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In this paper we introduce the concept of cognitive artefact and show how such 
artefacts are used in mathematical activities. By analysing different instances of 
artefact use we argue that our use of cognitive artefacts can lead to (at least) three 
different types of qualitative shifts in our mathematical capacity. Cognitive artefacts 
may allow: 1) expansions of practices in otherwise impossible ways, 2) extensions of 
mathematical domain, and 3) creative mediation of different mathematical areas. We 
argue that the use of cognitive artefacts – and in 2) and 3) – the choice in artefacts 
influence the development and content matter of mathematics. Our analysis of the 
role played by cognitive artefacts shows that mathematics is essentially a tool driven 
practice. We close the paper by discussing consequences of this realization for 
the choices we face concerning the introduction of CAS-tools in mathematics 
education.

INTRODUCTION
The computer has made its entry into mathematics teaching and learning – which
has created heated debates with very strong opinions for and against. This paper is 
not a part of this debate, at least not directly. We are not addressing the 
advantages and disadvantages of computer assisted teaching and learning of 
mathematics – as a matter of fact, we are not discussing computers at all. Rather, 
we take this debate as an opportunity to shift the focus from the computer as 
such to the use of tools in mathematics in general, to move beyond the 
“good”/”bad” discussion of computers and instead ask: What can we learn about 
mathematics if we view mathematics as a tool-driven practice in research and in 
every-day (or practical) mathematics?
The concept of cognitive artefacts has drawn a lot of attention in 
contemporary cognitive science (see Heersmink 2013 for an overview and Hoyles 
& Noss 2009 for some educational implications), and in this paper we are using this 
concept to explore how tools affect the development of mathematics. In the 
following we introduce the concept of cognitive artefacts, and we use it to 
analyse four concrete pieces or episodes in ancient and modern mathematics in 
order to explore and pinpoint different ways in which mathematics can be viewed as 
driven by tools. We identify three kinds of qualitative shifts in these pieces of 
mathematics that are due to the use of such tools. We will close the paper by 
discussing what implications the perspective offered by the concept of cognitive 
artefacts could have on mathematics education. 
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WHAT ARE COGNITIVE ARTEFACTS? 
A cognitive artefact is a human made object that is used to aid, improve or enhance 
human cognition (cf. Hutchins, 2001, p. 126). Typical examples of cognitive artefacts 
include shopping lists, calendars, address books and GPS navigation devices. Such
tools allow us to think better, more reliably or with less effort (cf. Kirsh & Maglio, 
1994). They do so not by enhancing our mental capacity, but rather by changing the 
cognitive landscape and offer new and cognitively less expensive ways of solving a
given task. 
In parts of the literature cognitive artefacts are exclusively associated with physical 
objects (e.g. Hutchins, 2001), while other theorists operate with a more inclusive 
definition where conceptual artefacts such as procedures, rules and certain concepts 
are also accepted as cognitive artefacts (e.g. Norman, 1993, p. 4). In this paper we will 
use the concept in this last more inclusive sense. This choice is motivated by several 
observations. Firstly, as also noticed by Norman, algorithms and rules of thump are 
clearly human creations, they are artefacts, and they can in some cases play the same 
role in human cognition as physical cognitive artefacts, i.e. they aid, improve or 
enhance our thinking. Secondly, in many – if not most – cases the physical device 
taken in isolation is not enough to accomplish the given cognitive task. You will also 
need to know certain algorithms or rules for operating the device. Thus it is natural to 
include the conceptual artefacts in the totality of resources needed in order to
accomplish the task. Lastly, in some cases the physical part of the artefact can even be 
internalised. The alphabet for instance can be seen as a cognitive artefact that is used 
to reduce the cost of search operations; if the books in the library were not
alphabetized it would be much harder to find the one you need. However, whether you 
carry a piece of paper with the alphabet written down or have memorized the alphabet 
is not important. In both cases you use the same artefact.  
In the following we will describe how cognitive artefacts are used in mathematics and 
identify three different ways in which artefacts have led to qualitative shifts in 
our ability to perform mathematical cognition. 

EXPANDING THE GIVEN 
The first claim we wish to make in this paper is that mathematics is essentially a tool-
driven activity. Over the last two decades cognitive science has shown that 
humans and several other species of animals have an inborn ability to solve tasks 
we would describe as mathematics. In short, we can do basic arithmetic on sets 
with less than four elements, and we can judge the approximate size of larger sets 
(Feigenson et.al. 2004; see also Johansen 2010, pp. 49 for discussion). Our inborn 
abilities however do not allow us to do anything more than that. So if we want to 
find out what 5+6 is or judge whether a set contains 9 or 10 elements, we have to 
use qualitatively different cognitive abilities and strategies (Núñez 2009).  
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The limits of our inborn abilities were effectively demonstrated in a study on members 
of the Amazonian Pirahã tribe (Frank, Everett, Fedorenko, & Gibson 2008). This tribe 
is especially interesting in this context because their language does not contain number 
words, and consequently the Pirahã does not have access to the technology of 
counting. In the study a subject was shown a small number of objects and was asked 
to match the sample by placing a similar number of objects on a table. In test 
conditions where the sample was hidden the performance of the subjects decreased as 
the size of the sample increased; with a sample size of four objects most subjects were 
able to match the sample correctly, but with a sample size of ten objects most subjects 
would fail the test. In a follow-up study similar results were obtained with participants 
from Boston who were deprived the ability to count (Frank, Fedorenko & Gibson 
2008).  
Tests such as these show that normal adult humans cannot perform simple tasks such 
as matching a hidden sample of ten objects without cognitive support. We simply have 
to use some kind of tool in order to solve this task. One of the tools that can be used in 
this respect is counting. Counting involves a large amount of highly complex cognitive 
mechanisms, such as the ability to group objects in certain ways, but first and 
foremost it involves a counting sequence, such as the sequence of words “one”, “two”, 
“three” etc. In our analysis a counting sequence is a clear example of a conceptual 
cognitive artefact.  
From a mathematical point of view the example might be banal, but there is a more 
general lesson to be learned from it. Our ability to think – also mathematically – is 
determined by the cognitive context we are positioned in, that is: by the cognitive 
artefacts and other cognitive support available to us. An Amazonian Indian cannot 
suddenly begin to count, even if she wants to and even though she has the cognitive 
hardware (so to speak) needed in order to do so. It is simply not within her cognitive 
reach. The introduction of counting thus constitutes a radical change in our cognitive 
landscape. With access to counting we can perform tasks that are impossible for us to 
do without. Counting allow us to expand our inborn ability to handle the size of sets 
with digital precision. Without counting (or similar techniques) we can handle sets 
with 1 to 4 elements, but with counting we can handle larger sets with the same degree 
of precision.  
A similar story can be told about basic arithmetic. We seem to have an inborn ability 
to do addition and subtraction, but only on small sets. With the introduction of the 
proper cognitive artefacts these abilities can be expanded so as to be applicable to sets 
of arbitrary size. In this case the proper artefacts could be conceptual artefacts such as 
rules and algorithms or tables of basic products, but also physical artefacts such as the 
abacus, counting boards or representational systems that allow basic calculations to be 
performed (see e.g. Menninger 1992, pp. 299 and Johansen & Misfeldt 2015 for 
examples and analysis). It is not our ambition at this place to provide historical 
analysis or account for the genealogy of counting or arithmetic. The fact that we use 
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tools is not due to historical contingencies. It is due to the cognitive conditions we face 
as human beings; without cognitive support our mathematical abilities are extremely 
limited. The kind of tools and cognitive artefacts we use is however a result of 
historical development and below we will provide historical case studies illustrating 
the importance of such developments. 

CHOICE MATTERS 
In this section we will expand our analysis by showing some of the roles cognitive 
artefacts play in academic mathematics and by illustrating why the choice of cognitive 
artefact matters. 
We will begin by looking at Proposition 18 from Book V in Euclid’s The Elements.
The proposition is stated and explained in the following way:   

Proposition 18 

If magnitudes be proportional separando, they will also be proportional componendo.

Let AE, EB, CF, FD be magnitudes proportional separando, so that, as AE is to EB, so is 
CF to FD; I say that they will also be proportional componendo, that is, as AB is to BE, so 
is CD to FD (Heath, 2006, p. 427).

Even with this explanation it might be difficult to understand the exact content of the 
theorem. In Heath’s translation the reader is offered cognitive support in form of the 
following diagram (here, slightly simplified):  

Figure 1: Diagram representing Euclid V.18 

In fact, there are diagrams (or rather: figures) like this on almost every page of 
Heath’s translation. This is puzzling in the sense that Euclid carefully describes 
all of the needed constructions in the text. So why has Heath included the figures 
in the book? They add nothing to the content of the text and thus seem completely 
superfluous.
In order to answer this we must turn to the cognitive role such visual 
representations play. Of course we could read the text and imagine the 
appropriate figure in our mind’s eye. It would however take a considerable effort –
even in simple cases such as the above. Our short-term memory is very limited and 
not completely reliable, so from a cognitive point of view it makes sense to off-load 
some of the cognitive work to a material object, in this case: a figure drawn on 
paper. The figure is in other words a highly specialised cognitive artefact. To 
introduce a more precise concept, we can say that in this case the artefact has an 
anchoring role for our cognition (Hutchins 2005). 
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The conceptual structure we need to build in order to understand the content of 
Euclid’s theorem is anchored in the physical drawing. The anchor keeps the general 
structure stable and allow us to focus on and manipulate local parts of the structure; 
we can for instance imagine what would happen if we moved the point E or we could 
add new elements to the drawing (as Euclid actually does in the proof of the theorem). 
In this case the anchor seems to be a fairly natural depiction of the content it anchors; 
it simply represents magnitudes as line segments. 
We will not go through the details of the proof here and the reader does not need to 
understand it in details, but we will nevertheless include the proof in full in order for 
the reader to form an impression of the cognitive workload it would take to actually 
understand and read the proof. In other words, we want to prove a point, not a 
theorem. This being said, the proof goes like this: 

For, if CD be not to DF as AB to BE, then, as AB is to BE, so will CD be either to some 
magnitude less than DF or to a greater.  First, let it be in that ratio to a less magnitude 
DG. Then, since, as AB is to BE, so is CD to DG, they are magnitudes proportional 
componendo, so that they will also be proportional separando. Therefore, as AE is to EB,
so is CF to FD. But also, by hypothesis, as AE is to EB, so is CF to FD. Therefore also, as 
CG is to GD, so is CF to FD. But the first CG is greater than the third CF; therefore the 
second GD is also greater than the fourth FD. But it is also less: which is impossible. 
Therefore as AB is to BE so is not CD to a less magnitude than FD. Similarly we can 
prove that neither is it in that ratio to a greater: it is therefore in that ratio to FD itself. 
Therefore, etc. (Heath 2006, p. 427). 

As we can see, even with the cognitive support offered by the diagram in figure 1, it 
would take a considerably effort to follow the proof. As it is, Heath gives us a hint to 
another way to attack the problem. He translates the problem to algebraic symbols. In
this representation the theorem states that if 
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Here, we use another cognitive artefact; abstract symbols. Contrary to the Euclidian
proof we do not need to consider the content of the operations we perform. We just 
need to know a few fully formal rules that tell us how we are – and how we are not –
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allowed to operate on the symbols. In other words, the artefact allows us to externalise 
the problem and solve it as a series of physical actions. 
This example shows that different artefacts have different affordances. A diagram 
such as figure 1 offers a qualitatively different type of cognitive support than algebraic 
symbols, and tasks that might be difficult to perform using only the figure might be 
relatively easy to perform when using algebraic symbols (and vice versa). Thus, 
cognitive artefacts are not just cognitive artefacts. Different artefacts shape the 
cognitive landscape in different ways, and for that reason it matters what type of 
artefacts one have access to. What one can do – and maybe even what one can think –
is determined by the cognitive artefacts one has access to.

ARTEFACTS AND THE DEVELOPMENT OF MATHEMATICS 
We should keep in mind that cognitive artefacts are artefacts; they were not 
always around, but were developed by humans. Furthermore, as we argued in 
the second section, cognitive artefacts are necessary in order to do more than 
rudimentary mathematics. However, with the example analysed in the previous 
section it can also be asked whether the introduction of new cognitive artefacts 
into the mathematical practice can change the cognitive landscape in such a way that 
it not only allows us to expand our given abilities or to do something well-known 
more easily, but also allows us to perform qualitatively new tasks. In other words: 
Can the introduction of new cognitive artefacts lead to qualitative changes in the 
content matter of mathematics? 
In this section we will discuss the possible connection between the development 
of new cognitive artefacts and developments of mathematics by analysing two 
cases: Cardano’s introduction of complex numbers [1] and Minkowski’s use 
of n-dimensional lattices. The first case involves relatively simple mathematics 
and is relatively distant in time, whereas the second case involves advanced 
mathematics and describes a relatively recent development. 

Cardano and the complex numbers 
In Ars Magna (1545) Cardano considered several problems of the type: Divide a 
given number into two parts such that the product of the parts is equal to 
another given number. In one of the cases he considered how to divide ten into two 
parts such that their product is 40 (Cardano 2007, p. 219). This type of problems 
has been known since antiquity and in Euclid’s The Elements we have an 
algorithm that makes it possible to construct solutions geometrically in special 
cases (Proposition VI.28). The Euclidian algorithm however can only be applied if 
the square of half of the given number is greater than or equal to the given 
product (this is explicitly stated as a condition to the theorem (Heath, 2006, p. 
518)). In this case the square of half the number is 25 and the given product is 
40, so the condition is not fulfilled, and Cardano began his treatment by stating 
that “it is clear that this case is impossible” (Cardano 2007, p. 219). Nevertheless, 
Cardano pressed on and applies the Euclidian 
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algorithm (or a version hereof). He constructs the square of half of the given line and 
represented the result geometrically, as seen in figure 2.  

Figure 2: Drawing from Cardano (redrawn). The given line is represented 
as the line segment AB 

As the next step the algorithm requires us to subtract the given area from the square of 
the given line and to find the square root of the result. In this case we will have to 
subtract 40 from 25 and construct the square root of the resultant area. This cannot be 
done geometrically – hence the condition in Euclid’s proposition. Cardano responded
to this problem by abandoning the geometric interpretation and representation of the 
situation. He simply replaced the geometric representation with abstract algebraic 
symbols, and then carried through with the rest of the steps in the algorithm 
interpreted not as geometric constructions, but as algebraic operations. This led him to 
the conclusion that the problem has the solutions 155  and 155  , as the sum 
of these numbers are 10 while their product is 40 [2].
Solutions such as those found by Cardano cannot be found or even seen as long as one 
is using an algorithm based on a geometric interpretation of the situation. One cannot 
represent negative areas geometrically and hence from a geometrical point of view it 
does not make sense to subtract a larger area from a smaller one or to construct the 
square root of the resultant (negative) area. From an algebraic point of view the 
situation is different. With the proper representational system in place one can
represent the square root of -15 just as well as one can represent the square root of 15 
(although we might not be able to evaluate the former or understand it as a
constructable geometric object, as Cardano was well aware. It was merely ink on 
paper, so to speak). In other words, the algebraic symbols used by Cardano allowed
him to anchor and thus introduce and operate on a class of objects (square roots of 
negative numbers) that could not be anchored in the traditional geometrical 
representations. So in this case the development of a particular cognitive artefact 
(algebraic symbols) allowed a qualitative shift in the content of the 
mathematics Cardano was able to develop and work with (c.f. De Cruz & De Smedt 
2013).

Minkowski lattice – An artefact in geometry of numbers? 
Our final example is an episode in the history of modern mathematics regarding 
the German mathematician Hermann Minkowski’s development of geometry of 
numbers and the concept of a general convex body. Before we enter into the 
mathematical
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details, we introduce a methodological triangle (figure 3) [3] that displays the relation 
between the historian, the materials/historical artefacts and the historical actors. 

 

 

 

 

 

 

Figure 3: Methodological triangle 

Reliability and validity of historical analyses depend on the relation between these 
three i.e. the relation between the perspective of the historian (from which 
perspective(s) is the historian writing his/her history?), the perspective of the historical 
actors (what were/was their intentions at the time?) and what material/artefacts does 
the historian have access to. In the following we will use Kjeldsen’s (2008, 2009) 
historical analyses of Minkowski’s development of the concept of a general convex 
body to pinpoint yet another way in which mathematics can be considered to be tool-
driven. The relations in the methodological triangle and the validation of the historical 
analyses with respect to our agenda in this paper will be unfolded and discussed as we 
move along. 
The idea of a general convex body was crystalized and constructed in the period 1887-
1897. Two instances have been found: 1) Hermann Brunn’s theses at Munich 
University from 1887 in which he introduced and investigated what we today will 
think of as general convex bodies in two and three dimensions. 2) Hermann 
Minkowski’s work on positive definite quadratic forms that led to his development of 
geometry of numbers and the beginning of a theory for general convex bodies in the 
period 1887-1897. The short introductions to the history of convex analysis and 
geometry that can be found in textbooks and some historical accounts (see e.g. 
(Bonnesen and Fenchel 1934; Klee 1963; Gruber 1993)), are mostly written from the 
perspective of the present status and practice of the theory of convexity that is, from 
the conceptualization of modern mathematicians. In Kjeldsen’s analysis there is a 
change of perspective from what we can call timeless “sameness” or from the 
universality of mathematics which the above mentioned historical accounts are written 
from, to the situatedness, to the local development of mathematics, to the practices of 
Brunn and Minkowski, a perspective where attention is paid to the tools and 
techniques they used, to their intensions and to unintended consequences of their 
work. She moves into Brunn’s and Minkowski’s “workshops” (with their tools, 
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techniques, objects and their theories) through their manuscripts, their institutional 
affiliations and their mathematical cultures. She uses the historiographical tool of 
epistemic configuration (Rheinberger 1997; Epple 2004) in her historical analyses. 
Among other things, she argues that Minkowski’s construction of the concept of a 
general convex body appeared as an unintended consequence of his work on positive 
definite quadratic forms.   
Hermann Brunn introduced what he named “ovals” and “egg forms” in his thesis 
written in 1887 at the University of Munich. He defined an oval as a closed plane 
curve that has two and only two points in common with every intersecting straight line 
in the plane, and a full oval as an oval together with its inner points. Egg surfaces and 
egg bodies were defined as the corresponding objects in space. A mathematician of 
today will recognize these objects as convex sets in two and three dimensions. For 
Brunn they were what we could coin quasi-empirical objects whose mathematical 
properties such as curvature, area, volume and cross sections were unknown. The 
visual and intuitive, the quasi empirical status of Brunn’s objects, were essential for 
his mathematical practice. He had very strong opinions about the methodology of 
geometry as he wrote in his thesis: 

I was not entirely satisfied with the geometry of that time which strongly stuck to laws 
that could be presented as equations quickly leading from simple to frizzy figures that 
have no connection to common human interests. I tried to treat plain geometrical forms in 
general definitions. In doing so I leaned primarily on the elementary geometry that 
Hermann Müller, an impressive character with outstanding teaching talent, had taught me 
in the Gymnasium, and I drew on Jakob Steiner for stimulation. (Brunn, 1887) 

Brunn’s mathematical objects can be seen as developing from artefacts from our 
material world – artefacts which Brunn turned into quasi empirical mathematical 
objects. In the discussion we will compare Brunn’s objects with Minkowski’s and 
discuss the role of their objects in the development of mathematics. 
David Hilbert wrote in memory of his friend and colleague Hermann Minkowski 
(1864-1909) that Minkowski’s geometrical proof of the so-called minimum theorem 
for positive definite quadratic forms was “a pearl of the Minkowskian art of 
invention” (Hilbert 1909). Besides being a very intuitive proof and providing a better 
upper bound for the minimum, Minkowski’s work with the geometrical proof of the 
minimum theorem led to a new discipline in mathematics, geometry of numbers, it led 
to the idea of a general convex body hereby launching the beginning of the modern 
theory of convexity, and it led to the generalization of the concept of a straight line 
through Minkowski’s introduction of what he called radial distance (which we today 
would call an abstract notion of a metric). A key object in these developments is the 
concept of a lattice which Minkowski used in his investigations of the minimum 
problem for positive definite quadratic forms in n variables. In the following we will 
explain the role of the lattice in Minkowski’s work in order to discuss if and if so in 
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what sense the lattice can be seen as a cognitive artefact and how these developments 
of Minkowski’s in modern mathematics can be said to be driven by this tool. 
A positive definite quadratic form f  in n variables has the following form: 

f(x) = ∑ ahk xh xk , x = (x1, x2, … , xn ) ,    ahk = akh

where ahk are real numbers. 
The minimum problem for such forms is to: Find the minimum value of the quadratic 
form for integer values of the variables – not all zero. 
Minkowski was inspired by Gauss and Dirichlet who had outlined and shown how 
positive definite quadratic forms in two and three variables, respectively, could be 
represented geometrically.  
Following Gauss, we let

f :   axx + 2bxy + cyy
be a positive definite quadratic form in two variables. In a rectangular coordinate 
system, the level curves of such a form will form ellipses. Gauss (1863, p. 188–196) 
outlined how such a form can be associated with a lattice that is built up of congruent 
parallelograms through a coordinate transformation (see figure 4).     

Figure 4: The lattice

The angle φ between the coordinate axes in the lattice is determined by cos φ = b/√ac.
The points (x√a , y√c) for integral values of x and y are called lattice points. They 
form the vertices of the parallelograms. In this coordinate system the quadratic form 
measures the distance from lattice points to the origin for integral values of the 
variables: 

f (x,y) = (distance from the lattice point (x√a , y√c) to the origin)2
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In this geometrical representation the minimum problem becomes the problem of 
finding the smallest distance between two points in the lattice. Minkowski reached an 
upper bound for the minimum for forms of three variables through geometrical 
reasoning in his probationary lecture for the habilitation in 1887. The technique he 
used was to place spheres with the smallest distance in the lattice as diameter around 
lattice points. Since the spheres will not overlap and they do not fill out the volume of 
the standard parallelotopes, he could deduce the following inequality: 

Hereby he reached an upper bound for the minimum M of the quadratic form that 
depends solely on the determinant D of the form and the dimension. In 1891 he 
published a proof for the n-dimensional case. 
Minkowski developed what he called Geometry of Numbers as a general theory of 
which positive definite quadratic forms could be treated geometrically. He realized 
that the essential property was not the ellipsoid shape of the level curves for positive 
definite quadratic forms but what we today will call the convexity property of these 
bodies. In a talk from 1891 Minkowski introduced the 3-dimensional lattice, not as a 
representation of a positive definite quadratic form in three variables, but as a 
collection of points with integer coordinates in space with orthogonal coordinates. In 
the lattice, he considered what he called a very general category of bodies that 
consists: “of all those bodies that have the origin as middle point, and whose boundary 
towards the outside is nowhere concave.” (Minkowski 1891). By then he had realized 
that it does not have to be a positive definite quadratic form that measures the distance 
in the lattice. It can be any body belonging to this category of bodies. The lattice had 
changed function from being a geometrical representation of a positive definite 
quadratic form to function as scaffolding for investigating the general categories of 
bodies mentioned above. A scaffolding which Minkowski began to investigate within 
the context of geometry of numbers that he was developing. 
In a talk from 1893 he presented his ideas in more details. He introduced what he 
called the radial distance S(ab) between two points, where S is positive if a and b are 
not equal to one another, otherwise S is zero. He also defined what he called the 
corresponding “Eichkörper” which consists of all the points u which radial distance to 
the origin is less than or equal to one:  S(ou) ≤ 1 (we would call this the unit ball). He 
emphasized that: 

If moreover S(ac) ≤ S(ab) + S(bc) for arbitrary points a, b, c the radial distance is called 
“einhellig”. Its “Eichkörper” then has the property that whenever two points u and v
belong to the “Eichkörper” then the whole line segment uv will also belong to the 
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“Eichkörper”. On the other hand every nowhere concave body, which has the origin as an 
inner point, is the “Eichkörper” of a certain “einhellig” radial distance. (Minkowski 1911, 
vol I, p. 272-273) 

Today we would recognize a radial distance that fulfills the triangular inequality and is 
reciprocal as a metric that also induces a norm.  
Minkowski formulated his famous lattice point theorem in the talk: If , where J
is the volume of the Eichkörper, then the Eichkörper contains additional lattice points. 
Minkowski’s lattice point theorem connects the volume of a body with certain 
geometrical properties with points with integer coordinates. In his book Geometry of 
Numbers, he developed his theory for bodies in n-dimensional space.  
In the course of Minkowski’s research the lattice changed epistemic function from 
being a representation of positive definite quadratic forms, to become of interests in 
itself when Minkowski began to investigate the lattice and its corresponding bodies, to 
function as a tool – a scaffolding. Viewing the mathematical practice of Minkowski in 
this research episode from this particular perspective of mathematics as a tool driven 
enterprise, we can see that the lattice played a major role as a cognitive artefact, a tool 
that caused a qualitative shift in the research on the minimum problem for positive 
definite quadratic forms, in at least two ways:  

• It provided the structure in which the “very general category of bodies” could be
considered (Minkowski’s talk from 1891).

• It functioned as a link between integer coordinates and the seize (volume) of the
convex body.

We will finish this example by further exploring how the cognitive artefact of the 
lattice in this concrete episode of mathematical research enhanced our mathematical 
thinking, in what sense it led to a qualitative shift in our ability to perform 
mathematical cognition.
Brunn’s egg-forms and ovals are quasi empirical mathematical objects which he 
investigated and proved theorems about by using the method and technique from 
synthetic geometry. In the preface or introduction to text books about convexity we 
can often read that general convex bodies were first investigated by Brunn and then 
further explored and extended by Minkowski (see e.g. (Bonnesen and Fenchel 1934; 
Klee 1963; Gruber 1993)). These short accounts of the development of the theory of 
convexity are written from the perspective of the modern theory, from the 
conceptualization of the writer, who focuses on the similarity of the bodies 
investigated by Brunn and Minkowski respectively. This is in the tradition of modern 
writings in mathematics where mathematical objects are presented as timeless entities 
(cf. Epple 2011).   
If we change perspective from considering mathematical objects as timeless entities 
and instead focus on the situatedness in the actual production of mathematics, we have 
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two trajectories of research emanating from each local context with a concrete 
mathematical practice. This is illustrated in figure 5. 

Figure 5: The figure is adapted from Kjeldsen (2014)

There were two local contexts, Brunn’s and Minkowski’s, having each a concrete 
mathematical practice that was very different from one another. Minkowski and 
Brunn worked independently of each other and only became aware of each other’s 
work after they both had developed and formulated their ideas. They met around 1893, 
and realized that they were both working on bodies with nowhere concave boundaries 
(see Kjeldsen 2009).  
In order to explore this “sameness” or timelessness of mathematical entities from a 
historical perspective of mathematics we can play with the question whether Brunn, 
working with ovals and egg-bodies, within his mathematical workshop or “lab”, could 
have reached the results of Minkowski, as illustrated by the stipulated trajectory in 
figure 6. 

Figure 6: The figure is adapted from Kjeldsen (2014)

However, as our historical analysis of the concrete episodes of Brunn’s and
Minkowski’s work with ovals and egg-bodies and positive definite quadratic forms, 
radial distance and “eichkörper”, respectively, from the perspective of Brunn’s and 
Minkowski’s mathematical practices has shown, Minkowski’s lattice point theorem 
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could not have been developed within Brunn’s mathematical workshop. There is 
nothing in Brunn’s practice in this episode that connected the volume of his egg-
bodies with points in space with integer coordinates. Brunn could not have asked the 
question of the lattice point theorem, as illustrated in figure 7. 

Figure 7: The figure is adapted from Kjeldsen (2014)

The content of concrete episodes of mathematical research, and the questions asked in 
such episodes depend on the objects and techniques (lattice, geometrical 
representation of quadratic forms vs quasi empirical egg forms, synthetic geometry) 
that are available and present for the mathematician in the particular research 
situation. Mathematicians’ ability to think mathematically is determined by the 
cognitive context they are positioned in, that is: by the cognitive artefacts and other 
cognitive support available to them. 
The lattice played a significant role in Minkowski’s work. If we look at the dynamics 
of the knowledge production, we can see that in the beginning of the research episode, 
the lattice functioned as a representation for positive definite quadratic forms that 
made it possible for Minkowski to use the method of analytic geometry to work on the 
minimum problem. The lattice then became the object of investigation which led to 
Minkowski’s introduction of the radial distance and the “Eichkörper”. The lattice was 
the connecting link between the geometry of the nowhere concave bodies and
arithmetic through the points with integer coordinates in the Euclidean coordinate 
system in n-dimensional space. In this sense, the lattice functioned as a cognitive 
artefact, a tool that drove the development of geometry of numbers. It caused a
qualitative shift in the development of Minkowski’s work on positive 
definite quadratic forms.

DISCUSSION
Through our four examples we have explored how cognitive artefacts are used 
in mathematics and we have identified three different ways in which artefacts have 
led to qualitative shifts in our ability to perform mathematical cognition: 1) as an 
expansion of the given (counting), 2) as an extension of what one can work and 
manipulate with 
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(the square roots of negative numbers), and 3) as a scaffolding mediator between 
different mathematical areas (the lattice). The analyses show that cognitive artefacts 
are not just cognitive artefacts. Different artefacts shape the cognitive landscape in 
different ways, and for that reason it matters what type of artefacts we have access to. 
Our ability to think – also mathematically – is determined by the cognitive context we 
are positioned in, that is: by the cognitive artefacts and other cognitive support 
available to us. 
In the introduction we alluded to the debate about the use of computers in the teaching 
of mathematics. We took this debate as an opportunity to shift the focus from the 
computer as such to the use of tools in mathematics in general, to move beyond the 
“good”/”bad” discussion of computers and instead ask: What can we learn about 
mathematics if we view mathematics as a tool-driven practice in research and in 
every-day (or practical) mathematics? We complete the loop by returning to the 
educational perspective. Today almost everybody in the Western world is intimately 
connected with smartphones, laptops, tablets and other devices that offer powerful 
computational support. This has radically changed the cognitive landscape we are 
situated within. We have to recognise this change and take informed decisions about 
what consequences it should have for our mathematical practice. At the outset, doing 
long division with smartphone is no less mathematical than doing it using an abacus or 
Hindu-Arabic numerals. In all the cases, students will be using cognitive artefacts. As 
we have shown in our analyses of our historical cases, the different artefacts have 
different affordances. They shape the cognitive landscape in different ways, and for 
that reason it matters what type of artefacts our students have access to. What they can 
do is determined by the cognitive artefacts they have access to. Our decisions 
concerning which artefacts to use and (more importantly) which to teach our students 
to use, should depend on an analysis of these affordances as compared to our need. 

NOTES 
1. We are indebted to Professor Jesper Lützen, University of Copenhagen, for bringing this case to
our attention. Lützen presented his own treatment in a talk given at the Second Joint International
Meeting of the Israel Mathematical Union and the American Mathematical Society, IMU-AMS in
Tel Aviv, Israel, June 16-19, 2014.

2. It should be noted that Cardano used a slightly different representation. In his original manuscript
the modern symbols + and – are represented as “p” and “m” respectively, and  is represented as 
“R2”. Thus in total his two solutions are stated as: 5 p:R2:m:15 and 5 m:R2:m:15 (Struik 1969, 
p.68).

3. Presented by Kjeldsen in the talk “Whose History? Minkowski's development of geometry of
numbers and the concept of convex sets”, held at at Second Joint International Meeting of the Israel
Mathematical Union and the American Mathematical Society, IMU-AMS in Tel Aviv, Israel, June
16-19, 2014.

MATHEMATICS AS A TOOL-DRIVEN PRACTICE: THE USE OF MATERIAL AND CONCEPTUAL ...



 Page 94

REFERENCES 
Bonnesen, T., & Fenchel, W. (1934). Theorie der konvexen Körper. Berlin: Julius 

Springer Verlag. 
Brunn, K.H. (1887). Ueber Ovale und Eiflcähen. Inaugural-Dissertation. Munich: 

Akademische Buchdruckerei von F. Straub. 
De Cruz, H., & De Smedt, J. (2013). Mathematical symbols as epistemic actions.

Synthese, 190(1), 3-19.
Epple, M. (2004). Knot Invariants in Vienna and Princeton during the 1920s: 

Epistemic Configurations of Mathematical Research. Science in Context,
17,131-164. 

Epple, M. (2011). Between Timelessness and Historiality: On the Dynamics of the 
Epistemic Objects of Mathematics. Isis, 102(3), 481-493. 

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core Systems of Number. Trends in 
Cognitive Sciences, 8(7), 307-314.

Frank, M.C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a 
cognitive technology: Evidence from Pirahã language and cognition. Cognition,
108, 819-824.  

Frank, M.C., Fedorenko, E., & Gibson, E. (2008). Language as a cognitive 
technology: English-speakers match like Pirahã when you don't let them count.
Proceedings of the 30th Annual Meeting of the Cognitive Science Society. 

Gauss, C.F. (1863): Collected Works vol. 2, Göttingen. 
Gruber, P. (1993). History of Convexity. In: P.M. Gruber & J.M. Wills (Eds.), 

Handbook of Convex Geometry, (pp. 3-15). Elsevier Science Publishers. 
Heersmink, R. (2013). A Taxonomy of Cognitive Artifacts: Function, Information, 

and Categories. Review of Philosophy and Psychology, 4(3), 465-481. 
Hilbert, D. (1911). Hermann Minkowski. Gedächtnisrede 1909, V-XXXI in 

(Minkowski, 1911, vol. I) 
Hoyles, C. & Noss, R. (2009). The Technological Mediation of Mathematics and Its 

Learning. Human Development, 52(2), 129-147. 
Hutchins, E. (2005). Material anchors for conceptual blends. J. Pragmatics, 37(10), 

1555-1577. 
Ifrah, G. (2000). The Universal History of Numbers. From prehistory to the invention 

of the computer. New York: John Wiley & Sons. 
Johansen, M.W. & Misfeldt, M. (2015). Semiotic Scaffolding in Mathematics. 

Biosemiotic. doi: 10.1007/s12304-014-9228-6

MIKKEL WILLUM JOHANSEN & TINNE HOFF KJELDSEN



 Page 95

Johansen, M.W. (2010). Naturalism in the philosophy of mathematics Mathematics. 
(Unpublished doctoral dissertation). Faculty of Science, University of 
Copenhagen, Copenhagen. (Online publication available at: 
http://www.nbi.dk/natphil/prs/mwj/Dissertation-mwj2010.pdf.)

Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. 
Cognitive Science, 18(4), 513-549. 

Kjeldsen, T.H. (2008). From Measuring Tool to Geometrical Object: Minkowski’s 
Development of the Concept of Convex Bodies. Archive for History of Exact 
Science, 62(1), 59-89. 

Kjeldsen, T.H. (2009). Egg-forms and Measure Bodies: Different Mathematical 
Practices in the Early History of the Development of the Modern Theory of 
Convexity. Science in Context, 22(01), 85-113.

Kjeldsen, T.H. (2014). Reflections on mathematics through a historical lens: what can 
history of mathematics tell us about mathematics besides who did what when? 
(talk presented at the C.A.D.I.L.L.A.C seminar Mathematical Reflections, 20 
May 2014, Roskilde University, Denmark. http://cadillac-
dk.weebly.com/mathematical-reflections-2014.html (homepage visited 
November 30, 2014). 

Klee, V. (Ed.), (1963). Convexity. Proceedings of Symposia in Pure Mathematics,
volume VII, Providence, Rhode Island: American Mathematical Society. 

Menninger, K. (1992). Number Words and Number Symbols: A Cultural History of 
Numbers. New York: Courier Dover Publications.

Minkowski, H. (1911). Gesammelte Abhandlungen. Leipzig, Berlin: B.G. Teubner. 
Norman, D.A. (1993). Things that make us smart. Reading, MA: Addison-Wesley 

Publishing Company. 
Núñez, R. (2009). Numbers and Arithmetic: Neither Hardwired Nor Out There. 

Biological Theory, 4(1), 68-83. 
Rheinberger, H-J. (1997). Towards a History of Epistemic Things: Synthesizing 

Proteins in the Test Tube. Stanford: Stanford University Press. 
Struik, D. (Ed.), (1969). A Source Book in Mathematics, 1200-1800. Cambridge, 

Mass.:Harvard University Press. 

MATHEMATICS AS A TOOL-DRIVEN PRACTICE: THE USE OF MATERIAL AND CONCEPTUAL ...


