codified proofs such as 
they typically come to appear in accepted mathematical communication, including 
textbooks. Obviously, as is one of Lakatos’ main points, such a codified proof could 
still be subjected to further dialectic treatment, but it seems to us an important part of 
the process of teaching mathematics to reach a recognizable, relatively stable notion of 
a (written, codified) proof. Furthermore, still building on the Lakatosian approach, we 
wish to emphasize the wide applications for exploratory experimentation, some of 
which (examples and counter-examples) are to be found also in works by Polya 
(Pólya, 1945) and Lakatos.  Such experimentation is readily available through the use 
of software, the use of which is, itself, a goal of Danish upper-secondary mathematics 
education and, of course, a topic of educational research (see also Conner et al, Guven 
et al., Guin, Ruthven, & Trouche, 2005) However, as we aim to show, such 
experimentation can also be important (beyond the roles of mere motivations or 
illustrations) for shaping sub-arguments of larger mathematical proofs, thereby also 
giving rise to proof-generated concepts as emphasized by Lakatos. The result of these 
considerations is an envisioned process of moving from idea generation to experiment 
to proof. This process is shown in figure 1 and represents our envisioned learning 
trajectory (Cobb & Gravemeijer, 2008) for the movement from example to proof in 
the students of our intervention.

Figure 1: The envisioned process of experiments and proofs (and our intended 
learning trajectory) based on inspiration from Polya and Lakatos. This scheme shows 
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the Lakatosian dialectic of conjectures, refutations, and proof analysis leading to 
refined conjectures and proofs. It also suggests how examples (yellow boxes) have 
multiple functions, both in forming conjectures (Polya), as refutations that prompt 
proof analysis (Lakatos) and as means to calibrate proof analysis and lemmas 
(Lakatos). Added to the Lakatosian framework is our suggestion of a process of 
presenting codified (textbook-like) proofs that transcend the dialectic of proofs and 
refutations.  

Hence we view the classical context-distinction not as transition, nor as just two 
complementary views on the subject, but as a process with repeated feedback loops 
where activities are framed towards different domains at various stages (see figure 1). 

THE EDUCATIONAL SCENARIO 
Our intervention is centered on a beautiful, yet somewhat atypical and slightly 
complicated theorem about areas of polygons in a lattice. In this section we describe 
this result – Picks theorem – and suggest why it is an interesting case to support the 
development of formal proof strategies. In the next section we then proceed to 
describe the teaching material and the classroom intervention we have conducted. For 
further documentation, we refer to (Danielsen, Misfeldt and Sørensen, 2014). 

Pick’s Theorem
The theorem at hand is known as Pick’s Theorem named after the 
Austrian mathematician Georg Alexander Pick (1859-1942), who first described 
the result in 1899. Published under the title “Geometrisches zur Zahlenlehre”, 
Pick’s theorem is located on the intersection of geometry and arithmetic that 
was cultivated around 1900, in particular by the German mathematician Hermann 
Minkowski (1864-1909). Educated in Vienna, Pick spent his entire career in 
Prague, where he also published his result in a relatively obscure journal of the 
German-language scientific and medical association (Pick, 1899). During the 
1930s, Pick became a victim of Nazi persecution, and he perished in 
Theresienstadt in 1942. Over the years, the theorem has been proved repeatedly 
and in various ways; it has also been used to train mathematics teachers at 
various levels, but it is (we believe) relatively rarely taught to students. As a 
theorem, it is remarkable for a number of reasons that include the following: 

a) It can be inductively approached using either physical lattices (in Danish: “sømbræt”)
or computer-based experimentation (see figure 2).

b) It links two domains of mathematics by showing that in some cases, you can actually
count an area which is normally something to be measured.

c) It involves a number of basic geometrical ideas such as triangulation and knowledge
about basic geometrical concepts such as polygons, areas of triangles etc.

d) Its proof is slightly more complicated and intricate than proofs by traditional
derivations; yet, it is at a level of complexity where it can be taught to students.
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The theorem provides a way of computing the area of a lattice polygon, i.e. a polygon 
whose vertices are located in the grid (lattice) Z × Z. If P designates such a lattice 
polygon, i(P) counts the number of interior lattice points in P, and b(P) counts the 
number of lattice points located on the boundary of P, then Pick’s theorem states the 
relation A(P) = i(P) + b(P)/2 − 1,  where A(P) is the area of the polygon P. The proof 
traditionally operates by three important steps:

Figure 2: Example of a lattice polygon drawn in GeoGebra. 

1. Proof that the Pick function defined by Π(P ) = i(P ) + b(P )/2 − 1 is additive
when two adjacent lattice polygons are merged into one.

2. Proof that any lattice polygon can be triangulated into lattice triangles.
3. Proof that for any lattice triangle T, Π(T ) = A(T ).

This three-step proof scheme might appear complicated or foreign to students, since it 
does not reduce to either a calculation or a traditional Euclidean proof scheme. It 
purports to show a complicated identity by showing that the identity holds for atomic 
configurations and that it is preserved when complex configurations are built up from 
such atomic building blocks. Although such proofs are relatively rare in teaching on 
the upper-secondary level, similar proofs are actually abundant in mathematics, and 
students will also encounter them, for instance when it is shown that any (sufficiently 
simple) function is differentiable. 

Teaching material and educational intervention  
The educational intervention was situated in one upper-secondary class (senior year, 
3.g STX MAT-A) taught by the second author of this paper. It consisted of 10 one-
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hour lessons and was planned to consist of 5 modules. As an answer to the students’ 
needs, the teacher added two more modules. Six of the seven modules were built on 
the same template (described below) and the last module was a blackboard-based 
proof of Picks theorem serving an institutionalization purpose showing the students 
how the knowledge that they had explored and the propositions that they had justified 
fit into a larger landscape of official, codified mathematical knowledge (Brousseau, 
1997). Each module contained the following elements:   

 Introductory activity: a simple activity introducing one of the ideas in the module in a
simple way

 Closed task introducing an important tool or concept
 Investigation prompted by an open task/invitation
 Buffer activity to make sure that everyone had something relevant to do
 A collaborative reflection activity

The rationale behind this template was to scaffold (1) individual or small group 
investigations of a specific aspect of mathematics, and (2) collective reflection and 
formulation of results of that activity. For instance, in one module (module 5) on 
triangulation of lattice polygons, the work sheet involved the following activities: 

 Activity 5.1: What happens to points and areas when a polygon is divided into
two (or more) polygons?

 Activity 5.2: What happens to points and areas when two (or more) polygons
are put together?

 Activity 5.3: Formulate some rules for the number of points in a lattice polygon
when you divide a polygon or put polygons together. You should introduce
some suitable names and notation for the elements you use. Make the rules as
simple as possible and save all your suggestions for later (also the ones that turn
out to be wrong).

 Activity 5.4 (buffer activity, intended to make sure that students are at same
pace, when starting activity 5.5); Try your best rules on a lot of different cases,
using the computer to produce the cases. Correct the rules if necessary. Save all
your suggestions (also the one that turn out to be wrong).

 Activity 5.5; Do your rules hold in all cases? Do you think you have made a
theorem? Do you think the theorem is proved?

The teacher was mainly acting as guide and supervisor with respect to the 
mathematical aspects and as a process facilitator with respect to the progress of the 
modules.   
The topics dealt with in the individual modules were: 

1. Module 1: Areas of polygons
2. Module 2: Lattice polygons
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3. Module 3: Areas of simple lattice polygons
4. Module 4: Generals aspects of the area of lattice polygons
5. Extra Module: Formulas
6. Module 5: Triangulation of lattice polygons
7. Extra Module: proof conducted on the blackboard as a combination of lecture

and plenary discussion in the class.

Upon completion of the work originally intended to prove Picks theorem (module 5
and the extra module), the teacher decided to change the work method towards whole-
class discussion and lecture. The rational for doing that was that the students were 
increasingly working without direction and with the need of so much teacher guidance 
that the idea of working individually and in small groups collapsed and a whole-class 
discussion seemed like the healthy pedagogical choice. This “collapse” happened in 
the transition from experiments generating and verifying formulas for the area of 
lattice polygons to establishing a mathematical theorem with a proof and as such is 
very interesting for our design; therefore this “collapse” is further described and
discussed in the data and results sections that follow.

DATA AND RESULTS 
As data from the invention, we can draw on the teacher’s impressions and experiences 
teaching the students combined with various products of students and their answers to 
a questionnaire with six qualitative questions:  

1. How did the activities in the modules work? How can they be improved?
2. Did you learn anything about mathematical objects (triangles, polygons,

functions, etc.)?
3. Did you learn anything about formulas?
4. Did you learn anything about proofs?
5. Did anything surprise you?
6. Do you have other comments?

The students generally enjoyed working with the material and considered it a nice 
variation away from the typical classroom work. They found it nice to work in a 
different way with a subject, and they liked the structure with more independent work 
enjoying the opportunity to take active part in developing mathematical theory;
Representative of their evaluations, they expressed that: 
"It was a good and different way of working with polygons" and similarly "It was 
good with more independent work, which was followed up afterwards." 
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Although the students liked to work independently, some of them also lacked the 
overview gained from a lecture structured by a teacher. In several cases, the students 
were able to express rather elaborately what they had learned. On the topic of creating 
mathematical results as consequences of considering, combining and dividing into 
simple examples, several different students expressed view such as:  
 

"I have learned how to come up with results in different ways. For example by 
looking at a triangle, it is possible to say something about a square. I have also 
learned that there is a relationship between the dots in a lattice polygon and its area 
... " 
"We have been working on how a complex object can be simplified by dividing it into 
simpler shapes."  
"We have learned something about how to calculate the area of polygons by dividing 
them into triangles. We also learned something about the connection between the 
formulas you can use to calculate the area of lattice polygons, and how to derive such 
formulas." 
Several students highlighted the fact that they were able to develop their own formula 
to describe a rather surprising and strong mathematical result. Making your own 
formula was considered fun:  
"It was fun to try to come up with your own formula to solve a particular problem. It 
is probably this activity, which I liked best."  
It was also considered less complicated than the students would have thought, and 
directly connected to inductive reasoning:  
"I've learned that by sitting and trying various possibilities, you can relatively easily 
come up with your own formula, and it need not be very complicated."   
Furthermore the students expressed that they had leaned something about 
mathematical reasoning and proving. Some noticed that proofs can consist of many 
independent parts: "Yes, [we have learned] that a proof can easily contain smaller 
elements of proofs that together form the basis for proving the same theorem." And 
similarly "The proof we did was different from the ones we normally do, because the 
proof was divided into several parts (various geometric shapes) to eventually cover 
all polygons." The open nature of the proof-process was also explicitly noticed by 
some students as being different: "[We have learned] that there are many ways to 
prove a claim; and this is different from the classical proofs we have done in the 
past."  
 

ANALYSIS 
Two positive results in terms of the students’ mathematics learning are suggested by 
the data:  
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1. The students are able to come up with a formula based on experimenting with 

various cases. The students expressed that it is new to them that formulas in that 
sense can be created. 

2. The students participate in warranting their formula by considering how the 
formula is true for various examples and classes of examples. 

The aim of this project was to create a situation where the inductive reasoning would 
suggest structure and propositions strongly enough that some students would 
eventually start proving without strong teacher support. This did not happen to the 
degree we had envisioned. The students experienced a lot of difficulties with the 
transition from considering (classes of) examples to a formal proof. However finding 
the mathematical result and starting the line of argumentation warranting this result in 
simple examples was possible for the students.  
There are several aspects of the two results mentioned above that suggests that our 
intervention has activated and blended the two domains of proofs and examples. The 
students are surprised that they are able to come up with an official mathematical 
result themselves; they expected this to be “much harder”. This can be described by 
observing that official mathematical theory resides in the domain of formal 
mathematics where students, by the prototypical conception, are not able to contribute. 
However examining a large number of examples is relatively easy for the students 
using suitable software, and when they do that using our material, it is easy to propose 
the general formula.  

 
 
Figure 3: Refined schema of the learning trajectory, (figure 1) under the influence of 
our intervention. The arrows in green represent paths that the students were able to 
follow and perform with only minimal guidance. The red arrows point to the conflict 
that emerged when students were asked whether the proof was complete. That conflict 
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points to a difficulty in bringing isolated exploratory experiences in the domain of 
examples in the form of a codified mathematical text in the domain of deductive 
proofs. 

Verifying the formula in simple situations can be viewed as residing in the domain of 
examples. Checking that a formula holds for a specific geometrical shape is a typical 
task for students at this level. This part of the activity was performed successfully by 
most students. Considering the augmentation of one example to a whole class of 
examples is also a relatively doable activity for the students. However, understanding 
the reason for doing this, and especially seeing how one can be assured that all cases 
are covered by securing a number of simple cases and procedures of augmentation, 
requires the student to move into the domain of formal mathematics. In that sense it is 
not surprising that the students’ independent work collapsed at this stage. This 
suggests that the difficulties that students faced when bringing their empirical findings 
into the realm of deductive proofs was not just a matter of reasoning mode or of 
moving from a small number of examples to a general statement and proof. Instead, 
what they found difficult was the structure of the theorem to be proposed: They did 
not internalize how the different experiments fit together to prove the generality of the 
theorem. 
Thus, when the students were expected to change domain to formal mathematics and 
construct their own proof (rather than reading, understanding and performing official 
proofs) based on insights gained in the domain of examples and tasks, a number of 
potential difficulties became visible:   
Can I use examples in a formal argument? In the domain of tasks and examples 
students are interested in the specificity of the example, not in the general class of 
objects dealt with. This change in view is rather radical and is likely to confuse 
students. When reporting on their learning, the students point to the fact that a proof 
can consist of smaller parts when describing what they learn; this seems to suggest 
that this particular use of multiple examples and cases in a complicated proof is new 
to these students. Thus, it may not be the examples as much as the structures of a 
proof consisting of elaborate sub-arguments that actually were in contrast with the 
expectations of the students. 
Can I construct a proof? As simple as this might seem, students do express a big 
surprise that they can contribute in the formal domain, both with proposing a formula 
(which they actually found easy) and with a proof. This specific proof is not so easy 
and hence perhaps not the best starting point for creating formal mathematics. 
Can a proof be non-algebraic? Apart from consisting of various cases and examples, 
the proof that the students were asked to contribute to is also very multimodal. We do 
not have strong empirical evidence here, but the explicit use of non-algebraic (but 
logical) reasoning makes the proof of Pick’s theorem quite different from the textbook 
proofs these students have seen, perhaps also feeding into their conflict when asked to 
present a codified proof.  
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CONCLUSION  
In this paper we have investigated a case where students were brought to use empirical 
strategies or example-driven reasoning in proposing, constructing and proving 
mathematical results. We suggest analyzing the difficulties that the students have as 
difficulties with combining a domain of mathematical tasks and examples and the 
domain of formal mathematics. Using this lens we came to see how the mutual 
activation of proofs and examples gave rise to certain conflicts that reside not with the 
empirical mode of investigation, neither with the deductive reasoning mode as such 
when applied to sub-arguments in the proof, but with the ability to gain a 
comprehension of the structure of more complex deductive proofs such as the proof of 
Pick’s Theorem. 
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