
 Page 255

Oral Presentation 
KNOWLEDGE ACQUISITION AND MATHEMATICAL 

REASONING 
Arto Mutanen 

Finnish National Defence University 

Mathematical and logical reasoning can be understood as being tautologous 
which makes the reasoning, informationally, empty. Mathematical and logical 
truths are valid, i.e., true in every possible world. That is, mathematical and 
logical truths do not exclude any possibilities, and contradictory statements 
exclude all of them. To understand how mathematics increase our knowledge, it 
is important to analyze concrete mathematical reasoning. In geometry, the 
essential element is the constructivity of the entire reasoning process. A 
key notion in understanding mathematical knowledge acquisition is the notion of 
constructivity, which is closely connected to the methodology and epistemology of 
mathematics. However, at the same, the constructivity allows us to understand 
the applicability of mathematical reasoning to experimental and empirical 
reasoning. The strategies of experimental and mathematical reasoning are parallel. 

INTRODUCTION
The notion of reasoning, as well as the notion of mathematical reasoning, is used 
in everyday language. However, it is not obvious what this everyday notion is 
intended to mean; maybe it is, as everyday notions usually are, ambiguous. Moreover, 
in scientific usage, the notion of reasoning seems to be a very flexible notion. 
Even in the philosophy of science, there is no consensus on the meaning of the 
notion of scientific reasoning (Niiniluoto, 1999). In mathematics and in logic, 
there are different philosophical approaches that interpret the mathematical and 
logical reasoning in different ways (Benacerraf & Putnam, 1989). 
The notion of reasoning is connected to the notion of learning: all learning is, in 
one sense or another, reasoning. So far, so good. However, the meaning of the 
notion is, once again, ambiguous; the learner learns by reasoning, but not all 
reasoning need be learning. Sometimes reasoning is just an explication of what we 
already know. There are interesting degrees of knowledge, ranging from (full) 
knowledge to (full) ignorance (Hintikka, 1989). 
There are different kinds of reasoning, for example, Peirce characterized three 
kinds of reasoning, namely deductive, inductive, and abductive reasoning (Peirce, 
1955). We come across deductive reasoning in logic and in mathematics, and 
we meet inductive reasoning in (ordinary) empirical scientific reasoning; for 
example, normal statistical reasoning is inductive. Abductive reasoning is more 
problematic, and it is met in discovery processes (Hintikka, 1998). Deductive 
reasoning is truth preserving, 
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which implies that deductive reasoning does not increase our knowledge. Inductive 
and abductive reasoning increase our knowledge, which makes these modes of 
reasoning very problematic, and there are no generally accepted inference rules for 
inductive or abductive logic (Kelly, 1996). 
Mathematical and logical, reasoning and all truth preserving reasoning that can be 
characterized as being tautologous (see Tractatus 6.1231). This tautologousness means 
that the reasoning is, informationally, empty which in terms of information theory 
means that mathematical and logical truths do not exclude any possibilities, that is, 
they are true in every possible world. On the contrary, contradictions are, 
informationally, full, since they exclude all the possibilities, that is, they are false in 
every possible world. Both logical truths and contradictions seem to be useless in any 
real communication; they cannot be used in conveying any factual and meaningful 
information.  
However, the informational emptiness is not the whole story. It is true that logic and 
mathematics are tautologous and, hence, '“useless” in real communication, but then 
several questions arise: Why study mathematics? Why is mathematics so difficult to 
study? Can mathematics increase, in any reasonable sense, our knowledge? Why can 
mathematics be applied in so many fields of sciences? These questions are interesting 
as such, but they are closely connected to each other. As formal sciences, mathematics 
and logic are, informationally, empty, but this makes it possible to apply them to 
different fields of sciences. At the same time, as formal and abstract sciences, they are 
not easy to grasp.  
Mathematics and logic, even if they are formal sciences, evoke emotions and passions. 
We have to understand that there is no pure mathematics or pure philosophy of 
mathematics in a sense that it would be explicit, explicitly presented and have a lack 
of “unintentional meanings” or “unintentional connotations”. The philosophical views 
are built from heteronomous sources, some ideas increasing, some decreasing. The 
heteronomity is a permanent condition, which has to be kept in mind while 
formulating a philosophy of mathematics; in particular, this heteronomity has to be 
recognized in mathematics and logic teaching.  
It is hard to see any single fundamental opinion which could be seen as prevailing, and 
it is not an easy task to build a coherent picture. In a sense, the kind of practical 
attitude given by Beta in Lakatos (1989; 54) may seem to be the final opinion: 
“Whatever the case, I am fed up with all this inconclusive verbal quibble. I want to do 
mathematics and I am not interested in the philosophical difficulties of justifying its 
foundations. Even if reason fails to provide such justification, my natural instinct 
reassures me.” In textbooks of logic and mathematics, the emphasis has been on 
teaching inference rules, but not on teaching the strategic aspects of the whole 
reasoning process (Hintikka, 1996; 2007; Detlefsen, 1996). Teaching strategic aspects 
supposes that the teacher has in his or her mind a holistic picture, which he or she is 
intending to convey to students. However, the very nature of mathematics and 
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mathematical reasoning is still a problem to be solved. Independently, whether we 
solve the problem consciously or unconsciously, we have a philosophy of 
mathematics. This philosophy affects the way we think about, teach, or do the 
mathematics. So, it is better that the philosophy of mathematics is explicit.  
Mathematics and logic are understood as being formal tools that can be used in 
different fields of sciences. However, the notion of a tool is not as innocent as is 
sometimes assumed. Mathematics and logic are cultural constructs, hence 
mathematical and logical notions, similarly to material objects, like a hammer, carry 
their cultural history. Mathematics and logic are not merely tools, but part and parcel 
of the methodology of natural sciences; they are built into the knowledge acquisition 
processes (Hintikka, 2007). 
In the following we are not intending to give a conclusive characterization of 
mathematics and logic. We are not intending to remove the multifaceted nature of 
mathematics and logic. The intention is to characterize one possible view which does 
justice to mathematical and logical reasoning. We will connect the expressed approach 
to some other approaches which give a richer view of the topic. 

ABOUT THE PHILOSOPHY OF MATHEMATICS
The fundamental questions of the philosophy of mathematics and of logic – such
as “What is mathematics?” and “What is logic?” – are open questions which do not 
have well characterized conclusive answers (Hintikka, 1976). Still, they are worth 
asking. There are several different kinds of answers in the history of philosophy, 
mathematics and logic. In the introduction of The Principles of Mathematics, Russell 
says that “The present work has two main objects. One of these, the proof that all 
pure mathematics deals exclusively with concepts definable in terms of a very 
small number of fundamental logical concepts, and that all its propositions are 
deducible from a very small number of fundamental logical principles 
…” (Russell, 1903, p. v). The characterization is easy to accept: mathematics is 
a deductive science, which is based on some fundamental statements usually called 
axioms and on some set of rules of inference. The Russellian approach has its 
philosophical roots in the emergence of new mathematical logic, which “tends 
to identify mathematics with its formal axiomatic abstraction (...) as the 
formalist school” (Lakatos, 1989, p. 1). Russell and Frege can be seen as founders 
of the modern mathematical logic.
The late 19th century and early 20th century formed a “golden age” for modern 
formal logic. There is no single logic, but it has seen several different kinds of 
objectives. Logic has been understood, for example, as “laws of thought”, a universal 
language or general natural science, which all have different interpretations. 
So, as laws of thought, logic describes how humans think (psychologism in 
logic) or logic tells us how to reason correctly, not how human actually or usually 
reason (normatism). 
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Mathematics and logic can be understood as just a formal study of (uninterpreted) 
symbols. The expressions “formal logic” or “symbolic logic” may suggest such an 
interpretation, which is a very problematic interpretation (Haack, 1995, p. 3). Of 
course, in logic, the manipulation of symbols, according to inference rules, is a central 
task. This manipulation is not the central content of mathematics and logic: they are 
rich in content and, hence, no simple idea captures their whole meaning. 
The present day approach – in which logic is a field of mathematics – is compatible 
with the normative interpretation. Even if we do not understand logic or mathematics 
as part of philosophy, they are rich in content. There is no need to assume any 
“philosophical logic”, besides the “mathematical logic” (Hintikka, 1973, ch I). 
Carnap, in his early publications, emphasized the formal aspects of logic and 
philosophy. The notion of syntax was central for him (Carnap, 2000), and Carnap’s 
notion of syntax is reminiscent of Wittgenstein’s notion of grammar, which is a 
fundamental notion of his philosophy of language.  
The fundamental idea that interconnected late 19th and early 20th century logic was 
formulated in logicism, which was the study of the foundations of mathematical 
reasoning. The basic intention was to reduce mathematics to logic. Russell was very 
optimistic when he said that it is possible to reduce mathematical propositions “to 
certain fundamental notions of logic” (Russell, 1903, p. 4). Nowadays, we may say 
that the fundamental idea was wrong: mathematics cannot be reduced to logic. Still, 
we can say that the logicist approach was very fruitful: the approach inspired research 
and brought together different kinds of researchers.  
The more general idea behind the development of logic was the Leibnizian idea of 
universal language (lingua characterica), which was shared among the logicians of 
the “golden age”. The “golden age” of logic was a proper golden age; the development 
of logic and mathematics was something remarkable. The names like Frege, Hilbert, 
Russell, Carnap, Gödel, Tarski, and Genzen give an impression how rich the 
development in logic and in mathematics was at that time, and Frege and Russell can 
be seen as the founders of the modern logic.  
Russell was a foundational researcher in the emerging modern logical theory. He knew 
exactly the ethos of modern empirical philosophy, and his logic and philosophy also 
had a foundational role in the emergence of this new empirical philosophy. However, 
at the same, Russell was anchored in the old philosophical tradition, his philosophical 
roots in the (criticism of) Kantian philosophy. His philosophical orientation can be 
seen very clearly in The Principles of Mathematics, which are very clear from the 
structure of the booki. Russell sees logic as a certain kind of natural science: “Logic, I 
should maintain, must no more admit a unicorn than zoology can; for logic is 
concerned with the real world, just as truly as zoology, though with its more abstract 
and general features” (Russell, 1929, p. 169). 
Frege’s philosophical roots are in the tradition of universal language. Logic was for 
him the language “in the sense that, for him, something could be said if, and only if, it 
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could be said in that very language” (Haaparanta, 1986, p. 159). His two-dimensional 
logical notation was pictorial and, hence, intuitively very attractive. However, the 
notation is very unpractical: it becomes very difficult to see when we consider longer 
sentences (see Frege, 1979). The linear notation introduced by Peano became the 
prevailing notion, and was used by Russell and Whithead in Principia Mathematica. 
Even if Frege never developed an explicit theory of semantics, his (semantical) 
analysis of language, based on his analysis on the notions of Sinn and Bedeutung, is 
extremely deep. The rejection of the possibility of the explicit theory of semantics is 
based on his opinion that it is not possible for us to look at the language outside of the 
language. (Haaparanta, 1986, 41). This opinion was later shared, for example, by 
Wittgenstein. Moreover, Russell’s theory of definite descriptions is syntactic, but the 
intention is semantic (Hintikka & Kulas 1985, pp. 33-34). So, it is possible to agree 
with Wheeler (2013, p. 293), when he said: “One would be hard pressed to 
overestimate Frege’s impact. His term logic and the invention of the predicate calculus 
(1879; 1893) revealed a rich, yet unified structure behind complex, quantified 
sentences of mathematics, and this breakthrough in logic opened the way to rigorously 
analyzing the meaning of mathematical statements and mathematical proof.”  
There was a great deal of belief in the possibilities and the power of growing logic. 
Gödel (1931) proved his famous and shocking incompleteness theorem for first order 
logic. The paper in which the theorem was proved is extremely important; it 
introduces several new and essential mathematical notions. For example, the method 
of Gödel numbering made it possible to speak about mathematics within mathematics, 
i.e., it made the metamathematics part of mathematics itself. The proof constructs a 
sentence which says that it is true but not provable. The proof clearly shows in which 
sense mathematical proofs can be constructive, and moreover, the theorem was 
something unexpected: it crushed Hilbert’s original program (Nagel & Newman 1989; 
Hintikka, 2000). 
After Gödel’s result, logicians managed to formalize the notion of computability. In 
the 1930s, several different formalizations of the notion emerged, namely recursivity 
(Gödel, Kleene, Herbrand), λ-definability (Kleene, Church, Rosser), and Turing 
machine computability (Turing, Post). It was especially interesting was that all these 
were proved to be coextensive, which has been the basis for the Church’s thesis, 
which says that an intuitive notion of computability can be identified with the notion 
of recursivity. Church’s thesis cannot be proved, since it interconnects a nonlogical 
notion of intuitive computability and a logical notion of recursivity. However, the 
notion of computability allowed for logical proofs that prove something not-
computable. In fact, the class of non-computable functions has proven to be an 
extremely interesting area of study (Mutanen, 2004). 
The semantical or model theoretical approach has been developed extensively since 
the 1930s, with Carnap becoming one of the founders of the model theoretical 
approach. Tarski, in his papers 1933 and 1944, formulated a logico-mathematical 
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notion of truth, which was intended to explicate the Aristotelian notion of truth. The 
Tarskian notion is, nowadays, known as an explication of the correspondence theory 
of truth (Hodges, 1986). The history of the model theoretical approach can be seen as 
anchored in independence and definability results in logic and in mathematics. 
Padoa’s principle states that a predicate is not definable in a theory, if it is possible to 
give two different interpretations to the predicate, while all the other non-logical 
constants of the theory have the same interpretation. The explication of non-Euclidean 
geometry was a similar model theoretic proof that parallel axiom is independent of the 
other axioms of geometry. The modern model theoretical approach has been developed 
by researchers like Carnap, Tarski, but also by Löwenheim, Skolem, Henkin, and 
Beth. However, there is no proper disagreement between proof theoretical and model 
theoretical methods within first-order logic: Gödel’s completeness theorem shows that 
a sentence is provable if, and only if, it is valid. 
The difference between syntactical (proof theoretical) and semantical (model 
theoretical) methods is very important to keep in mind. Even if in school teaching 
calculating, and hence syntactical methods, are emphasized, model theoretical 
methods are also introduced. Maybe it could be reasonable to highlight the 
methodological approaches more systematically. This could enrich the conceptual 
understanding of mathematics and logic. The approach we are formulating in this 
paper gives an example of such an enrichment. 
Mathematics and logic are heterogeneous disciplines in which there are several 
different kinds of approaches present. To get a better picture we have to consider 
mathematics and logic “from outside”. However, this task is not so straight-forward, 
because it leads us to one central mathematical and logical problem: the character of 
metamathematics. This leads us to the lines of thought that are central for the 
argumentation in this paper. 

LOGIC AS CALCULUS AND LOGIC AS LANGUAGE 
The formal character is present in modern mathematical and logical theory, which can 
be seen from the works and journals of logic and mathematics. Even if logic and 
mathematics are expressed in different kinds of formalisms, logic and mathematics are 
not merely a formal game of the symbols on paper. Hilbert’s famous characterization 
of mathematics, as a mere game played by simple rules with meaningless symbols on 
paper, must be understood within his more general philosophical view of mathematics. 
Hilbert was interested in problems of metamathematics, and his intentions were almost 
the converse to that of Wittgenstein.  
Wittgenstein imbedded the problem of mathematics in his more general philosophy of 
language, when he asked the question: “Is mathematics about signs on paper?” The 
answer he gives is “No more than chess is about wooden pieces.” (Wittgenstein, 1988, 
p. 290) According to Wittgenstein, mathematics is a certain kind of activity or a 
certain game to be played. It is not possible to take a look at the fundamentals of the 
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game, that is, there is no metamathematics which could tell us about what 
mathematics really is, and it is not possible to look at the mathematical game outside 
of the game itself; we are bound just to play the game. That is, the only way to get to 
know mathematics is just to do mathematics. The meaning of the mathematical notion 
cannot be found from the result, but rather to understand the meaning, one must look 
at the proof, “the calculation actually going on in the proof” (Wittgenstein, 1988, pp. 
369–370).  
To get a better grasp let us consider the following distinction made by van Heijenoort 
(1967): [1] logic and mathematics as calculus and [2] logic and mathematics as 
language. The very idea is that if we understood logic and mathematics as calculus 
then it would appear to be interpretable and reinterpretable over and over again. The 
possibility of interpreting over and over again provides a great deal of practical 
freedom: a mathematician or a logician can decide which kind of interpretation he or 
she chooses, and this interpretation is developed systematically in model theory. On 
the contrary, mathematics and logic can be understood as language, that is, as a 
language with a fixed interpretation. Thus, logic and mathematics as language are 
languages which speak about the reality, as Russell characterized mathematics to be 
above. In fact, Hilbert’s characterization of mathematics as a game is a game in the 
sense of the calculus; and for Wittgenstein, the game is in the sense of language.  
The taxonomy given by van Heijenoort can be generalized as a whole language as 
Kusch (1989) demonstrates. The taxonomy is based on very fundamental 
philosophical presuppositions, which are not easily recognized. In particular, the 
philosophical presuppositions behind mathematics and logic are extremely difficult to 
recognize. Moreover, as fundamental philosophical presuppositions, they are 
orientating principles rather than explicit statements or norms (Hintikka, 1996). 
Independently on the philosophical orientation, as Wittgenstein said, “calling 
arithmetic a game is no more and no less wrong than calling moving chessmen, 
according to chess-rules, a game” (Wittgenstein, 1989, p. 292). Wittgenstein 
interconnects mathematical and chess games, but at the same time, he brilliantly 
separates mathematics and chess from a game of billiards: “A billiards problem is a 
physical problem (although its solution may be an application of mathematics). (..) a 
chess problem is a mathematical problem” (Wittgenstein, 1989, pp. 292-293). The 
characterization of mathematics as a game does justice to mathematics as a dynamic 
computation process, which was explicated in Turing’s formulation of computation 
(Turing, 1936).  
In Turing machine computation, the starting point is a known (and usually solvable) 
problem, for example, what is the sum of given numbers. However, in mathematical 
and logical reasoning, we do not merely consider these kinds of well-defined and 
answerable problems; even if they seem to be over-represented in school mathematics. 
Mathematics is, essentially, something more than mere computation or merely 
following given rules. These rules allow us to formulate constructive proofs and this 
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constructiveness is related to the demonstrativity of mathematical and logical 
reasoning. The strategies of mathematical and logical reasoning are the most important 
things to learn, in order to understand mathematical and logical reasoning. Moreover, 
strategic aspects are central, when mathematics and logic are applied in different fields 
of sciences (Hintikka & Kulas, 1985, ch III p. 17). 

CONSTRUCTIVE METHODS 
The philosophical background of constructive philosophy is very deep. In Meno, Plato 
demonstrates a dialectical method, which is a marvelous example of epistemic 
construction in which dialog proceeds via questions and answers. These questions and 
answers build up the knowledge of the learner (the answerer) in a factual manner. The 
teacher (questioner) has a strategic map of the learning situation. The dialog is 
extremely rich and one can find all the central aspects of constructive learning and 
teaching from the text. The discussion in philosophy and in pedagogy, based on Meno, 
is still going strong. 
It is not obvious in what sense mathematical and logical reasoning are constructive. 
Carnap (1969, p. 152) says that “The basic language of the constructional system is 
the symbolic language of logistics. It alone gives the proper and precise expression for 
the constructions; the other languages serve only as more comprehensible auxiliary 
languages.” For Carnap, the foundation of constructions is in phenomenalism: “In this 
book, I was concerned with the indicated thesis, namely that it is, in principle, possible 
to reduce all concepts to the immediately given.” (Carnap 1969, p. vi) However, 
constructive philosophy does not presuppose commitment to phenomenalism or to any 
other ism.  
Perhaps the best example of construction in mathematics can be found in geometry. 
Elementary geometry is known to be decidable, which means that there is a 
(computable) decision method for the geometry. This does not imply that it would be a 
trivial or a mechanical task for generating proofs in elementary geometry. One 
excellent example in which the geometrical constructions and their knowledge-
providing character becomes evident is the slave boy example in Plato’s dialogue 
Meno.ii In the dialog, Socrates directs the reasoning process of a slave boy by his 
questioning method. The reasoning is based on the drawings made on the ground 
during the process. The dialog shows how these drawings increase the slave boy’s 
knowledge. These drawings, together with general geometrical knowledge, construct 
the intended result. This knowledge construction process is essential in all 
mathematical and logical reasoning. 
The conclusion of the reasoning in Meno is a geometrical theorem. The proof of the 
theorem is a strategic search for the information needed in the proof. The strategy is 
realized by the Socratic questioning method. However, in the end, anyone who has 
followed the construction sees the result; that is, he or she understands the theorem 
and, hence, sees the truth of it. In fact, the Socratic method used in the dialog 
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demonstrates a general pedagogical paradigm which can be used – and has been used 
– in any teaching. 
The Socratic questioning method brings up the strategic level of mathematical 
reasoning. The questions Socrates asks are motivated by a strategy that directs the 
reasoning towards the intended conclusion. What knowledge is needed to lead such a 
process? How do such processes take into consideration the learner’s level of 
knowledge? The process is a step-by-step process, in which each step is made obvious 
by giving the information needed – the questioning-answering method is designed to 
guarantee the success. What about the teacher’s knowledge? The Socratic irony refers 
to idea that Socrates, in fact, knew, but he feigned being unknowing. However, there 
is no need to have full knowledge before the teacher leads the reasoning process; what 
he or she has to have is good a methodological knowledge of the problem setting. 
Hence, methodological knowledge is a solution to Meno’s paradox (Hintikka, 2007; 
Kelly 1996). The explicit presentation of the reasoning process with the pictures and 
formulas makes the reasoning process observable. Hence, the entire audience can 
follow the reasoning and infer the same conclusion for himself or herself. That is, 
mathematically reasoned knowledge will become transmissible by such an explicit and 
public process (Hendricks, 2001; 2010). 
The increase of geometrical knowledge in the example in Meno can be related to a 
more general problem of knowledge transmissibility. In fact, the argument shows that 
such geometrical knowledge is a paradigmatic example of transmissible knowledge. 
The reason is methodological: geometrical knowledge is constructed during the 
reasoning process, in a step-by-step manner. In fact, this observation can be 
generalized to all mathematical and even certain kinds of empirical reasoning. The 
pedagogical aspect of the dialog is that Socrates asks the question in a way that allows 
the slave boy to understand the questions and find the answers himself. So, all the 
steps become constructively known by the slave boy. This kind of explicit knowledge 
acquisition process can be followed and reproduced. Moreover, as Hendricks (2010) 
shows, knowledge transmissibility is closely related to public announcement that 
explicitly take place in the strategically led discussions like Socrates and the slave boy 
had in Plato’s Meno. 
The idea of the constructions is to take more and more new individuals into 
consideration and look at their relations to other individuals. In intuitionism, the 
constructive method has been an essential part of logical reasoning: “In practice, the 
most important requirement of the program of constructive proof is that no existential 
statement shall be admitted in mathematics, unless it can be demonstrated by the 
production of instance.” (Kneale & Kneale, 1962, 675) The observation was 
generalized to a geometrical method of analysis and synthesis by Hintikka and Remes 
(1974). They characterize geometrical analysis as follows: 
“Speaking first in intuitive terms referring to geometrical figures, an analysis can only 
succeed if, besides assuming the truth of the desired theorem, we have carried out a 
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sufficient number of auxiliary constructions in the figure in terms of which the proof 
is to be carried out. (…) This indispensability of constructions in analysis is a 
reflection of the fact that in elementary geometry, an auxiliary construction, a 
kataskeue (…), which goes beyond the ekthesis (…) or the ‘setting-out’ of the theorem 
in terms of a figure, must often be assumed to have been carried out before a theorem 
can be proved.” (Hintikka & Remes 1974, p. 2) 
Geometrical constructions bring new geometrical objects into the reasoning process, 
and these new objects increase the information used in reasoning. This can be 
generalized into logical reasoning by observing that the geometrical objects behave 
similarly to individuals in logical reasoning. These new individuals increase the 
information, which can be precisely defined and even measured. The definition of the 
increased information is based on the number of interconnected individuals in the 
reasoning. The number tells us the depth of the argumentation, and it can be shown 
that an increase of the depth increases the logical information. Hintikka (1973) based 
his definition of surface tautology and depth tautology on this measure:  
”Depth information is the totality of information that we can extract from a sentence 
by all the means that logic puts to our disposal. Surface information, on the contrary, 
is only that part of the total information which the sentence gives us explicitly. It may 
be increased by logical operations. In fact, this notion of surface information seems to 
give us, for the first time, a clear-cut sense in which a valid logical or mathematical 
argument is not tautological, but may increase the information we have. In first-order 
logic, valid logical inferences must be depth tautologies, but they are not all surface 
tautologies.” (Hintikka, 1973, p. 22) 

EMPIRICAL REASONING 
Logical reasoning is theoretical in the sense that it can be done by paper and pencil. 
The results of such reasoning are statements. Such reasoning should be separated from 
empirical reasoning: “This means that all talk about construction, including the 
construction postulates, is inappropriate, for it is about doing things, whereas, in fact, 
geometry is a theoretical discipline that treats eternal things. Since, what Plato 
criticizes is just the “language” of geometers, it does not mean that all the geometer’s 
concern with construction problems could be excluded from geometry as a science, 
rather, they should be reinterpreted as theoretical statements.” (Stenius, 1989, p. 78)  
If we use Hintikka’s (1973) notions, we can say that this kind of theoretical reasoning 
is part of the indoor games. However, there is need for the logical analysis of 
empirical and experimental reasoning. To carry out this task, Hintikka (1973) 
introduces outdoor games, which are games of seeking and finding in reality. There is 
no essential methodological difference between indoor and outdoor games. In fact, this 
close interconnection is already recognized by Newton: “It is the use of the method of 
analysis as a model of experimental procedure of the great modern scientists, notably 
by Newton.” (Hintikka & Remes, 1974, p. xvii)  
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The analysis of experimental reasoning shows that this kind of model-related logic can 
be a realistic reconstruction of experimental (and empirical) reasoning. Thus, we can 
understand why Hintikka and Remes (1974) say that: 
“We do believe that in a very deep sense, Newton really practiced what he preached, 
and that his methodological pronouncements present an interesting general model of 
the experimental method at large. We have come to realize that both these claims, also 
the historical one, need further argument and further evidence, before we are prepared 
to rest our case. (…) In the case at hand, the need and unpredictability of auxiliary 
constructions in analysis shows once and for all that in spite of its heuristic merits, the 
method of analysis just cannot serve as a foolproof discovery procedure.” (Hintikka & 
Remes, 1974, p. xvii) 
In a similar manner to how geometrical reasoning can be generalized as logical 
reasoning, this Newtonian reasoning can be generalized as general experimental 
reasoning. The theoretical foundation is the interrogative model of inquiry developed 
by Hintikka. The interrogative model of inquiry shows how the usual experimental 
reasoning can be constructive, just as logical, mathematical, and geometrical reasoning 
are, whilst the constructive aspects connect the interrogative model to present day 
discussions about causality (Woodward, 2003). The difference between the 
interrogative model and logical theory is in the character of the forthcoming 
information. With both logical and experimental reasoning, the intention is not to find 
singular facts or to generalize universal laws from given sets of data, but to understand 
the mechanisms underlying the phenomena (Hintikka & Kulas, 1985, p. x). However, 
the underlying logic is the same usual logic and, in particular, logical and experimental 
reasoning are strategically parallel (Hintikka, Halonen & Mutanen 2002). 

CONCLUDING REMARKS 
We have seen that there are several different interpretations of mathematics and logic 
which are not compatible. This is not something that should be denied or avoided. 
Rather, it is a symptom of the richness of the content of mathematics and logic. The 
heterogeneity of mathematics and logic cause polysemy into the field, which may 
occur in practical problem solving situations. This is challenging for teachers and 
researchers, but the challenging situation makes mathematics and logic extremely 
interesting topics to study. As we have seen, it is possible to find rich interpretations 
which formulate a holistic picture of the field of study and which allow for open 
discussion together with other interpretations. 

NOTES 
1. To fully comprehend this, please take a look at the table of contents of the book. 

2. To see more detailed analysis of the example, see Hintikka & Bachman 1991 pp. 20-28. 

 

KNOWLEDGE	ACQUISITION	AND	MATHEMATICAL	REASONING



 Page 266

 

 

 
REFERENCES 
Benacerraf, P. & Putnam, H. (Eds.). (1989). Philosophy of Mathematics. Cambridge: 

Cambridge University Press. 
Carnap, R. (1969). The Logical Structure of the World/Pseudoproblems in 

Philosophy. Berkeley: University of California Press. 
Carnap, R. (2000). Logical Syntax of Language. London: Routledge. 
Detlefsen, M. (1996). Philosophy of Mathematics in the Twentieth Century. In: 

Shanke, Stuart G. (Ed.) Philosophy of Science, Logic and Mathematics in the 
Twentieth Century. Routledge. 

Frege, G. (1967). Begriffsschrift, a formula language, modeled upon that of 
arithmetic, for pure thought. In: Van Heijenoort, J. (Ed.) From Frege to Godel: 
A Source Book in Mathematical Logic, 1879-1931. London: Harvard University 
Press. [Originally published in 1879.] 

Gödel, K. (1967). Some metamathematical results on completeness and consistency, 
On formally undecidable propositions of Principia mathematica and related 
systems I, and On completeness and consistency. In: Van Heijenoort, J. (Ed.) 
From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931. 
London: Harvard University Press. [Originally published in 1931; abstract 
published and already presented in 1930.] 

Haack, S. (1995). Philosophy of Logics. Cambridge: Cambridge University Press. 
Haaparanta, L. (1985). Frege’s Doctrine of Being, Acta philosophica Fennica. 

Helsinki: Ylopistopaino. 
van Heijenoort, J. (1967). Logic as Calculus and Logic as Language, Boston Studies 

in the Philosophy of Science, 3, 440-446. 
Hendricks, V.F. (2001). The Convergence of Scientific Knowledge – a View from the 

Limit. Dordrecht: Kluwer Academic Publishers. 
Hendricks, V.F. (2010). Knowledge Transmissibility and Pluralistic Ignorance: A First 

Stab. Metaphilosophy, 41(3), 279-291. 
Hilbert, D. (1950). The Foundations of Geometry, reprint edition of the Open Court 

Publishing Company. La Salle Illinois; originally published in 1902 [EBook 
#17384]; December 23, 2005: http://users.auth.gr/stamata/files/hilbert_d_-
_the_foundations_of_geometry.pdf 

Hintikka, J. (1973). Logic, Language-Games and Information: Kantian Themes in the 
Philosophy of Logic. Clarendon Press 

Hintikka, J. (1976). The Semantics of Questions and the Questions of Semantics. 
Amsterdam: North-Holland. 

ARTO	MUTANEN



 Page 267

 

 

 
Hintikka, J. (1989). Knowledge Representation and Interrogative Model of Inquiry. In: 

M. Clay and K. Lehrer (Eds.) Knowledge and Skepticism. Boulder: Westview 
Press. 

Hintikka, J. (1996). The Principles of Mathematics Revisited. New York: Cambridge 
University Press. 

Hintikka, J. (1998). What is Abduction? The Fundamental Problem of Contemporary 
Epistemology, in Transactions of the Charles S. Peirce Society, Summer 1998, 
Vol. XXXIV, No. 3, pp. 503-533. [Also published in Hintikka 2007, ch. 2.] 

Hintikka, J. (2000). On Gödel. Belmont: Wadsworth. 
Hintikka, J. (2007). Socratic Epistemology. New York: Cambridge University Press. 
Hintikka, J. & Bachman, J. (1991). What If …? Toward Excellence in Reasoning. 

Mountain View, CA: Mayfield Publishing Company. 
Hintikka, J., Halonen, I. & Mutanen, A. (2002). Interrogative Logic as a General 

Theory of Reasoning. In: R.H. Johnson and J. Woods (Eds.), Handbook of 
Practical Reasoning, 295-337. Dordrecht: Kluwer Academic Publishers. 

Hintikka, J. & Kulas, J. (1985). Anaphora and Definite Descriptions: Two Applications 
of Game-Theoretical Semantics. Dordrecht: D. Reidel. 

Hintikka, J. & Remes, U. (1974). The Method of Analysis: Its Geometrical Origin 
and Its General Significance. Dordrecht: D. Reidel Publishing Company 

Hodges, W. (1986). Truth in a Structure, Proceedings of the Aristotelian Society, New 
Series, vol. 86, 135-151. 

Hodges, W. (2001). Logic: an Introduction to Elementary Logic. London: Penguin 
Books. 

Kneale, W. & Kneale, M. (1988). The Development of Logic. Oxford: Clarendon 
Press. 

Kusch, M. (1989). Language as Calculus vs. Language as Universal Medium: a 
Study in Husserl, Heidegger and Gadamer. Dordrecht: Kluwer. 

Lakatos, I. (1989). Proofs and Refutations: The Logic of Mathematical Discovery, 
Cambridge: Cambridge University Press. 

Niiniluoto, I. (1999). Critical Scientific Realism. Oxford: Oxford University Press. 
Peirce, C.S. (1955). Abduction and Induction. In: Buchler, J. (Ed.). Philosophical 

Writings of Peirce. New York: Dover Publications. 
Russell, B. (1993). Introduction to Mathematical Philosophy. New York: Dover 

Publications (The edition is an unabridged and unaltered republication of the 
second edition (1929) of the work first published in 1919 by George Allen & 
Unwin Ltd.) 

KNOWLEDGE	ACQUISITION	AND	MATHEMATICAL	REASONING



 Page 268

Russell, B. (1993). Introduction to Mathematical Philosophy. New York: Dover 
Publications Inc. [Originally published in 1919 by George Allen & Unwin Ltd.] 

Stenius, E. (1989). Critical Essays II. Acta philosophica Fennica. Helsinki: 
Yliopistopaino.

Tarski, A. (1956). The Concept of Truth in Formalized Languages. In: Tarski, A. 
Logic, Semantics, Metamathematics. Oxford: Clarendon Press. (The paper was 
originally published in Polish in 1933, and the German translation in 1935). 

Tarski, A. (2001). The Semantic Conception of Truth and the Foundations of 
Semantics. In: A.P. Martnich (Ed.). The Philosophy of Language. New York: 
Oxford University Press, 69-91. (The paper was originally published in 
Philosophy and Phenomenal Research 4, 1944)

Turing, A. (1936). On Computable Numbers, with Application to the 
Entscheidungsproblem. Proceedings of the London Mathematical Society, series 
2, vol. 42. (The paper is republished in M. Davis (Ed.). (1993). The
Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems 
and Computable Functions. Mineola, New York: Dover Publications, 115-151.) 

Wheeler, G. (2013). Models, Models, and Models. Metaphilosophy, 44(3), 293-300. 
Wittgenstein, L. (1922). Tractatus Logico-Philosophicus. New York: Kegan Paul, the 

quotations are from: Project Gutenberg’s Tractatus Logico-Philosophicus, 
Release Date: October 22, 2010 [EBook #5740], 
http://www.gutenberg.org/files/5740/5740-pdf.pdf, (accessed 9.10.2013) 

Wittgenstein, L. (1988). Philosophical Grammar. Berkeley: Basil Blackwell. 
Woodward, J. (2003). Making things happen: a theory of causal explanation. New 

York: Oxford University Press.

ARTO	MUTANEN


