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ABSTRACT

In the sixteenth and seventeenth centuries, as long sea voyages became common, travelers
began to report that pendulum clocks consistently ran slow near the equator. Isaac Newton men-
tioned this phenomenon in the Principia and suggested (Book III, Proposition 18) that the earth
was not quite spherical; it bulged slightly near the equator and thus the force of gravity was less
there. The theory was confirmed in the 1730’s by measurements taken by Maupertius in Lapland
and by La Condamine in what is now Ecuador.

We discuss how Euler and Lagrange incorporated the knowledge that the earth was not a
perfect sphere in the development of the theory of conformal mapping, and suggest ways in which
this case study of the interplay of technology (navigation and geodesy) with mathematical theory
(conformal mapping) might be used with students.
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1 Flattening the Earth

The sixteenth-century round-the-world voyages of Ferndo de Magalhées (Ferdinand Magellan), Fran-
cis Drake, Ignacio de Loyola, and others put an end to any lingering doubts about the correctness of
Aristote’s theory that the earth was round. However, two observations in the late seventeenth century
led to a suspicion that the round shape was not a perfect sphere.

The first observation was by Giovanni Cassini in 1665, taking advantage of improvements in tele-
scope making to make very precise measurements of the disc of Jupiter, discovering that the planet
was in fact an oblate spheroid, with the equatorial radius about 1/15 larger that the polar radius. Iron-
ically, Cassini and his descendants were to later lead a faction that believed the earth, unlike Jupiter,
was a prolate spheroid with a larger polar than equatorial radius.

The second observation did not seem at first to have any relationship to the shape of the earth. In
1672-3, the Académie Royale sent Jean Richer on an expedition to Cayenne, “pour la perfection & et
I’avancement de I’Astronomie;” while there, Richer conducted a number of astronomical and physical
experiments. Curiously, he found that a pendulum clock which had been precisely calibrated in Paris,
lost more than two minutes per day in the tropics. Perhaps it was Christian Huygens, then resident
at the Paris Observatory, who suggested that the force of gravity was in fact less at the equator.

But why would gravity be diminished at the equator? Huygens thought it might be centrifugal
force, caused by the earth’s rotation. Isaac Newton published the Principia in 1687. In Book III, Propo-
sition XVIII of that work, he proposed a different explanation: that the earth was, like Jupiter, an oblate
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spheroid. Objects at the equator were further from the center of the earth than those at the poles and,
therefore, by the inverse-square law, the effect of gravity was less. Newton said: “If our earth was
not higher about the equator than at the poles, the seas would subside about the poles, and rising
towards the equator, would lay all things there under water.”[13, p.426] In Proposition XIX, Newton,
assuming that “the matter of the earth is uniform, and without movement” uses geometrical results
on the inverse- square law from Book I to compute the ratio of the equatorial to the polar axes, and
arrives at a value of 230:229. In Proposition XX, the theory is extended to planets other than earth.

Newton’s work did not convince everyone. Especially in France, adherents of the Cartesian camp
distrusted the notion of action at a distance. Jacques Cassini (son of Giovanni) measured the dis-
tance of one degree of latitude in the south of France, and found (erroneously) this was longer than
the degree measured near Paris in an earlier survey. Thus, they argued for a prolate, rather than an
oblate, spheroid. To resolve the dispute, the Académie obtained royal permission, and funding, to
send expeditions to Lapland and to Spanish Peru (in a region which is now part of Ecuador).

The Lapland expedition, including Maupertuis, Clairaut, and Anders Celsius from Sweden, re-
turned in 1638. Their results showed that a degree of latitude was significantly longer than in France.
Maupertuis was acclaimed by Voltaire as the “flattener of the earth” [19]. Voltaire wrote the following
epithet:

This poorly known world which he knew how to measure
Becomes a monument from which he derives his glory,
His destiny is to describe the world,

To please and enlighten it.!

The story of the two expeditions is told elsewhere ([9],[8], [1]); and Todhunter ([18]) still appears
to be the authority on more refined measurements, and on further improvements to Newton’s theory,
especially by Stirling and Clairaut. The rest of this paper will treat the specific problem of how the
model of earth as an oblate spheroid was adopted for use in cartography. But one last incident needs
to be be mentioned.

A survey to measure the length of a degree of latitude in the the Paris-Amiens region had been un-
dertaken by Jean Picard in 1669.2 Then a 1720 survey in the south of France reported that the length of
a degree of latitude was slighty longer than Picard’s figure. This was one reason the Cassinis held out
so long for the prolate earth theory. But, in 1740, Cassini de Thury (grandson of Giovanni) admitted
to the Academy that a resurvey had shown significant errors with Picard’s original measurements.
This was interpreted as a concession by the Cartesian party that the earth might indeed be flattened
at the poles.

Voltaire now addressed Maupertuis as “flattener of the earth, and of the Cassinis” [17].

2 Euler Looks at the Data

The return of Maupertuis and the Lapland expedition, and their findings confirming Newton, were
a major event in eighteenth century science. Leonard Euler, at the Academy in St. Petersburg, would

! “Le Globe mal connu qu’ il a s¢u mesurer, Devient un Monument o sa gloire se fonde; Son sort est de fixer la figure
du Monde, De lui plaire, et de 1’ éclairer.
?Newton mentions this survey in the Principia.
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certainly have heard of it. Moreover, Euler would have had a interest in the cartographic applications
of the expedition’s findings, since a large part of his duties then involved work at the Academy’s
Department of Geography, working to produce a map of the Russian empire. In 1740, Euler produced
a short paper[2], which used Maupertuis’ figures to compute the length of one degree of latitude and
one degree of longitude at several different places on the globe. Euler’s method was apparently used
by C.N. de Winsham? in the construction of a book of tables[18, p. 132].

In 1754, while at the Berlin Academy, Euler presented another paper[3] on the calculation of dis-
tances on the surface of the globe. This paper extends the methods of a prior paper on spherical
trigonometry to an ellispoidal earth. The paper begins with an analysis of the problem, where gen-
eral formulae are derived, followed by an estimate of the size and shape of the earth, using data from
four surveys at different latitudes, and then a solution of a some specific arithmetical problerns.4

The first section, interesting for its general treatment of elliptical geometry, uses only simple cal-
culus to derive an expression for the radius of curvature, which is needed to compute the surface
distance along a meridian. An approximation to surface distance as a function of the equatorial ra-
dius and eccentricity is found, again by simple calculus.

He shows that, at latitude ¢, the distance on the surface of the ellipsoid corresponding to a small
displacement in latitude, d¢, is equal to

2v2a%%dp (3 5
(a2 + 2302 <1 —5 5cos(2¢)> , or A- (1 —5 6cos(2¢>)> ,

where a and b are the major and minor semi-axes, and J is a constant related to the eccentricity.” In
this case, we are measuring the length of one degree, so d¢ = 7/180.

In the second section, Euler estimates the equatorial radius and eccentricity, He uses data from
four different surveys from four different latitdudes:

¢ the La Condamine/Bougeur expedition to South America;

the Maupertuis expedition to Lapland;

¢ anew measurement by Nicolas-Louis de La Caille, at the Cape of Good Hope in South Africa;

A survey of France from near Paris to near Amiens (this appears to be the 1740 survey mentioned
previously).

Here are the data Euler uses:

3or Winsheim

4Example: Knowing the meridian at a point L, determine the latitude by observing the stars, then walk in a straight
line keeping a fixed angle with the meridian, to another point M, and determine the distance LM after a new observation
of the stars.

>Euler used e for the equatorial radius(semi-major axis) and a for the polar radius (semi-minor axis). To make it easier
for the modern reader, and to conform to current usage, we changed these to a for the semi-major and b for the semi-minor
axis.
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Length®
Location Latitude of One Degree
South America —0°30 56753
Cape of Good Hope  —33°18' 57037
France 49°23’ 57074
Lapland 66°20’ 57438

Thus, the four approximate equations to resolve are

3
A (1 ~ 5 dcos 1°> = A (1-1.49977156) = 56753 +p
3
A (1 ~ 5 dcos 66"36’) = A(1-0.59572196) = 57037 +q
A (1 - gdcos 98046’) = A(1-0.22861836) = 57074 +r

3
A (1 — 5 dcos 132%0’) = A (1-1.016598068) = 57438+ s

where the quantities p, g, r, s are unknown errors in the measurements. Euler subtracts the first equa-
tion from the other three, than divides the last two equations by the last two, to obtain

321+r—p:@ an 685+s—p:@
284 +qg—1r 34’ 284+q—p 157’
or
31p — 65g + 34r = 7546 and 280p — 437q + 157s = 16563

or, finally, eliminating p,
—150q + 307r — 157s = 51594.

So far, so good. But now a subjective judgment enters. Euler says “if one wanted to suppose these
three errors equal, each would be 84 toises, which would be too much, given the great exactness with
which the second and fourth of the measurements were made.” Somewhat arbitrarily, it seems, he
takes r equal to 125 toises, and assumes that g and s are equal, so that ¢ = s = —43, and so p = 15.

Euler plugs his estimates into the above equations, and concludes that 6 = 0.00436055. Since

2_62
L
a2 + b2

this means that the ratio of major axis to minor axis is

a 1+0
— =4/ —— = 1.00437
b 1-0 ’
or about 230 to 229, which is precisely what Newton predicted. One gets the impression that Euler
has set out to prove Newton right and the Cassinis wrong.
It is tempting look at these errors with the benefit of current knowledge. The current figures” for

the major and minor axes of the earth are 6378136.6 and 6356751.6 meters, or 3272470 and 3261498

"The current standard for the figure of the earth, known as WGS84, is essentially a compromise ellipsoid based on many
thousands of satellite measurements. The data used here is taken from [8], p. 264, who in turn cites [7].
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toises. These figures agree well with Euler’s estimates, although the earth appears somewhat less
flattened than was assumed in Euler’s time. However, it is ineteresting to look at errors in the four

surveys in the light of current knowldege.

Latitude Euler WGS84

South America —0°30 15 -20
Cape of Good Hope = —33°1&’ -43 -132
France 49°23’ 125 -11
Lapland 66°20 -43 -224

Euler thought that the most accurate surveys were the second and the fourth; these were in fact
the least accurate. The French survey, which Euler assumed was the least accurate, turns out to have
the smallest error.

Of course, it is unfair to criticize Euler for lack of access to data which did not yet exist. The French
survey had some notoriety, as suggested above, and it is likely that its accuracy was widely questioned.
On the other hand, the very large errors in the Lapland survey were not known until the 1920s.

Euler’s data analysis appears somewhat ad-hoc. But in his defense, the method of least squares
had not yet been invented. Yielding to temptation again, let us see what a least-squares analysis might

tell us. We start with the four equations above, in linear form as
A— A(sz =y + €,

with A and ¢ as above, the z; are equal to —3/2 times twice the cosines of each latitude, and the y; the
estimated survey measurements.
A standard least-squares calculation® shows

A = 57019.50896, Ad =191.222296, sothat ¢ = 0.00335363.

Imitating Euler’s calcualtions, the result are (units in toises)
Euler’s Least Squares

estimates estimates WGS84
Major axis 3281168 3280417 3272470
Minor axis 3266892 3266134 3261498
Flattening Ratio 230 229.66 298.25

Compared to Euler’s predictions, the method of least squares shows the earth slightly smaller, but
with the same shape (flattening ratio). But again, what is interesting is the least-square residuals at
each data point, compared with Euler’s estimates:

Latitude Euler LeastSquares

South America —0°30/ 15 2
Cape of Good Hope = —33°1&’ -43 -57
France 49°23' 125 111
Lapland 66°20 -43 -56

8Computation was performed using the 1m() module in the open-source statistical package R. For information about
R, see[14].
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The least-squares residuals show the Africa and Lapland surveys about equal in goodness of fit,
while the French survey is much worse than the others. This is precisely the same pattern that Euler
achieved in his manipulations. Perhaps what may have seemed subjective judgment was really an
instinctive feel for how the data fit together.

In summary, later data, unavailable at the time, would eventially prove Euler wrong in his assess-
ments of errors. But he did impressively well, based on the data he had to work with.

3 Practical Cartography

Euler published, in 1775, three treatises[4, 5, 6] which constitute his principal contribution to mathe-
matical cartography. However, all of these papers assume a spherical, rather than an ellipsoidal earth.
Euler’s interest was in the abstract properties of a mapping from one surface to another, and not so
much in the tools of day-to-day cartography. He closes the first treatise[4] with these word: “+--it is
not easy to derive methods of practical use from our formulae. Nor, indeed was the intention of the
present work to dwell on practical uses, especially since, for the usual projections, these matters have
been explained at length by others.” °

Both Lambert[11] and Lagrange[10] published papers in the 1770s which did attempt to incorpo-
rate knowledge of an ellipsoidal earth into their work on angle-preserving (conformal) cartographic
maps. Their treatments are similar. We shall describe Lagrange’s work here since his treatment is
more systematic.

Lagrange considers the question of a mapping from points on the globe with latitude s and lon-
gitude ¢ to points on the plane (z,y). Specifically, “let us consider two points infinitely close, which
are determined on the surface of the globe by the variables s, ¢, s + ds, t + dt, and on the map by the
variables corresponding variables x,y, x + dz, y + dy, and look for the distances of these two points
on the gobe and on the map. Evidently, the distance on the globe is expressed by +/ds? + ¢%dt, where
q dt is the arc on the parallel [of latitude] between two meridians [of longitude], and the distance on
the map is expressed by the usual formula /22 + y2.” Lagrange sets as a fundamental condition, that
such a mapping should satisfy

Vds? +@2dt? : \Jda? + dy? =1:m,
or
da? + dy? = m2ds® + ¢° dt?
where m is some arbitrary constant. Now Lagrange prepares for the possibility of mapping from an
ellipsoidal shape. Observing that “the ordinate g of the curve of the meridian is given by the nature of
d
the curve, so that “is integrable”, he replaces the latitude s by the unspecified function u(s). Setting

n = mgq, the previous condition becomes
dx® + dy? = n’du’® + dt?

The next fifteen pages are devoted to finding mappings from (u, t) to (z, y) which satisfy this condition
under suitable restrictions. Finally Lagrange returns to consider the shape of the globe. If the earth is

9.-minus facile est methodos usu receptas ex formulis nostris generalibus elicere. Neque vero institutum praesens
permittit, ut huic negotio immoremur, praecipue cum consuetae proiectiones ab aliis iam abunde sint explicatae”
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in fact a sphere, then
. ds s
q=-sins, sothat du=——, and wu=1In (ktan 7>
sin s 2

(for an arbitrary constant k), a value which can then be inserted in previously found expressions for
z(u,t) and y(u, t). If, on the other hand, the meridians are elliptical, then taking z (rather than s) for
the distance to the pole, and ¢ for the (linear) eccentricity, the expression for u becomes

z (1l4ecosz 3
=1 ktan - [ — .
“ og( an2<1—5cosz> )

Now simply let ¢ be an angle which satisfies

¢ 2z (1+ccosz) 2
tan- =tan- | —— ;
2 2\1—¢cosz

if the ellipse is near a circle, ( can be approximated by a rapidly convergent series. Now the formulae
previously found for the sphere can be used, with the slightly different angle ¢ in place of z.

Lambert, writing seven years earlier, had come up with almost identical results to those of La-
grange, but his treatment is much briefer. (One speculates that Lagrange simply took Lambert’s results
and packaged them into a more readable format.) In an analysis of angle-preserving maps, Lambert
comes up with an with an expression like Lagrange’s(above) for the value of «. He defines a (small)
auxiliary angle as a function of latitude and shows how to use this to make corrections to the latitude
via a radidly convergent series.

Modern cartographers, when designing maps where the ellipsoidal shape of the earth is relevant,
use the same technique pioneered by Lambert and Lagrange. For each given latitude, a slightly cor-
rected “auxiliary latitude” is computed, and then the auxiliary is used in the projection computations.
Different auxiliary latitudes are used, depending on the desired propoerites of the map. Detailed in-
formation on auxiliary latitudes can be found in [12] and [15].

4 Uses in Pedagogy

The Euler and Lagrange works discussed above show how to model the earth as an ellipsoid. Each
author develops the geometry of the ellipse; in particular, the relationship between a the coordinates
of a point on the curve and the angle of the tangent line at that point. The development requires
only the fundamental equation and some simple calculus, but offers material not often seen in an
undergraduate calculus class.

The Euler paper in the second section offers other intriguing opportunities for discussion, includ-

ing:
* How do we incorporate subjectively known differences of error in an analysis?
¢ Alternatively, how do we read and assess the merits of a subjective data analysis?

* What are the advantages and potential drawbacks of the least-squares method?

* Are there alternatives to the least-squares method?
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