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Oral Presentation
DIFFERENT UNDERSTANDINGS OF MATHEMATICS:

AN EPISTEMOLOGICAL APPROACH TO BRIDGE THE GAP BETWEEN SCHOOL 
AND UNIVERSITY MATHEMATICS

Ingo Witzke
University of Siegen

A survey in Germany amongst students who have chosen to obtain a teaching degree 
shows that the transition from school to university mathematics is experienced in the 
context of a major revolution regarding their views about the nature of mathematics. 
Motivated by the survey, a team of researchers is currently working on a historically-
motivated concept for an undergraduate course to help bridge the gap.

THE PROBLEM OF TRANSITION: STILL OF IMPORTANCE
A classical problem of mathematics education certainly is the problem of transition 
from school mathematics to university mathematics and back again. It is a problem all 
high school teachers around the world encounter during their training. Even Felix 
Klein (1849-1925), prominent mathematician and mathematics educator, in this 
context complained about the phenomena he coined as “double discontinuity”:

The young university student found himself, at the outset, confronted with problems, 
which did not suggest, in any particular, the things with which he had been concerned at 
school. Naturally he forgot these things quickly and thoroughly. When, after finishing his 
course of study, he became a teacher, he suddenly found himself expected to teach the 
traditional elementary mathematics in the old pedantic way; and, since he was scarcely 
able, unaided, to discern any connection between this task and his university 
mathematics, he soon fell in with the time honoured way of teaching, and his university 
studies remained only a more or less pleasant memory which had no influence upon his 
teaching. (Klein, 1908/1932, p. 1, author’s translation)

In the following we focus on the “first discontinuity”, postulating an epistemological 
gap between school and university mathematics. As the problem is at least more than
100 years old, definitive solutions do not seem to appear on the horizon (cf. Gueudet,
2008). Contrarily, dropout rates (especially in western countries) remain on a 
constantly high level – in Germany about 50% of the students studying mathematics or 
mathematics-related fields stop their efforts before having finished a bachelor’s degree
(Heublein et al., 2012). This again leads to an at least perceived intensification of 
research in this field. In 2011 the most important professional associations regarding 
mathematics (education) in Germany (DMV-Mathematics, GDM – Mathematics 
Education & MNU – STEM Education) formed a task force regarding the problem of 
transition (cf. http://www.mathematik-schule-hochschule.de). In February 2013 a 
scientific conference with the topic “Mathematik im Übergang Schule/Hochschule 
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und im ersten Studienjahr” (“Mathematics at the Crossover School/University in the 
First Academic Year”) in Paderborn (Germany) attracted almost 300 participants 
giving over 80 talks regarding the problematic transition-process from school to 
university mathematics. The proceedings of this conference (Hoppenbrock et al.,
2013) and its predecessor on special transition-courses (Bausch et al., 2014) give an 
impressive overview on the necessity and variety of approaches regarding this matter. 
Interestingly a vast majority of the studies and best practice examples for “transition-
courses” locate the problem in the context of deficits (going back as far as junior high
school) regarding the content knowledge of freshmen at universities.

In the “precourse and transition course community” it seems to be consensus by now that 
existing deficits in central fields of lower-secondary school’s mathematics make it 
difficult for Freshmen to acquire concepts of advanced elementary mathematics and to 
apply these. Fractional arithmetic, manipulation of terms or concepts of variables have an 
important role e.g. regarding differential and integral calculus or non-trivial application 
contexts and constitute insuperable obstacles if not proficiently available. (Bieler et al.,
2014, p. 2, author’s translation)

The question of how to provide first semester university students with the obviously 
lacking content knowledge is certainly an important facet of the transition problem. 
But as the results of an empirical study suggest, there are other, deeper problem 
dimensions which aid in further understanding the issue. 

MOTIVATION: A SURVEY
To investigate new perspectives on the transition problem, approximately 250 pre-
service secondary school teachers from the University of Siegen and the University of 
Cologne in 2013 were asked for retrospective views on their way from school to 
university mathematics. When the questionnaire was disseminated the students had 
been at the universities for about one year. Surprisingly, the systematic qualitative 
content analysis of the data (Mayring 2002; Huberman & Miles 1994) showed that 
from the students’ point of view it was not the deficits in (the level and amount of) 
content knowledge that dominated their description of their own way from school to 
university mathematics. To a substantial extent, students reported problems with a 
feeling of “differentness” of school and university mathematics than with the abrupt 
rise in content-specific requirements. Three exemplar answers to the question,

What is the biggest difference or similarity between school and university mathematics? 
What prevails? Explain your answer.

illustrate this point quite clearly.
Student (male, 20 years): “The biggest difference is, that university mathematics is a 
closed logical system, constituted by proofs. School mathematics in contrast is limited to 
applications. Regarding the topics there are more similarities, regarding the process of 
reasoning more differences.” (author’s translation)
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Student (male, 19 years): “The fundamental difference develops as mathematics in school 
is taught ostensibly (“anschaulich”), whereas at university it is a rigid modern-axiomatic 
structure characterizing mathematics. In general there are more differences than 
similarities, caused by differing aims.” (author’s translation)

At this point we can only speculate on the term “aims” but in reference to other 
formulations in his survey it seems possible that he distinguishes between general 
education (Allgemeinbildung) as an aim for school and specialized scientific teacher-
training at universities.
The third example is impressive in the same sense:

Student (female, 20 years):

Figure 1: A student’s appreciation of difference or similarity between school and 
university mathematics.

In all three cases the students clearly distinguish between school and university 
mathematics, which is most prominent in the last example (see Fig. 1): for this student 
school mathematics and university mathematics are so different, that the only 
remaining similarity is the word ‘mathematics’. This “differentness” encountered by 
the students is specified in further parts of the questionnaire with terms as vividness, 
references to everyday life, applicability to the real world, ways of argumentation, 
mathematical rigor, axiomatic design, etc.
Using additional results of studies with a similar interest (e.g. Gruenwald et al., 2004;
Hoyles et al., 2001) the author comes to the preliminary conclusion that pre-service 
teachers clearly distinguish between school and university mathematics regarding the 
nature of mathematics. In the terms of Hefendehl-Hebeker et al., the students 
encounter an “Abstraction shock.” (Hefendehl-Hebeker et al., 2010)
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This sets the framework for further research concerning the problem of transition: 
following the idea of constructivism in mathematics education, students construct their 
own picture of mathematics with the material, problems and stimulations teachers 
provide in the classroom or lecture hall (Anderson et al., 2000; Bauersfeld, 1992). 
Thus it is helpful to reconstruct the nature of mathematics communicated explicitly 
and implicitly in high school and university textbooks, lecture notes, standards, etc.,
with a special focus on differences.

REFLECTIONS ABOUT THE NATURE OF MATHEMATICS & 
MATHEMATICAL BELIEF SYSTEMS IN SCHOOL AND UNIVERSITY
Beliefs
The terms nature of mathematics and belief system regarding mathematics are closely 
linked to each other if we understand learning in a constructive way. Schoenfeld 
(1985) successfully showed that personal belief systems matter when learning and 
teaching mathematics:

One’s beliefs about mathematics [...] determine how one chooses to approach a problem, 
which techniques will be used or avoided, how long and how hard one will work on it, 
and so on. The belief system establishes the context within which we operate […] 
(Schoenfeld, 1985, p. 45)

From an educational point of view beliefs about mathematics are decisive for our 
mathematical behavior. For example, there are four prominent categories of beliefs 
concerning mathematics as a discipline distinguished by Grigutsch, Raatz, and Törner
(1998): the toolbox aspect, the system aspect, the process aspect and the utility 
aspect. Liljedahl et al. (2007) specified this wide range of possible aspects of a 
mathematical worldview as follows:

In the “toolbox aspect”, mathematics is seen as a set of rules, formulae, skills and 
procedures, while mathematical activity means calculating as well as using rules, 
procedures and formulae. In the “system aspect”, mathematics is characterized by logic, 
rigorous proofs, exact definitions and a precise mathematical language, and doing 
mathematics consists of accurate proofs as well as of the use of a precise and rigorous 
language. In the “process aspect”, mathematics is considered as a constructive process 
where relations between different notions and sentences play an important role. Here the 
mathematical activity involves creative steps, such as generating rules and formulae, 
thereby inventing or re-inventing the mathematics. Besides these standard perspectives on 
mathematical beliefs, a further important component is the usefulness, or utility, of 
mathematics. (p. 279)

Very often these beliefs are located within certain fields of tension (Spannungsfelder): 
there is, for example, the process aspect which is always implicitly connected to its 
opposite pole the product aspect. Another pair of concepts in this sense is certainly an 
intuitive aspect on the one hand and a formal aspect on the other, having even a 
historical dimension: “There is a problem that goes through the history of calculus: the 
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tension between the intuitive and the formal.” (Moreno-Armella, 2014, p. 621) These 
fields of tension may help to describe the problems the students encounter on their 
way to university mathematics. Especially helpful when looking at the survey results, 
representing one important facet, seems to be the tension between what Schoenfeld 
calls an empirical belief system and a formal(istic) belief system – a convincing 
analytical distinction following the works of Burscheid and Struve (2010). The 
empirical belief system on the one hand describes a set of beliefs in which 
mathematics is understood as an experimental natural science, which of course 
includes deductive reasoning, about empirical objects. Good examples for such a 
belief system can be found in the history of mathematics. The famous mathematician 
Moritz Pasch (1843-1930) who completed Euclid’s axiomatic system, explicitly 
understood geometry in this way,

The geometrical concepts constitute a subgroup within those concepts describing the real 
world […] whereas we see geometry as nothing more than a part of the natural sciences. 
(Pasch, 1882, p. 3)

Mathematics in this sense is understood as an empirical, natural science. This implies 
the importance of inductive elements as well as a notion of truth bonded to the correct 
explanation of physical reality. In Pasch’s example Euclidean geometry is understood 
as a science describing our physical space by starting with evident axioms. Geometry 
then follows a deductive buildup – but it is legitimized by the power to describe the 
physical space around us correctly. This understanding of mathematics as an empirical 
science (on an epistemological level) can be found throughout the history of 
mathematics – prominent examples for this understanding are found in many scientists 
of the 17th and 18th centuries. For example, Leibniz conducted analysis on an 
empirical level; the objects of his calculus differentialis and calculus integralis were 
curves given by construction on a piece of paper – not as today’s abstract functions 
(cf. Witzke, 2009).
Now, how does all of this come together with students and the transition problem? If 
we take a closer look at the survey results, and combine this with a look at current 
textbooks we see that students at school are likely to acquire an empirical belief 
system – which on epistemological grounds shows parallels to the historical 
understanding of mathematics. These epistemological parallels were fundamental for 
the design of our ‘transition seminar’ for students. The main idea is that the 
recognition and appreciation of different conceptions of mathematics in history (i.e., 
those held by expert mathematicians) can help students to become aware of the own 
belief system and may guide them to make necessary changes.

SCHOOL & UNIVERSITY
If we look at the most recent National Council of Teachers of Mathematics (NCTM)
standards and prominent school books we see that for good reasons, mathematics is 
taught in the context of concrete (physical) objects at school: The process standards of 
the NCTM and in particular “connections” and “representations” (which are 
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comparable to similar mathematics standards in Germany) focus on empirical aspects. 
At school it is important that students “recognize and apply mathematics in contexts 
outside of mathematics” or “use representations to model and interpret physical, 
social, and mathematical things” (NCTM, 2000, p 67).
The prominent place of illustrative material and visual representations in the 
mathematics classroom has important consequences for the students’ views about the 
nature of mathematics. Schoenfeld proposed that students acquire an empiricist belief 
system of mathematics at school (Schoenfeld, 1985; 2011). This is caused by the fact 
that mathematics in modern classrooms does not describe abstract entities but a 
universe of discourse ontologically bounded to “real objects”: Probability Theory is 
bounded to random experiments from everyday life, Fractional Arithmetic to “pizza 
models”, Geometry to straightedge and compass constructions, Analytical Geometry 
to vectors as arrows, Calculus to functions as curves (graphs) etc.). 
At university things can look totally different. Authors of prominent textbooks (in 
Germany as well as in the U.S.) for beginners at university level depict mathematics in 
quite a formal rigorous way. For example in the preface of Abbott’s popular book for 
undergraduate students, Understanding Analysis, it becomes very clear where 
mathematicians see a major difference between school and university mathematics: 
“Having seen mainly graphical, numerical, or intuitive arguments, students need to 
learn what constitutes a rigorous proof and how to write one” (Abbott, 2000, p. vi). 
This view is also transported by Heuser’s popular analysis textbook for first semester 
students (Heuser, 2009, p. 12, author’s translation).

The beginner at first feels […] uncomfortable […] with what constitutes mathematics:

- The brightness and rigidity in concept formation 
- The pedantic accurateness when working with definitions
- The rigor of proofs which are to be conducted […] only with the means of logic not 

with Anschauung.
- Finally the abstract nature of mathematical objects, which we cannot see, hear, taste 

or smell. […]

This does not mean that there are no pictures or physical applications in the book; it is 
common sense that modern mathematicians work with pictures, figural mental 
representations and models – but in contrast, to many students it is clear to them that 
these are illustrations or visualizations only, displaying certain logical aspects of 
mathematical objects (and their relations to others) but by no means representing the 
mathematical objects in total. This distinction gets a little more explicit if we look at a 
textbook example. In school books the reference objects for functions are curves. 
Functions are virtually identified with empirically given curves. Consequently, 
schoolbook authors work with the concept of graphical derivatives in the context of 
analysis (see Fig. 2). At university, curves are by no means the reference objects 
anymore; they are only one possibility to interpret the abstract notion of function. The 
graph of a function in formal university mathematics is only a set of (ordered) pairs. 

INGO	WITZKE



 Page 309

If we, in a theoretical simplification, 
contrast the empirical belief system
many students acquire in classroom 
with the formal(ist) belief system 
students are supposed to learn at 
university we have one model that 
explains the problem of transition.
For example, in this model the notion 
of proof differs substantially in 
school and university mathematics. 
Whereas at universities (especially in 
pure mathematics) only formal 
deductive reasoning is acceptable, non-rigorous proofs relying on “graphical, 
numerical and intuitive arguments” are an essential part of proofs in school 
mathematics where we explain phenomena of the “real world”. In the terminology of 
Sierpinska (1992), students at this point have to overcome a variety of 
“epistemological obstacles”, requiring a big change in their understanding of what 
mathematics is about.

HELPING TO BRIDGE THE GAP: SEMINAR CONCEPTION
The findings of the survey and the theoretical discussion are essential for the author’s 
design of a course for pre-service teachers which will be taught, evaluated and 
analyzed for the first time in spring 2015 together with the University of Cologne 
(Horst Struve) and the Florida State University (Kathleen Clark). [1]
The overall aim of the course is to make students aware and to lead them to
understand of crucial changes regarding the nature of mathematics from school to 
university. The different conceptions of mathematics in school and university can be 
reconstructed as well for the history of mathematics, as we previously stated. Thus, an 
understanding of how and why changes regarding the nature of mathematics (for 
example from empirical-physical to formal-abstract) took place may be achieved by an 
historical-philosophical analysis (cf. Davies 2010). This is the key idea of the course. 
Thereby we hope that the students then can link their own learning biographies to the 
historical development of mathematics. This conceptual design of the course draws 
upon positive experience with explicit approaches regarding changes in the belief 
system of students from science education (esp. “Nature of Science”, cf. Abd-El-
Khalick & Lederman, 2001). 
The undergraduate course designed to cope with the transition problem is organized in 
four parts:

1) Raising attention for the importance of beliefs/philosophies of mathematics.
2) Historical case study: geometry from Euclid to Hilbert. Which questions lead to 

the modern understanding of mathematics?

Figure 2: Graphical derivatives in a 
schoolbook.
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3) What characterizes modern formal mathematics? (Exploration of Hilbert’s 
approach.)

4) Summarizing discussion and reflection

1) Raising attention for the importance of beliefs/philosophies of mathematics.
In the first part of the seminar we want to make the students aware of the idea of 
different belief systems/natures of mathematics. Here we start with individual 
reflections and work with authentic material such as transcripts from Schoenfeld’s 
research that clearly show the meaning and relevance of the concept of an empirical 
belief system. In a next activity we will compare textbooks: University textbooks, 
school textbooks, and historical textbooks.

Figure 3: Three excerpts of different textbooks for comparison.

The three excerpts (Fig. 3) illustrate how we will work in this comparative setting. In 
the upper right-hand corner of Fig. 3 is a formal university textbook definition of 
differentiation. It is characterized by a high degree of abstraction: the objects of 
interest are functions defined on real numbers and even complex numbers. We see a 
highly symbolic definition where the theoretical concept of limit is necessary. Just 
below we see in contrast, is an excerpt from a popular German school textbook. Here 
the derivative function is defined on a purely empirical level: the upper curve is 
virtually identified with the term ‘function’. Characteristic points are determined by an 
act of measuring and the slopes of the triangles are then plotted underneath and 
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constitute the red curve. Interestingly for students, should be that the theoretical 
abstract notion of function – as it is presupposed in the university textbook – did not 
always characterize analysis.
If we look back to Leibniz (one of the fathers of analysis), with his calculus 
differentialis and intergalis, he conducted mathematics in a rather empirical way as 
well (cf. Witzke, 2009): his objects were curves given by construction on a piece of 
paper – properties like differentiability or continuity were read out of the curve…and 
not only there seem to be parallels on an epistemological level between school analysis 
and historical analysis. For example, Leibniz presented (published in 1693) the 
invention of the so-called integrator (left-hand side of Fig. 3), a machine that was 
designed to draw an anti-derivative curve by retracing a given curve. So here, as in the 
schoolbook, it is on an epistemological level that the empirical objects form the theory. 
Combined with selected quotes from schoolbooks emphasizing its experimental and 
empirical access to mathematics, quotes like Pasch’s regarding Euclidean geometry as 
an empirical science on the one hand and Hilbert’s statement,

If I subsume under my points arbitrary systems of things, e.g. the system: love, law, 
chimney sweep ..., and then just assume all my axioms as relationships among these 
things, then my theorems, e.g. also the Pythagorean theorem, are true of these things, 
too. (Hilbert to Frege, 1980, p.13, author’s translation) 

on the other, it becomes clear that something revolutionary had changed regarding the 
nature of mathematics at the end of 19th century mathematics. This change is a
revolution, which on an epistemological level has parallels to what students encounter 
when being faced with abstract university mathematics. 

2) Historical case study: geometry from Euclid to Hilbert. Which questions lead to 
the modern understanding of mathematics?
An adequate description of the development of the conception of mathematics in the 
course of history requires more than one book. We refer to the following ones: Bonola 
(1955) for a detailed historical presentation; Grabe (2001), Greenberg (2004) and 
Trudeau (1995) for a lengthy historical and philosophical discussion; Ewald (1971),
Hartshorne (2000), and Struve & Struve (2004) for a modern mathematical 
presentation. Additionally, Davis & Hersh (1981 & 1995) or Ostermann & Wanner 
(2012) presented aspects of the historical and philosophical discussion in a concise 
manner, relatively easily accessible to students.
The overall aim of the historical case study is to make students aware of how the 
nature of mathematics changed over history. Regarding our theoretical framework, we
aim to make explicit how geometry – which for hundreds of years seemed to be the 
prototype of empirical mathematics, describing physical space – did develop into the 
prototype of a formalistic mathematics as formulated in Hilbert’s foundations of 
Geometry in 1899 (cf. Fig.4). And thus, we can help students on their way to develop 
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an understanding for different mathematical conceptions, in particular, modern ones 
taught at the university level.
In the course we start with Euclid’s Elements: they show what a deductively built
piece of mathematics looks like in a prototype manner. Here we will induce the 
students, e.g., to display in a graphical manner how Pythagoras’ theorem can be traced
down to the five postulates – as the 2013 survey results showed that most students 
were not familiar with a deductive structure after one year at university.
It is quite important for the overall goal of the seminar that the Elements give reason to 
discuss status, meaning and heritage of axiomatic systems. Thereby we will focus on 
the self-evident character of the axioms (or, postulates) describing physical space in a 
true manner – as undoubtedly provides insights on the surrounding real space which 
were accepted without proof (cf. Garbe, 2001, p. 77).

Figure 4: The historical and philosophical development of mathematics along the 
development of geometry

Projective geometry is the next stop on our way to a modern understanding of 
geometry (cf. Ostermann & Wanner, 2012, pp. 319-344). Starting with the question of 
whether other geometries, besides the Euclidean one, are conceivable, projective 
geometry seems to be an ideal case. Related to the overall aim of the course, the notion
that there is more than one geometry can foster the idea that there is more than ‘one’ 
mathematics, leading away from the quest for one unique mathematics describing 
physical space (cf. Davis & Hersh, 1985, pp. 322-330).
Well, on the one hand, projective geometry seems to be so intuitive and evident if we 
look at its origin in the arts in the vanishing point perspective. On the other hand it 
adds new abstract objects to the Euclidean geometry (the infinitely distant points on 
the horizon) and familiarizes us with the idea that all parallels may meet eventually.
With projective geometry the students encounter a further axiomatizable geometry –
which has irritating properties that finally influenced Hilbert (cf. Blumenthal, 1935, p. 

- Principle of Duality
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402) to ultimately design a geometry free of any physical references. Julius Plücker 
saw in the 19th century for the first time, that theorems in projective geometry hold if 
the terms “straight line” and “point” are interchanged: the so-called principle of duality
– giving a clear hint why it became reasonable in mathematics to focus on mere 
structures of theories.
A decisive revolutionary step towards a formalistic abstract formulation of geometry 
can then be seen in the development of the so-called non-Euclidean geometries. This 
development is connected in particular to the names Janos Bolyai (1802-1860),
Nikolai Ivanovitch Lobatchevski, Carl Friedrich Gauß (1777-1855) oder Bernhard 
Riemann (1826-1866) (cf. Garbe, 2001, Greenberg, 2004, Trudeau, 1995 on their 
historical role regarding non-Euclidean Geometries).
In fact, the non-Euclidean geometries developed from the “theoretical question” 
around Euclid’s fifth postulate, the so-called parallel postulate: 

Let the following be postulated: [...]

That if a straight line falling on two straight lines makes the interior angles on the same 
side less than two right angles, the straight lines, if produced indefinitely, will meet on 
that side on which the angles are less than two right angles. (Heath, 1908)

Compared to the other postulates like the first, “to draw a straight line from any point 
to any point,” the fifth postulate sounds more complicated and less evident. This 
postulate cannot be “verified” by drawings on a sheet of paper as parallelity is a 
property presupposing infinitely long lines. In the words of Davis & Hersh (1995), “it 
seems to transcend the direct physical experience” (p. 242). In history this was seen as 
a blemish in Euclid’s theory and various attempts have been undertaken to overcome 
this flaw. On the one hand, different individuals tried to find equivalent formulations,
which are more evident (e.g. Proclus (412-485), John Playfair 1748-1819)1. On the 
other hand, several mathematicians tried to deduce the fifth postulate from the other 
postulates so that the disputable statement becomes a theorem (which does not need to 
be evident) and not a postulate (e.g. Girolamo Saccheri (1667-1733), Johann Heinrich 
Lambert (1728-1777)). (cf. Davis & Hersh, 1985, pp. 217-223; Garbe, 2001, pp. 51-
74; Greenberg, 2004, pp. 209-238)

In contrast in the 18th and 19th century, Bolyai, Lobatchevski, Gauß, and Riemann 
experimented with negations and replacements of the fifth postulate guided by the 
question of whether the parallel postulate was logically dependent of the others (cf. 
Greenberg, 2004, pp. 239-248). If this would have been true – Euclidean geometry 

1 To Proclus, who was amongst the first commentators of Euclid’ Elements in ancient Greece, 
already formulated doubts on the parallel postulate and formulated around 450 an equivalent 
formulation (cf. Wußing & Arnold 1978, p. 30). Playfair’s formulation (1795), “in a plane, given a 
line and a point not on it, at most one line parallel to the given line can be drawn through the 
point“, is quite popular today (cf. Prenowitz & Jordan 1989, p. 25; Gray 1989, p. 34).
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should actually work without it – what it does, in a sense that no inconsistencies 
occur. But this logical act leads to conclusions that differ from those in Euclidean 
geometry. 

For example:
- In the so-called hyperbolic geometry the sum of interior angles in a triangle adds 

up to less than 180°, in elliptic geometry to more than 180° (see Fig. 6).
- The ratio of circumference and diameter of a circle in hyperbolic geometry is 

bigger than π, in elliptic smaller than π.
- In hyperbolic as in elliptic geometry triangles which are just similar but not 

congruent do not exist.
- In hyperbolic geometry there is more than one parallel line through a point P to 

a given line g and in elliptic geometry there are no parallel lines at all (see Fig. 
5).

(cf. Davis & Hersh, 1985, p. 222; Garbe, 2001, p. 59)

Working with texts and sources regarding 
the process of discovery of the non-
Euclidean geometries may have an 
important impact on students’ beliefs
system, as it tackles the so-called 
“Euclidean Myth” (Davis & Hersh, 1985)
which was widespread within the 2013
survey results: to many first-year students 
mathematics is a monolithic block of eternal 
truth; a theorem, once proven, necessarily 
holds in every context. 
With the discovery of the non-Euclidean 
geometries, it became apparent in history 

that there is no such truth in a total sense. In contrast, there seems to be more of such 
truths, depending on the context you are working in. A discussion of Gauss’s qualms 
to publish results on non-Euclidean geometry implicitly emphasizing this aspect,
afraid of being accused of doing something suspect, or the (probably legendary) story 
that he tried to measure on a large scale whether the world is Euclidean (cf. Garbe,
2001, pp. 81-85), can make the students amenable to the revolutionary character of 
this discovery for changing natures of mathematics. Following Freudenthal’s (1991)
idea of guided reinvention, recapitulating the history of humankind seems to bear 
quite fruitful perspectives for the development of individual belief systems in this 
context.

Figure 5: Klein’s Model for hyperbolic 
geometry: More than one parallel line 
to a straight line through a given point. 
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Finally, from the discussion of the non-Euclidean 
geometries students will approach the questions 
which lead to Hilbert’s formal(istic) turn. If there was 
more than one consistent geometry, which one is the 
true one? This question is closely linked to the 
question, what is mathematics? 
3) What characterizes modern formal mathematics? 
(Exploration of Hilbert’s approach.)
Hilbert actually gave an answer to this problem – not 
only in a philosophical and programmatic way but 
also by formulating a geometry “exempla trahunt” 
(Freudenthal, 1961 p. 24), a discipline that was seen for ages as the natural description 
of physical space, in a formalistic sense and characterized by an axiomatic structure. 
The established axioms are fully detached and independent from the empirical world, 
which leads to an absolute notion of truth: mathematical certainty in the sense of 
consistency. With Hilbert the bond of geometry to reality is cut. This becomes very 
vivid when reading Hilbert’s Foundations of Geometry (1902; see Fig. 7) in detail, as 
we plan to do with the students in the seminar.

Figure 7: The famous first paragraph of Hilbert’s Foundations of Geometry.

Hilbert does not give his concepts an explicit semantic meaning; he speaks 
independently from any empirical meaning of distinct systems of things. 
Consequently, intuitive relations like in between or congruent do not have an 
empirical meaning but are relations fulfilling certain formal properties only. (cf. for 
example, Greenberg, 2004, pp. 103-129)
As we all know, the development of mathematics did not come to an end with Hilbert; 
the seminar is intended to finish with discussions of texts taken from What is 
Mathematics, Really? (Hersh, 1997). Hersh understands “mathematics as a human 
activity, a social phenomenon, part of human culture, historically evolved, and 
intelligible only in a social context” (p. xi), which creates a balanced view. 
However, nobody will deny that formalism in Hilbert’s open-minded version had a 
lasting effect on the development of mathematics. As a consequence, today’s 

Figure 6: Angle sum in an
elliptic triangle.
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university mathematics has the freedom to be developed without being ‘true’ in an 
absolute sense anymore (cf. Freudenthal, 1961), but nevertheless including the 
possibility to interpret it physically again.

In the meantime, while the creative power of pure reason is at work, the outer world again 
comes into play, forces upon us new questions from actual experience, opens up new 
branches of mathematics, and while we seek to conquer these new fields of knowledge for
the realm of pure thought, we often find the answers to old unsolved problems and thus at 
the same time advance most successfully the old theories. And it seems to me that the 
numerous and surprising analogies and that apparently prearranged harmony which the 
mathematician so often perceives in the questions, methods and ideas of the various 
branches of his science, have their origin in this ever-recurring interplay between thought 
and experience. (Hilbert, 1900)

It is the openness and freedom of questions of absolute truth, which Hilbert replaced 
by the concept of logical consistency that made mathematics so successful in the 20th

century (cf. Freudenthal, 1961, p. 24; Garbe, 2001, pp. 100-109, Tapp, 2013 p. 142). 
In Einstein’s words: 

Geometry thus completed is evidently a natural science; we may in fact regard it as the 
most ancient branch of physics. Its affirmations rest essentially on induction from 
experience, but not on logical inferences only. We will call this completed geometry 
“practical geometry,” and shall distinguish it in what follows from “purely axiomatic 
geometry.”[…]As far as the propositions of [modern axiomatic] mathematics refer to 
reality, they are not certain; and as far as they are certain, they do not refer to reality.[…]
The progress achieved by axiomatics consists in its having neatly separated the logical-
formal from its objective or intuitive content […] These axioms are free creations of the 
human mind. The axioms define the objects of which geometry treats. […] I attach 
special importance to the view of geometry, which I have just set forth, because 
without it I should have been unable to formulate the theory of relativity. (Einstein,
1921, as cited in Freudenthal, 1961, p. 16; for a readable article on exactly this point
compare with Hempel (1945))

This makes again quite clear that modern mathematics after Hilbert is on 
epistemological grounds completely different than (historical) empirical mathematics 
and of course mathematics taught in school. Whether the first is grounded on set 
axioms and the notion of mathematical certainty (inconsistency), the second and third 
are grounded in evident axioms – thus describing physical space including a notion of 
(empirical) truth, resting essentially on induction from experience. 
4) Summarizing discussion and reflection
In the last part of the course we want to initiate discussions connecting the insights 
gained from the historical perspectives with the individual biographies. We plan to 
remind the students about the preliminary discussions regarding different personal 
belief systems that occurred in the first part of the course. The intention is that the 
transparency on the historical problems that led to a modern abstract understanding of 
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mathematics leads to an understanding of what happens if students live on 
epistemological grounds through this revolution as individuals, thus opening 
differentiated views on the transition problem. For school purposes – from a well-
informed mathematics educator’s point of view – nothing speaks against doing 
mathematics in an empirical way (when including deductive reasoning, of course, 
otherwise it would just be phenomenology). History has shown that empirical 
mathematics was a decent way to develop mathematical knowledge and the 
experimental natural sciences generate knowledge comparably. Yet approaches to 
bring formal(istic) mathematics into school classrooms have failed miserably. 
Moreover, we cannot step away from teaching mathematics in a theoretical way at 
universities. In contrast, the course described here intends to make tangible, 
understandable, and explicit (that) to first-year students the transition from school 
mathematics to university mathematics is an epistemological obstacle. Hefendehl-
Hebeker (2013, p. 80) sees quite comparably

[…] a principle difference between school and university is at university with the 
axiomatic method a new level of theory formation has to be reached, and thus it follows 
that the discontinuity cannot be avoided. 

So if the discontinuity cannot be avoided, what may teachers and students at 
university take from a course like the one described here? 
1) The historical excursions do not only focus on the beliefs aspect but also 
demonstrate crucial mathematical activities – especially regarding deductive reasoning 
within the frameworks of consistent mathematical theories. 
2) Teachers and students should be sensible about the dimension of the problem: it is 
not as easy as repeating some lower secondary school mathematics, as many 
approaches seem to suggest. Instead a revolutionary act of conceptual change is 
required that does not occur overnight and needs guidance. The historical questions 
that lead to the modern understanding of mathematics are too sophisticated and 
waiting for students to develop these for themselves is a particular burden on top of all 
the other factors of beginning at university. The approach of initiating these questions
explicitly within the described framework may support a more adequate and prompt 
change of belief system. 
3) The course should sensitize for crucial communication problems. Teachers and 
students should acknowledge that when talking about mathematics, using the same 
terms might not imply talking about the same things. For example, students may come 
from school to university having learned calculus in an empirical context such that 
functions might be equivalent to curves. This might imply that properties like 
continuity or differentiability are empirical and can be read from the sketched graph of 
the function (comparable to 17th century mathematicians). The lecturer at university on 
the other hand probably has a general abstract notion of function implying a 
completely different notion of mathematical reasoning and truth. In particular, 
lecturers should repeatedly check if the knowledge of their students is still bonded to 
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(single) objects of reference. The same holds for the students eventually leaving 
university and starting as secondary school mathematics teachers: they should be 
aware that what they consider from an abstract point of view their students may 
instead possess visualizations of abstract notions as the reference objects.

CONCLUDING REMARKS/PERSPECTIVES
An in-depth study based on data collected from surveys containing both standardized 
and open-ended items and student interviews accompanying the seminar course 
describes here will follow in 2015. A follow-up course will be conducted at Florida 
State University in spring 2016. The data, along with the personal evaluations of the 
involved researchers, will clarify whether explicitly discussing historical 
epistemological obstacles regarding changes on mathematical belief systems supports 
students on their way through university mathematics. Much will depend on if we 
succeed in initiating thinking-processes which bring the historical and personal 
perspectives together. Only then will it be possible to determine if the historical-
philosophical elements of the course have a lasting effect.

NOTES
1. Many elements of the course discussed here have been tested in isolated settings in Cologne and 
Siegen but not in a coherent course to face the problem of transition. 

2. Also, there is another dimension to the axioms as fundamentals of a platonic construct of ideas, 
called “geometry”.
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